M 10-301/10-601 Introduction to Machine Learning

Machine Learning Department

| —] School of Computer Science

MACHINE LEARNING : o
EEEEEEEEEE Carnegie Mellon University

%

Transformers, AutoDiff
+

Pre-training, Fine-Tuning, In-context Learning

Matt Gormley & Henry Chai
Lecture 19
Mar. 27, 2024

Reminders

* Exam 2: Thu, Nov 7, 6:45 pm - 8:45 pm

* Homework 7: Deep Learning & LLMs
— Out: Thu, Nov 7
— Due: Sun, Nov 17, 11:59pm

IMPLEMENTING A TRANSFORMER LM

Matrix Version of Single-Headed Attention

a, = softmax(sy)attention weights

[softmax/ / /]

W, S s$z da T
O] s4,j = Kj qa//dpSCOTES
N
_ w7 '
W, o q; = Wq X queries
k, 2 ks k, T
T/ Y [[kj = Wi x; keys
Wv Vi Vv, / V3 Vy T
T OO OO O™ v = W, X; values
Xi X, X3 X4
T OO0 O O

Matrix Version of Single-Headed Attention

/
Xy = E :a4,jVj
J=1

d4d 4

!
[softmax / / /]
Wy 54 $$ $§$4

a, = softmax(sy)attention weights

s1,; = Kk qq/+/djScores

- :
k 2 ks k, B T
T/ Oy O OO kj = W;x; keys
Wv Vi \'/ / V3 \' T
1 e O o v o O o o v, = W, Xx; values
X4 X, X; Xy

Matrix Version of Single-Headed Attention

* Forspeed, we compute
all the queries at once X' = AV = softmax(QKT/\/ dr)V

using matrix operations
* First we pack the
queries, keys, values into 434 als
matrices A =[ay,...,a4)" = softmax(S)
* Then we compute all the T
queries at once [softmax / /
S

[
22k

W,

D

S = [s1,...,84]" = QK" /\/dx
1 Q=lq,...,q)" =XW,
[|| — :k1,...7k4:T :ka

Wv Vi V, V3 V4 _ _ T

[T [0 I OO = |V1,...,Vv4]" = XW,

I
k1 2 k3 k4
11/ L CLT1 |

X X, X3 X4
17

70 I OO [= [X1,...,X4]

Matrix Version of Single-Headed Attention

* Forspeed, we compute

all the queries at once X' — AV = softma KT/ /dV
using matrix operations X(QK" /+/dk)

* First we pack the
queries, keys, values into

matrices [T (T [0 A=la,...,a)" = softmax(S)
* Then we compute all the T /f T
queries at once IIRVYANYET AN,]
Wq | \/ | ! T T
T H%D = [s1,..-584]" = QK" //di
q 4
W, o XA [Q:[QM---»(M]T:XWCJ
K, _ _
= [kq,..., k)" = XW,
w, Vv, v, A Vv,) 1T

T [OO O™ V=|vy,...,vqyl" =XW,

X X, X3 X4
17

70 I OO [= [X1,...,X4]

Matrix Version of Single-Headed Attention

Holy cow, that’s a lot of new
arrows... do we always
want/need all of those?

* Suppose we’re training
our transformer to predict
the next token(s) given
the input...

e ... then attending to
tokens that come after
the current token is
cheating!

So what is this model?

 This version is the
standard Transformer
block. (more on this later!)

e But we want the
Transformer LM block

* And that requires
masking!

L [1]
\'Z Vv, Vs Vv,
LI LI LI LI
X X> X3 X,

X' = AV = softmax(QK* /+/d;)V

A=lag,...
S = [sq,
= lai,
K = kq,.
V = vy,
= [x1,

,ay]’ = softmax(S)

.-.sa)" = QKT/V/dy

. ,q4:T = XW,
Lkt = XWy,
L va]t = XW,
7X4:T

Matrix Version of Single-Headed Attention

Vi

\'/

V3

[]

V4

X1

X,

X3

X4

X' = AV = softmax(QK* /\/di)V

Question: How is the

1 2
A = softmax(S) softmax applied:
A. column-wise

B. row-wise

S =QK"'/+\/d; Answer:

Q = XW,
K = XW,
V =XW,

X = [X]_,...,X4:|T

Matrix Version of Single-Headed (Causal) Attention

Insight: if some elementin
the input to the softmax s
-o0, then the corresponding
output is 0!

Question: For a causal LM
which is the correct matrix?

A:

M =
B:

M =
C:

M =

Answer:

[0 0 0 O]
—00 0 0 0
—00 —O00 0 0
|—00 —00 —oo 0]

[0 -0 —o0 —o0]
0 0 —00 —00
0 0 0 —00

0o 0 0 0

-0 —00 —00 0

0] —00 —00 —O0
—00 0 —00 —00
—00 —00 0 —00

|

Vi

 I1 1

\'/

1]

V3

X' = AV = softmax(QK* /\/d;, + M)V

'
a

n A ausal = softmax(S + M)

V4

In practice, the

attention weights are

S = QK" /\/dr computed for all time
steps T, then we mask

X1

X,

X3

X4

710 O O O X =[X1,...,Xy4

Q = XW, out (by setting to —inf)
all the inputs to the
softmax that are for

K = XWy the timesteps to the
right of the query.

V = XW,

]T

Matrix Version of Multi-Headed (Causal) Attention

(1)
W, w(2)
J w®)
q
(1)
W, W,(f) .
Wk
(1)
W, wW(2)
v Wq()g)
_//X1 X

X3

\[multi-headed attention \J

X4

X = concat(X'(V), X' X'(3))

Q) (K(z‘))T

X' = softmax (

Q) = Xwéi)
K = xw'”
Vi) = xXW)

X = [x1,...,x4]"

Vdy

+M)ww

Matrix Version of Multi-Headed (Causal) Attention

(1)
W, w(2)
J w®)
q
(1)
W, W,(f) .
Wk
(1)
W, wW(2)
v Wq()g)
_//X1 X

X3

\[multi-headed attention \J

X4

X = concat(X'(M), ... X/(h)

Q) (K(z‘))T

X' = softmax (

Q) = Xwéi)
K = xw'”
Vi) = xXW)

X = [x1,...,x4]"

Vdy

+M)ww

Recall:
To ensure the dimension of the input . .
embedding x; is the same as the 10 Of M UItl"H eaded (Ca Usal) Attentlon
output embedding x;’, Transformers
usually choose the embedding sizes
and number of heads appropriately:
dmodel = dim. of inputl?c,ID i ’ X = concat(X’(l), . ,X’(h))

e dy=dim. of each output
* h=#ofheads
* Choose dy = diodel / D o

3

(L]

1ED ZED 4,ED
W, k{ multi-headed attention \J Q(Z) — XW((I’L)

K = Xw'"

Q) (K(z‘))T
Vi

X'() = softmax (+ M) v(©)

Vi) = xXW)

1

OT O O I X =[X1,...,Xy4

]T

PRACTICALITIES OF TRANSFORMER LMS

In-Class Poll

Question:)
Suppose we have the following input [Soﬁmax / /
embeddings and attention weights: w, NN E

» x,=[1,0,0,0]a,,= 0.1 E awi= i

* X = :0)110)0] dg,= 0.2 o/t -! Sun

* x;=[0,0,2,0]a,;=0.6 g ob oo b &

* x,=[0,0,0,1]a,,=0.1

And W, = I. Then we can compute x,”. | Answer:
Now suppose we swap the

embed

dings x, and x; such that
0,0,2,0]

0,1,0,0]

What is the new value of x4’?

4
=) aiv;
=1

ay = softmax(s,) attention weights

S4,5 = k?Q4/\/ dk: scores
q; = WqTXj queries

_ wil.
v; = W x; values

(\ -

[The [bat] [made] [noise]

Position Embeddings | | |

. . L p(w,|h,) p(w,|h,) p(ws|hs) Ap(wslhy)
* The Problem: Because attention is position T
invariant, we need a way to learn about positions > > > >
* The Solution: Use (or learn) a collection of position h, T h, T s T h, T
|

specific embeddings: p; represents what it means [T | L1 [T |

[|
to be in position t. And add this to the word
embedding W;. [Transformer layer l]

The key idea is that every word that appears in l_l_% L~
position t uses the same position embedding p; 7 | '/IH I l%l I %rul
* There are a number of varieties of position [Transformer layer]
embeddings: % IENZey .
— Some are fixed (based on sine and cosine), whereas '_'_% = |4\r| /pﬂ A
others are learned (like word embeddings) [Transformér layer)
— Some are absolute (as described above) but we can
also use relative position embeddings (i.e. relative
to the position of the query vector) , [.] [.] (.]
majiesReslls:
P T P: T Ps T P4 T
(0 o

IIIIII\I/\IIII_@TI_II_

Batching: Padding and Truncation

* Transformers can be trained very efficiently!

(This is arguably one of the key reasons they have been so

successful.)

* Batching: Rather than processing one sentence at a time,
Transformers take in a batch of B sentences at a time. The

computation is identical for each batch and is trivially

parallelized.
i w, w, w, w, w, W w, Wy w, W, w, w,
1 In the hole in the ground there lived a hobbit
2 It is our choices that show what we truly are
3 It was the best of times it was the worst of times
4 Even miracles take a little time
5 The more that you read the more things you will know
6 We'll always have each other no matter what happens
7 The sun did not shine it was too wet to play
8 The important thing is to never stop [questioning

17

Batching: Padding and Truncation

* Suppose we have 8 training sentences
* We set our block size (maximum sequence length) to 10
* Before collecting them into a batch, we:

1. truncate those sentences that are too long

2. pad the sentences that are too short
3. convert each token to an integer via a lookup table (vocabulary)
4. convert each token to an embedding vector of fixed length

i w, w, w, w, w, W w, Wy w, W, w, w,
1 In the hole in the ground there lived a hobbit

2 It is our choices that show what we truly are

3 It was the best of times it was the worst of times
4 Even miracles take a little time

5 The more that you read the more things you will know

6 We'll always have each other no matter what happens

7 The sun did not shine it was too wet to play

8 The important thing is to never stop [questioning

18

Batching: Padding and Truncation

* Suppose we have 8 training sentences
* We set our block size (maximum sequence length) to 10
* Before collecting them into a batch, we:
1. truncate those sentences that are too long
2. pad the sentences that are too short
3. convert each token to an integer via a lookup table (vocabulary)
4. convert each token to an embedding vector of fixed length

i w, w, w, w, w, w, w, Wy w, w,,
1 In the hole in the ground there lived a hobbit
2 It is our choices that show what we truly are

3 It was the best of times it was the worst
4 Even miracles take a little time <PAD> <PAD> <PAD> <PAD>
5 The more that you read the more things you will

6 We'll always have each other no matter what happens <PAD>
7 The sun did not shine it was too wet to

8 The important thing is to never stop |questioning| <PAD> <PAD>

Batching: Padding and Truncation

* Suppose we have 8 training sentences Vocabulary:
. . {
* We set our block size (maximum sequence length) to 10 ' <PAD>': O,
* Before collecting them into a batch, we: 'Even': 1,
1. truncate those sentences that are too long , ?tl é
2. pad the sentences that are too short 'The': 4,
3. convert each token to an integer via a lookup table (vocabulary) "We'll": 5,
4. convert each token to an embedding vector of fixed length =9 B
'always': 7,
'are': 8,
i W, w, We Wg 10 'best': 9!
1 41 17 19 41 13 42 23 6 16
2 20 32 10 40 36 53 51 49 8 :Wk}at: 5 29
50 41 9 30 46 21 50 41 55 will®: o4,
'worst': b5,
25 39 6 22 45 0 0 0 0 'vou': 56

26

40

56

34

41

26

44

56

54

15

12

31

28

24

53

14

38

11

29

35

21

50

48

52

47

(o B N) W (V2 B SN WV

A 0 d |k |w lw N

18

43

20

47

27

37

33

20

Batching: Padding and Truncation

Suppose we have 8 training sentences Embeddings:
* We set our block size (maximum sequence length) to 10 {
* Before collecting them into a batch, we:

0 [T
1. truncate those sentences that are too long - LT
2. pad the sentences that are too short g EE:EE%
3. convert each token to an integer via a lookup table (vocabulary) 3 TTT]
4. convert each token to an embedding vector of fixed length 4 [TTT]

> 1 OIm

i w, w, w, w, w, W w, Wy w, W, 6 . D:ED
, |II'D | | OO | 00 | O | O | O | O | O | 7 OTO
, |0IO |00 | 000 | O | OO0 | OO | OO | O | O | O
, | |OI'™ | 0T | O | OO | O | O | O | O | O 55 . 0T
, || OO OO0 O CO0|) | | | e ce - 0T
s |D | 00| 0| 00| O OO0 00| 00|)| O
PR) o) o o o o o
, | I OO O T O O O O OO OO0
s | D] O O OO| O OO0 0| O O O

TOKENIZATION

Tokenization

Word-based Tokenizer:
Input: “Henry is giving a lecture on transformers”

Output: [“henry”, “is”, “giving”, “a”, “lecture”, “on”, “transformers”’]

Pros/Cons:

* Can have difficulty trading off between vocabulary size and computational
tractability

* Similar words e.g., “transformers’” and “transformer” can get mapped to
completely disparate representations

* Typos will typically be out-of-vocabulary (OOV)

Tokenization

Word-based Tokenizer:
Input: “Henry is givin’ a lectrue on transformers”

Output: [“henry”’; “is”, <O0V>, “a”, <O0V>, “on”, “transformers”]

Pros/Cons:

* Can have difficulty trading off between vocabulary size and computational
tractability

* Similar words e.g., “transformers’” and “transformer” can get mapped to
completely disparate representations

* Typos will typically be out-of-vocabulary (OOV)

Tokenization

Character-based Tokenizer:
Input: “Henry is givin’ a lectrue on transformers”

c [CEIRIY €69 €699 €699 €6y, 66399 €699 €€ 99 €€3IY) 66 ,9) 66399 (€ 99 (€))Y

Pros/Cons:
* Much smaller vocabularies but a lot of semantic meaning is lost...

* Sequences will be much longer than word-based tokenization, potentially
causing computational issues

* Cando well on logographic languages e.g., Kanji {5

Tokenization

Subword-based Tokenizer:
Input: “Henry is givin’ a lectrue on transformers”

OUtpUtI [((henry”’ “is”, ((giv”’ ((##in”’ €€ ¢ ”’ ((a”’ “IeC” “##true”, “On”, “tranSfOFm”, “##erS”]

Pros/Cons:

* Split long or rare words into smaller, semantically meaningful components
or subwords

* No out-of-vocabulary words — any non-subword token can be constructed
from other subwords (always includ all characters as subwords)

* Examples algorithms for learning a subword tokenization:
— Byte-Pair-Encoding (BPE), WordPiece, SentencePiece

GREEDY DECODING FOR A LANGUAGE MODEL

Greedy Decoding for a Language Model

Setup:

Assume a
character-based
tokenizer

Each node has all
characters
{a,b,c,...,z} as
neighbors

Start
State

Here we only
show the high
probability
neighbors for
space

Goal:

Search space consists of nodes
(partial sentences) and weighted by
negative log probability

Goal is to find the highest probably
(lowest negative log probability)
path from root to a leaf

Greedy Search:

At each node, selects the edge
with lowest negative log
probability

Heuristic method of search (i.e.
does not necessarily find the best
path)

Computation time: linear in max
path length

Setup:

Assume a
character-based
tokenizer

Each node has all
characters
{a,b,c,...,z} as
neighbors

Start
State

Here we only
show the high
probability
neighbors for
space

Sampling from a Language Model

Goal:

Search space consists of nodes
(partial sentences) and weighted by
negative log probability

Goal is to sample a path from root to
a leaf with probability according to
the probability of that path

Ancestral Sampling:

At each node, randomly pick an
edge with probability (converting
from negative log probability)

Exact method of sampling,
assuming a locally normalized
distribution (i.e. samples a path
according to its total probability)

Computation time: linear in max
path length

Key-Value Cache

D/D///?g

softmax

x!
X4

4
- § :a4,jvj *

j=1

a, = softmax(sy)

At each timestep, we reuse all
previous keys and values (i.e.
we need to cache them)

But we can get rid of the

queries, similarity scores, and
attention weights (i.e. we can
let them fall out of the cache)

30

Key-Value Cache

X, = A,V = softmax(Q,;K* /\/d;.)V

% * Ateachtimestep, we reuse all

A; = softmax(S;)

attention weights (i.e. we can
let them fall out of the cache)

previous keys and values (i.e.
T 1 /%
/]

we need to cache them)
a 4 * Butwe can getrid of the
[softmax]
S R)

queries, similarity scores, and
3T] S, = QiK—//dy

/] Qt:Xth

ki /2 Iks | k,
T |||>/ [TT] K = XW,

W Vv, Vv, | <74
T IO OO | oo V = XW,

[TD 00 00 L0 X =[x1,...,%]"

Two parts: and R e C a p

Deep Learning

 AutoDiff

— is atool for computing %radients of a
differentiable function, b = f(a)

— the key building block is a module with a
forward() and backward()

— sometimes define f as code in forward() by
chaining existing modules together
* Computation Graphs

— are another way to define f (more conducive to
slides)

— we are considering various (deep) computation
raphs: (1) CNN (2) RNN (3) RNN-LM
%4) Transformer-LM
* Learning a Deep Network

— deep networks (e.g. CNN/RNN) are trained by
optimizing an objective function with SGD

— compute gradients with AutoDiff

Language Modeling

key idea: condition on previous words to
sample the next word

to define the probability of the next word...
— ...n-gram LM uses collection of massive 50k-
sided dice

— ...RNN-LM or Transformer-LM use a neural
network

Learning an LM

— n-gram LMs are easy to learn: just count co-
occurrences!

— a RNN-LM /[Transformer-LM is trained just like
other deep neural networks

MODULE-BASED AUTOMATIC
DIFFERENTIATION

Training Backpropagation N

Automatic Differentiation - Reverse Mode (aka. Backpropagation)

Forward Computation

1. Write an algorithm for evaluating the function y = f(x). The algorithm defines a
direcI:,e’g acyclic graph, where each variable is a node (i.e. the “computation
grap

2. Visit each node in topological order.
For variable u; with inputs v,,..., vy
a. Compute u; = gi(v,,..., Vx)

b. Store the result at the node

Backward Computation (Version A)
1. Initialize dy/dy = 1. u1
2. Visit each node v;in reverse topological order.
Let u,,..., uy denote all the nodes with v;as an input
Assuming thaty = h(u? = h(u,y..., Upw)
and u = g(v) or equivalently u; = gi(v,,..., Vvj,..., vy) for all i U1
a. Wealready know dy/du; for all i
b. Compute dy/dv, as below (Choice of algorithm ensures

computing (du;/dv;) is easy) B Ly

%j a i1 dul dvj xr

. uM

//
P

Uj
N

A

/90

Return partial derivatives dy/du;for all variables

Training

Automatic Differentiation - Reverse Mode (aka. Backpropagation)

Forward Computation

Backpropagation

1.

Backward Computation (Version B)

Write an algorithm for evaluating the function y = f(x). The algorithm defines a
direcﬁgsj acyclic graph, where each variable is a node (i.e. the “computation
grap

Visit each node in topological order.
For variable u; with inputs v,,..., vy
a. Compute u; = gi(v,,..., Vx)

b. Store theresult at the node

Ry
.

1.
2.

Upnr

SN

Initialize all partial derivatives dy/du; to o0 and dy/dy = 1.
Visit each node in reverse topological order.

For variable u; = gi(v,,..., Vx)

a. Wealready know dy/du;

b. Increment dy/dv; by (dy/du;)(du;/dv;) v ce V;

(Choice of algorithm ensures computing (du;/dv)) is easy) 1 T /

u

N

NGN

UN

X

Return partial derivatives dy/du;for all variables

Training Backpropagation

Why is the backpropagation algorithm e;
1,
2.

icient?
Reuses computation from the forward pass in the backward pass

Reuses partial derivatives throughout the backward pass (but
only if the algorithm reuses shared computation in the forward

pass)

\—

(Key idea: partial derivatives in the backward pass should be
thought of as variables stored for reuse)

Be

37

Backpropagation:
Abstract Picture

Output

Hidden Layer

Forward
CJ=—yllogy
. ¥ = softmax(b)
. b=pz

. z=o(a)

. a=oaX

10.
11.

Backward

A

gy =-y+y
gb = g; (diag(y) —yy")

g8 =ghz'
8z = Bng
ga:gz®z®(1_z)
8a = gaXT

(F) Loss
J =, i log(yk)

|

f

[(E) Output (softmax)
Y = exp(by)
; Zlel exp(bi)

\

f

[(D) Output (linear)
br = 35 Brjz; Yk

f

\

[(C) Hidden (nonlinear)

Ry = U(aj)a \V/]

?

7

\

(B) Hidden (linear)
a; = Yito iti, Vi

f

(A) Input
Given x;, Vi

38

Backpropagation:
Procedural Method

Algorithm 1 Forward Computation Drawbacks of

1: procedure NNFORWARD(Training example (x, y), Params «, 3) Procedural Method

2 a=ox 1. Hardtoreuse/

3 z=o(a) adapt for other

4 b=pz models

A S‘_OftTrqzx(})) 2. (Possibly) harder to
. :Ob“y_ectg(;’a 2 b.9.J) make individual

’ e e) steps more efficient

8 return intermediate quantities o

3. Hard to find source
of error if finite-
difference check
reports an error
(since it tells you
only that there is an

Algorithm 2 Backpropagation

1: procedure NNBACKWARD(Training example (x, y), Params «, (3,
Intermediates o)
Place intermediate quantities x,a,z, b, y, J in o in scope

8y =-Yy=Y :
S s error somewhere in

5= 8y (g'ag(y> vy’ those 17 lines of

86 = Bp? code)

g. =0 g}

ga:gz®z®(1_z)
a = gaXT
return parameter gradients g, g3

E

Module-based AutoDiff

Module-based automatic differentiation (AD [Autodiff) is a technique that has
long been used to develop libraries for deep learning

* Dynamic neural network packages allow a specification of the computation
graph dynamically at runtime
— PyTorch
— Torch
— DyNet
— TensorFlow with Eager Execution
* Static neural network packages require a static specification of a
computation graph which is subsequently compiled into code
— TensorFlow with Graph Execution
— Aesara (and Theano)

— (These libraries are also module-based, but herein by “module-based AD” we mean the
dynamic approach)

http://pytorch.org/
http://torch.ch/
https://dynet.readthedocs.io/
https://www.tensorflow.org/
https://www.tensorflow.org/
https://aesara.readthedocs.io/

Module-based AutoDiff

* Key ldea:
— componentize the computation of the neural-network into layers
— each layer consolidates multiple in the

computation graph (a subset of them) into one vector-valued node
(aka. a module)

* Each module is capable of two actions:

1. Forward computation of output b = [b1,...,bp]| given input
b b a = |ay,...,aa] via some differentiable function f. That is
T l b = f(a).
2. Backward computation of the gradient of the input
[module } g = VaJ = [5L,..., 52L] given the gradient of output
T l g = Vo = [§5,..., 5Z], where J is the final real-valued
output of the entire computation graph. This is done via the
a Ja . oJ J oJ db; .
chainrule 5= = > %, ot qa. foralli {1,..., A}.

Module-based AutoDiff

Dimensions: input a € R4, output b € R7, gradient

of output g, = V,J € R4, and gradient of input g, = Linear Module The linear layer has two inputs: a vec-

ViJ € RB. tor a and parameters w € RB*4, The output b
is not used by LINEARBACKWARD, but we pass it in

Sigmoid Module The sigmoid layer has only one input for consistency of form.

vector a. Below o is the sigmoid applied element- 1: procedure LINEARFORWARD(a, w)
wise, and @ is element-wise multiplication s.t. u® 2 b =wa
vV = [u1v1, .. ., UprUN]- 3 return b
1: procedure SIGMOIDFORWARD(a) 4: procedure LINEARBACKWARD(a, w, b, gp)
» b=oc(a) 5 8w =gpa
3 return b 6 ga = wlgp
4: procedure SIGMOIDBACKWARD(a, b, gp,) 7 return g, ga
5 ga=gbObO(1-b)
6 return g, Cross-Entropy Module The cross-entropy layer hastwoin-
puts: a gold one-hot vector a and a predicted proba-
Softmax Module The softmax layer has only one input bility distribution a. It’s output b € R is a scalar. Be-
vector a. For any vector v € R”, we have that low = is element-wise division. The output b is not
diag(v) returns a D x D diagonal matrix whose used by CROSSENTROPYBACKWARD, but we pass it in
diagonal entriesare vy, v, . . ., vp and whose non- for consistency of form.

diagonal entries are zero. procedure CROSSENTROPYFORWARD(a, a)

1:
1: procedure SOFTMAXFORWARD(a) 2: b= —alloga

2 b = softmax(a) 3: return b

3 return b 4: procedure CROSSENTROPYBACKWARD(a, a, b, g5)
4: procedure SOFTMAXBACKWARD(a, b, gp,) 5: ga=—g(a+a)

5 ga = g, (diag(b) — bb™) 6: returng,

6 return g,

Module-based AutoDiff

Algorithm 1 Forward Computation

1: procedure NNFORWARD(Training example (x, y), Parameters «,

B)

2 s e W o W

a = LINEARFORWARD(X,)

Z = SIGMOIDFORWARD(a)

b = LINEARFORWARD(z, 3)

y = SOFTMAXFORWARD(Db)

J = CROSSENTROPYFORWARD(y, ¥)
o = object(x,a,z,b,y,J)
return intermediate quantities o

Algorithm 2 Backpropagation

1: procedure NNBACKWARD(Training example (x, y), Parameters
a, 3, Intermediates o)

2w 2o W

Place intermediate quantities x,a,z, b, y, J in o in scope
gr =% =1 > Base case
gy = CROSSENTROPYBACKWARD(Y, ¥, J, 9.7)
gh = SOFTMAXBACKWARD(b, ¥, g5)

g3, 8z = LINEARBACKWARD(z, b, gp)

ga = SIGMOIDBACKWARD(a, z, g5)

8, 8x = LINEARBACKWARD(X, a,)

return parameter gradients g, g3

> We discard gy

Advantages of

Module-based

AutoDiff

1. Easytoreuse/
adapt for other
models

2. Encapsulated
layers are easier
to optimize (e.g.
implement in C++
or CUDA)

3. Easierto find

bugs because we
can run a finite-
difference check
on each layer
separately

Module-based AutoDiff (oop version)

Object-Oriented Implementation:

— Let each module be an object

— Then allow the control flow dictate the creation of the computation graph
— No longer need to implement NNBackward(-), just follow the computation

graph in reverse topological order

class Sigmoid (Module)
method forward(a)
b =o(a)
return b
method backward(a, b, gp)
g.=8bOb® (1 —-Db)
return g,

class Softmax(Module)
method forward(a)
b = softmax(a)
return b
method backward(a, b, gp)
ga = 8, (diag(b) —bb")
return g,

[0 RN [0) NNV B S V) N -

class Linear (Module)

method forward(a, w)
b =wa
return b

method backward(a, w, b, gp)

8w = gbaT

8a — ngb
return g., g,

class CrossEntropy (Module)

method forward(a, a)
b= —alloga
return b
method backward(a, a, b, gp)
ga = —gr(a+a)
return g,

OW 060 N O U1 h W N A

Module-based AutoDiff (oop version)

class NeuralNetwork (Module) :

method init ()
linl_layer = Linear()
sig layer = Sigmoid ()
lin2_ layer = Linear()
soft_layer = Softmax()
ce_layer = CrossEntropy ()

method forward(Tensor x, Tensor y, Tensor a, Tensor 3)
a =linl_ layer.apply_fwd(x,)
z =sig_ layer.apply_ fwd(a)
b =lin2_ layer.apply_ fwd(z, 3)
y =soft_ layer.apply_fwd(b)
J =ce_layer.apply_ fwd(y,y)
return .J.out tensor

method backward (Tensor x, Tensor y, Tensor o, Tensor (3)
tape__bwd ()
return linl layer.in gradients[1] , lin2 layer.in gradients[1]

OW 060 N O U1 h W N A

Module-based AutoDiff (oop version)

global tape = stack()

)
class NeuralNetwork (Module) : 2
3 class Module:
method init () 4 o
linl_layer = Linear () g method init()
sig_layer = Sigmoid () 6 out_tensc?r = null
lin2 layer = Linear() / out_gradient = 1
soft_ layer = Softmax() 8 o
ce_layer = CrossEntropy () 9 met.hod apply fwd(List in_modules)
10 in tensors = [x.out tensor for x in in modules]
method forward(Tensor x, Tensor y, Tensor " out_tensor = forward (in_tensors)
a =linl_ layer.apply_ fwd(x,) 2 tape. push (self)
z =sig_layer.apply_ fwd(a) 3 return self
b =lin2_layer.apply_ fwd(z, 3) .
y =soft_layer.apply_ fwd(b) 5 met'hod aPPly—de() : _ _
J =ce_layer.apply fwd(y,) 16 m_g.rajdlents = back.ward(m_tensors , out_tensor , out_ gradient)
return J.out tensor 17 for i in 1,..., len(in_modules) :
o 18 in__modules[i] .out_gradient += in_ gradients/[i]

method backward (Tensor x, Tensor y, Tensc ™ return self

tape bwd () =

return linl layer.in gradients[1] , lin2 l¢ * functio.n tape_bwd () :
22 while len(tape) > 0

23 m = tape.pop()
24 m.apply bwd()

OW 060 N O U1 h W N A

Module-based AutoDiff (oop version)

global tape = stack()

)
class NeuralNetwork (Module) : 2
3 class Module:
method init () 4 o
linl_layer = Linear () g method init()
sig_layer = Sigmoid () 6 out_tensc?r = null
lin2 layer = Linear() / out_gradient = 1
soft_ layer = Softmax() 8 o
ce_layer = CrossEntropy () 9 met.hod apply fwd(List in_modules)
10 in tensors = [x.out tensor for x in in modules]
method forward(Tensor x, Tensor y, Tensor " out_tensor = forward (in_tensors)
a =linl_ layer.apply_ fwd(x,) 2 tape. push (self)
z =sig_layer.apply_ fwd(a) 3 return self
b =lin2_layer.apply_ fwd(z, 3) .
y =soft_layer.apply_ fwd(b) 5 met'hod aPPly—de() : _ _
J =ce_layer.apply fwd(y,) 16 m_g.rajdlents = back.ward(m_tensors , out_tensor , out_ gradient)
return J.out tensor 17 for i in 1,..., len(in_modules) :
o 18 in__modules[i] .out_gradient += in_ gradients/[i]

method backward (Tensor x, Tensor y, Tensc ™ return self

tape bwd () =

return linl layer.in gradients[1] , lin2 l¢ * functio.n tape_bwd () :
22 while len(tape) > 0

23 m = tape.pop()
24 m.apply bwd()

PyTorch

1 # Define model
2 class NeuralNetwork(nn.Module):

The same simple

3 def __ init__ (self):
l I(4 super (NeuralNetwork, self). init ()
neura networ 5 self.flatten = nn.Flatten()
. . 6 self.linearl = nn.Linear(28+*28, 512)

we deflned n 7 self.sigmoid = nn.Sigmoid()

8 self.linear2 = nn.Linear(512,512)
pseudocode can

H 10 def forward(self, x):

aISO be deflned 11 x = gself.flatten(x)
: 12 a = gself.linearl(x)
In PyTorCh' 13 z = self.sigmoid(a)

14 b = self.linear2(z)

15 return b

16

17 # Take one step of SGD
18 def one_step_of_sgd(X, y):

19 loss_fn = nn.CrossEntropyloss()
20 optimizer = torch.optim.SGD(model.parameters(), lr=le-3)
21

22 # Compute prediction error

23 pred = model(X)

24 loss = loss_fn(pred, y)

25

26 # Backpropagation

27 optimizer.zero_grad()

28 loss.backward()

29 optimizer.step()

Example adapted from https://pytorch.org/tutorials/beginner/basics/quickstart_tutorial.html

https://pytorch.org/tutorials/beginner/basics/quickstart_tutorial.html

PyTorch

Why don’t we call linear.forward() in PyTorch?

This is just syntactic sugar. There’s a special method in Python
__call__ thatallows you to define what happens when you treat
an object as if it were a function.

In other words, running the following:
linear(x)

is equivalent to running:
linear.__call__(x)

which in PyTorch is (nearly) the same as running:
linear. forward(x)

This is because PyTorch defines every Module’s __call__ method

to be something like this:
def __call__(self):
self.forward()

(0]

A v bW N

PyTorch

A: This just makes your code cleaner.

Q: Why don’t we pass in the parameters to a PyTorch Module?

In PyTorch, you store the parameters inside the Module and “mark”
them as parameters that should contribute to the eventual gradient

used by an optimizer

method forward(Tensor x, Tensor y, Tensor a, Tensor (3) 10
a =linl_ layer.apply_ fwd(x, a) 11
z =sig_layer.apply fwd(a)
b =linl_ layer.apply_ fwd(z, 3)
y =soft_ layer.apply_fwd(b) 15

def forward(self, x):
X self.flatten
a self.linearl
z self.sigmoid
b self.linear?

return b

(
(
(
(

X
X
a
2

)
)
)
)

J =ce_layer.apply_ fwd(y, y)
return J.out tensor

Two parts: and R e C a p

Deep Learning

 AutoDiff

— is atool for computing %radients of a
differentiable function, b = f(a)

— the key building block is a module with a
forward() and backward()

— sometimes define f as code in forward() by
chaining existing modules together
* Computation Graphs

— are another way to define f (more conducive to
slides)

— we are considering various (deep) computation
raphs: (1) CNN (2) RNN (3) RNN-LM
%4) Transformer-LM
* Learning a Deep Network

— deep networks (e.g. CNN/RNN) are trained by
optimizing an objective function with SGD

— compute gradients with AutoDiff

Language Modeling

key idea: condition on previous words to
sample the next word

to define the probability of the next word...
— ...n-gram LM uses collection of massive 50k-
sided dice

— ...RNN-LM or Transformer-LM use a neural
network

Learning an LM

— n-gram LMs are easy to learn: just count co-
occurrences!

— a RNN-LM /[Transformer-LM is trained just like
other deep neural networks

PRE-TRAINING VS. FINE-TUNING

The Start of Deep Learning

* The architectures of modern deep
learning have a long history:

— 1960s: Rosenblatt’s 3-layer multi-layer
perceptron, ReLU)

— 1970-80s: RNNs and CNNs
— 1990s: linearized self-attention
* The spark for deep learning came in

2006 thanks to pre-training (e.g.,
Hinton & Salakhutdinov, 2006)

Figure from Vargas et al. (2017)

Publications

16500

14500

12500

10500

8500

6500

683

2006

7743

2007

8136

2008

8706

2009

10930

9194
9853

2010 2011 2012

Year

12200

2013 2

15

069

15

16288

2015 2016

Pre-Training vs. Fine-Tuning

Definitions

Pre-training

* randomly initialize the
parameters, then...

e option A: unsupervised training
on very large set of unlabeled
instances

* option B: supervised training on a
very large set of labeled
examples

Fine-tuning

* initialize parameters to values
from pre-training

* (optionally), add a prediction
head with a small number of
randomly initialized parameters

* train on a specific task of interest
by backprop

Example: Vision Models

Pre-training

* Example A: unsupervised
autoencoder training on very
large set of unlabeled images
(e.g. MNIST digits)

e Example B: supervised training on
a very large image classification

dataset (e.g. ImageNet w/21k
classes and 14M images)

Fine-tuning
* object detection, training on 200k
labeled images from COCO

* semantic segmentation, training
on 20k labeled images from
ADE20k

Example: Language Models

Pre-training

* unsupervised pre-training by
maximizing likelihood of a large

set of unlabeled sentences such
as...

* The Pile (800 Gb of text)

* Dolma (3 trillion tokens)

Fine-tuning

* MMLU benchmark: a few training
examples from 57 different tasks

ranging from elementary
mathematics to genetics to law

* code generation, training on ~400
training examples from MBPP

54

Pre-Training and Fine-Tuning on MNIST

* Results from Bengio et al. (2006) on
MNIST digit classification task

* Percent error (lower is better)
* Some methods first do pre-training
* Every method includes fine-tuning on labeled data

2.5
L 2.0
o
-
Ll
% 15 -
1.0 - T T | |
Shallow Net Idea #1 Idea #2 Idea #3
(Deep Net, no- (Deep Net, (Deep Net,
pretraining) supervised pre- unsupervised pre-

training) training) 55

Pre-Training and Fine-Tuning on MNIST

* Results from Bengio et al. (2006) on
MNIST digit classification task

* Percent error (lower is better)
* Some methods first do pre-training
* Every method includes fine-tuning on labeled data

2.5
L 2.0
o
-
Ll
% 15 -
1.0 - T T | |
Shallow Net Idea #1 Idea #2 Idea #3
(Deep Net, no- (Deep Net, (Deep Net,
pretraining) supervised pre- unsupervised pre-

training) training) 56

Pre-Training and Fine-Tuning on MNIST

* Results from Bengio et al. (2006) on
MNIST digit classification task

* Percent error (lower is better)
* Some methods first do pre-training
* Every method includes fine-tuning on labeled data

2.5
L 2.0
o
-
Ll
% 15 -
1.0 - T T | |
Shallow Net Idea #1 Idea #2 Idea #3
(Deep Net, no- (Deep Net, (Deep Net,
pretraining) supervised pre- unsupervised pre-

training) training) 57

Unsupervised Autoencoder Pre-Training for Vision

Unsupervised pre-
training of the first layer:

* What should it predict?

e What else do we
observe?

* The input!

58

Unsupervised Autoencoder Pre-Training for Vision

Unsupervised pre-
training of the first layer:

* What should it predict?

e What else do we
observe?

* The input!

This topology defines an
Auto-encoder.

59

Unsupervised Autoencoder Pre-Training for Vision

Key idea: Encourage z to give small reconstruction error:
— X’ is the reconstruction of x

— Loss = || x - DECODER(ENCODER(x)) |2

— Train with the same backpropagation algorithm for 2-layer
Neural Networks with x;, as both input and output.

DECODER: x’=h(W’z)

ENCODER: z = h(Wx)

6
Slide adapted from Raman Arora ’

Pre-Training and Fine-Tuning on MNIST

* Results from Bengio et al. (2006) on
MNIST digit classification task

* Percent error (lower is better)
* Some methods first do pre-training
* Every method includes fine-tuning on labeled data

2.5
L 2.0
o
-
Ll
% 15 -
1.0 - T T | |
Shallow Net Idea #1 Idea #2 Idea #3
(Deep Net, no- (Deep Net, (Deep Net,
pretraining) supervised pre- unsupervised pre-

training) training) 61

Pre-Training and Fine-Tuning on MNIST

* Results from Bengio et al. (2006) on
MNIST digit classification task

* Percent error (lower is better)
¢ Some methods first do pre-training
* Every method includes fine-tuning on labeled data

2.5
L 2.0
o
-
Ll
% 15 -
1.0 - | | | L
Shallow Net Idea #1 Idea #2 Idea #3
(Deep Net, no- (Deep Net, (Deep Net,
pretraining) supervised pre- unsupervised pre-

training) training) 62

Supervised Pre-Training for Vision

* Nowadays, we tend
to just do supervised
pre-training on a
massive labeled
dataset

~J
-
A .
B

N
-
s

/.——/_/_.7 L

()
-
n l i 1 i

* Vision Transformer’s
success was largely
due to using a much
larger pre-training

A
)

W
l s s s e l L 1 1

ViT-L/16 -»-ViT-B/32 -*ResNet50x1 (BiT)
ViT-L/32 -+ ViT-b/32 -#ResNet152x2 (BiT)

Linear 5-shot ImageNet Topl [%]

10M ©30M 100M 300M
dataset Number of JFT pre-training samples

Figure from https://arxiv.org/pdf/2010.11929

Pre-Training vs. Fine-Tuning

Definitions

Pre-training

* randomly initialize the
parameters, then...

e option A: unsupervised training
on very large set of unlabeled
instances

* option B: supervised training on a
very large set of labeled
examples

Fine-tuning

* initialize parameters to values
from pre-training

* (optionally), add a prediction
head with a small number of
randomly initialized parameters

* train on a specific task of interest
by backprop

Example: Vision Models

Pre-training

* Example A: unsupervised
autoencoder training on very
large set of unlabeled images
(e.g. MNIST digits)

e Example B: supervised training on
a very large image classification

dataset (e.g. ImageNet w/21k
classes and 14M images)

Fine-tuning
* object detection, training on 200k
labeled images from COCO

* semantic segmentation, training
on 20k labeled images from
ADE20k

Example: Language Models

Pre-training

* unsupervised pre-training by
maximizing likelihood of a large

set of unlabeled sentences such
as...

* The Pile (800 Gb of text)

* Dolma (3 trillion tokens)

Fine-tuning

* MMLU benchmark: a few training
examples from 57 different tasks

ranging from elementary
mathematics to genetics to law

* code generation, training on ~400
training examples from MBPP

64

Unsupervised Pre-Training for an LLM

)\

[The [bat] [made] [noise]

P AT

T p(wilh,) p(wa|h,) p(ws|h;) p(w,|h,)
>

Generative pre-training for a deep

language model:

* each training example is an
(unlabeled) sentence

* the objective function is the
likelihood of the observed
sentence

Practically, we can batch together
many such training examples to
make training more efficient

Table from

Training Data for LLMs

GPT-3 Training Data:
Quantity Weight in Epochs elapsed when
Dataset (tokens) training mix training for 300B tokens
Common Crawl (filtered) 410 billion 60% 0.44
WebText2 19 billion 22% 2.9
Booksl1 12 billion 8% 1.9
Books2 55 billion 8% 0.43
Wikipedia 3 billion 3% 34

66

http://arxiv.org/abs/2005.14165

Training Data for LLMs

Composition of the Pile by Category

= Academic * Internet = Prose * Dialogue * Misc

Bibliotik
Pile-CC g
ArXiv

The Pile:

* An open source dataset for
training language models

* Comprised of 22 smaller
datasets

* Favors high quality text

* 825 Gb = 1.2 trillion tokens

PubMed Central

BC2
StackExchange I!
PMA
FreeLaw USPTO NIH [OpenWebText2 Wikipedia DM Math I

67

PROMPTING

Zero-shot vs. Few-Shot

* Definition: in zero-shot learning we assume that training
data does not contain any examples of the labels that
appear in the test data

* Definition: in few-shot learning we assume that training data
contains a handful (maybe two, three, or four) examples of
each label

Prompting

* Language models are trained to maximize the likelihood of
sequences in the training data
* Most condition on the previous tokens to generate the next

tokens

Definition: An autoregressive language model defines a probability
distribution over sequences x;.r of the form:

T

p(XlzT) = Hp(xt ! Liy--- ,ZIJt—1)

t=1

* Key idea behind prompting: provide a prefix string to the such
that its likely completion is the answer you want

71

text completion

GPT-3

The City

BY C. P. CAVAFY

TRANSLATED BY EDMUND KEELEY
[Poem text omitted]

F)r()rT]F)t SOME TREES
(i.e. context) John Ashbery

[Poem text omitted]

Shadows on the Way
Wallace Stevens

I must have shadows on the way
If I am to walk I must have
Each step taken slowly and alone
To have it ready made

And I must think in lines of grey
Output To have dim thoughts to be my guide

Must look on blue and green
(i.e. generated

And never let my eye forget
That color is my friend
poem) And purple must surround me too

The yellow of the sun is no more
Intrusive than the bluish snow

That falls on all of us. I must have
Grey thoughts and blue thoughts walk with me

If I am to go away at all.

Examples from GPT-3 paper

Prompting Examples

Conditional
Sampling:

To draw a sample,
feed in a prompt
(i.e. context) and
then sample from
the model
conditioned on that
prompt

72

translation Promptlng ExampleS

Llama-2-70B

. Conditional
El dltimo dueno de esta propiedad Sampling:

habia sido un hombre soltero, que
alcanzé una muy avanzada edad, y
Prompt gue durante gran parte de su
existencia tuvo en su hermana una
fiel compafnera y ama de casa.

To draw a sample,
feed in a prompt
(i.e. context) and
then sample from

the model
_ , conditioned on that

English translation: prompt

The last owner of this property was . The late owner of this estate was a
Model a bachelor man who lived to a very English single man, who lived to a very
OB advanced age, and who had his source advanced age, and who for many

sister as a faithful companion and from years of his life, had a constant

housekeeper for most of his life. Sense & companion and housekeeper in his

Sensibility sister.

/>
Text from https://huggingface.co/datasets/opus _books/viewer/en-es

question answering
(entailment)

Prompt

Prompting Examples

Llama-2-70B

Rhodochiton is a genus of flowering
plants within the family
Plantaginaceae, native to southern
Mexico and neighbouring Guatemala.
They climb by means of twining leaf
stalks. One of the three species,
"Rhodochiton atrosanguineus"”, the
purple bell vine, is grown as an
ornamental plant. All three species
are sometimes included in
"Lophospermum”.

Question: You can find the purple bell
vine in more than one country. True,
False, or Neither?

Text from https://huggingface.co/datasets/facebook/anli

Model
Output

Correct Answer

Answer: True.

Explanation: The purple bell vine
(Rhodochiton atrosanguineus) is
native to southern Mexico and
neighbouring Guatemala, which
means it can be found in more than
one country.

True.

74

summarization

Prompt

Model
Output

Prompting Examples

Llama-2-70B

Story: Jason listened to the weather
and heard it was goingto be sunny. He
thought the kids might like to
goswimming. He gathered up the
swimsuits, towelsand sunscreen.
Jason and the kids got into the
truckand drove to the beach. They
spent the next 2 hoursplaying and
splashing in the surf.

One-sentence Summary:

Jason took the kids swimming at the
beach after hearing the weather
forecast, gathering necessary items
and driving there.

Story text from https://arxiv.org/pdf/1910.00998.pdf

75

What else can a large LM (attempt to) do?

Answer fact-based questions:

Using the idea of
prompts, we can
apply LMsto a
variety of
different
problems in
natural language
processing.

In the zero-shot
setting, we
simply feed the
context to the
model and
observe how it
completes the
sequence. (i.e.
thereis no
additional
training)

Examples from GPT-3

Context

Organisms require energy in order to do what?

Correct Answer
Incorrect Answer
Incorrect Answer
Incorrect Answer

mature and develop.
rest soundly.
absorb light.
take in nutrients.

Complete sentences logically:

Context — My body cast a shadow over the grass because

Correct Answer —
Incorrect Answer —

the sun was rising.
the grass was cut.

Complete analogies:

Context

—

lull is to trust as

Correct Answer
Incorrect Answer
Incorrect Answer
Incorrect Answer
Incorrect Answer

Lilld

cajole is to compliance
balk is to fortitude
betray is to loyalty
hinder is to destination
soothe is to passion

Reading comprehension:

Context —

anli 1: anli 1: Fulton James MacGregor MSP is a Scottish politician

who is a Scottish National Party (SNP) Member of Scottish Parliament

for the constituency of Coatbridge and Chryston. MacGregor is currently
Parliamentary Liaison Officer to Shona Robison, Cabinet Secretary for
Health & Sport. He also serves on the Justice and Education & Skills
committees in the Scottish Parliament.

Question: Fulton James MacGregor is a Scottish politican who is a Liaison
officer to Shona Robison who he swears is his best friend. True, False, or
Neither?

Correct Answer —
Incorrect Answer —
Incorrect Answer —

Neither
True
False

e GPT-2 (1.5B parameters)
for unsupervised
prediction on various
tasks

* GPT-2 models
p(output | input, task)
— translation: (translate to

french, english text,
french text)

— reading comprehension:
(answer the question,
document, question,
answer)

* Why does this work?

Zero-shot LLMs

“"I'm not the cleverest man in the world, but like they say in
French: Je ne suis pas un imbecile [I’'m not a fool].

In a now-deleted post from Aug. 16, Soheil Eid, Tory candidate
in the riding of Joliette, wrote in French: "Mentez mentez,
il en restera toujours quelque chose,” which translates as,

“Lie lie and something will always remain.”

“I hate the word ‘perfume.” Burr says. ‘It’s somewhat better
in French: ‘parfum.

If listened carefully at 29:55, a conversation can be heard
between two guys in French: “-Comment on fait pour aller
de autre coté? -Quel autre coté?”, which means “- How
do you get to the other side? - What side?”.

If this sounds like a bit of a stretch, consider this ques-
tion in French: As-tu aller au cinéma?. or Did you go to
the movies?, which literally translates as Have-you to go to
movies/theater?

“Brevet Sans Garantie Du Gouvernement”, translated to
English: “Patented without government warranty™.

Table 1. Examples of naturally occurring demonstrations of En-
glish to French and French to English translation found throughout

the WebText training set.
Figures from Radford et al. (2019)

* GPT-2 (1.5B parameters)

for unsupervised

prediction on various

tasks
e GPT-2 models

p(output | input, task)
— translation: (translate to
french, english text,

french text)

— reading comprehension:
(answer the question,
document, question,

answer)

* Why does this work?

Figures from Radford et al. (2019)

Zero-shot LLMs

Language Models are Unsupervised Multitask Learners

Reading Comprehension

Translation

Summarization

Question Answering

90 {Human

DrQA+PGNet

DrQA

PGNet

30

345M 762M
of parameters in LM

117M

=2
w
-
o

---Seq2seq
1542M117M

25 |Unsupervised Statistical MT

204

15 {Denoising + Backtranslate

10 {Embed Nearest Neighbor

Denoising
5 4

762M

345M
of parameters in LM

- 16 +
1542M 117M

32 Lead-3

41301
{V. * e

m g [PGNet

S

D 261

o)

& 54 {Seq2seq + Attn
o

L]

345M 762M
of parameters in LM

o 22
© Random-3
9 201
=4
181

- 0,
1542M117M

Accuracy

10

8 1 1 Open Domain QA SystemsT 1|

(=]

=
"

most freq Q-type answer

345M 762M 1542M
of parameters in LM

Figure 1. Zero-shot task performance of WebText LMs as a function of model size on many NLP tasks. Reading Comprehension results
are on CoQA (Reddy et al., 2018), translation on WMT-14 Fr-En (Artetxe et al., 2017), summarization on CNN and Daily Mail (See et al.,
2017), and Question Answering on Natural Questions (Kwiatkowski et al., 2019). Section 3 contains detailed descriptions of each result.

LAMBADA LAMBADA CBT-CN CBT-NE WikiText2 PTB enwik8 text8 WikiTextl103 IBW

(PPL) (ACC) (ACC) (ACC) (PPL) (PPL) (BPB) (BPC) (PPL) (PPL)

SOTA 99.8 59.23 85.7 823 39.14 46.54 0.99 1.08 18.3 21.8
117M 35.13 45.99 87.65 834 29.41 65.85 1.16 1.17 37.50 75.20
345M 15.60 5548 92.35 87.1 22.76 47.33 1.01 1.06 26.37 55:72
762M 10.87 60.12 93.45 88.0 19.93 40.31 0.97 1.02 22.05 44.575
1542M 8.63 63.24 93.30 89.05 18.34 35.76 0.93 0.98 17.48 42.16

Table 3. Zero-shot results on many datasets. No training or fine-tuning was performed for any of these results. PTB and WikiText-2
results are from (Gong et al., 2018). CBT results are from (Bajgar et al., 2016). LAMBADA accuracy result is from (Hoang et al., 2018)
and LAMBADA perplexity result is from (Grave et al., 2016). Other results are from (Dai et al., 2019).

IN-CONTEXT LEARNING

Few-shot Learning with LLMs

Suppose you have...
« adataset D = {(x;, y;)}i-;N and N is rather small (i.e. few-shot setting) | This section!

« avery large (billions of parameters) pre-trained language model ‘Q

There are two ways to “learn”

Option A: Supervised fine-tuning Option B: In-context learning
* Definition: fine-tune the LLM on the training data * Definition:
using... 1. feed training examples to the LLM as a
— astandard supervised objective prompt
— backpropagation to compute gradients 2. allow the LLM to infer patterns in the training
— your favorite optimizer (e.g. Adam) examples during inference (i.e. decoding)
* Pro: fits into the standard ML recipe 3. take the output of the LLM following the
* Pro:still works if N is large prompt as its prediction
* Con: backpropagation requires ~3x the memory * Con: the prompt may be very long and
and computation time as the forward Transformer LMs require O(N?) time/space where
computation N = length of context
* Con: you might not have access to the model * Pro: no backpropagation required and only one
weights at all (e.g. because the model is pass through the training data
proprietary) * Pro: does not require model weights, only API

access

Few-shot (= = e - - - - ,

Input
In-context ' '
| Review: Good movie! Sentiment: Positive
Learnmg | Review: It is terrible. Sentiment: Negative '

* Few-shotlearningcan | Review: The movie is great! Sentiment: Positive |
be done via in-

; I
context learning | Review: | like this movie. Sentiment: !
* Typically,atask W = "= = e - - -)
description is
presented first
* Then a sequence of O Frozen Large

input/output pairs (m Language Model

from a training
dataset are
presented in

sequence
A Output Positive

Figure from https://arxiv.org/pdf/2310.09881.pdf

Few-shot
In-context
Learning

* Few-shot learning can
be done via in-
context learning

* Typically, a task
description is
presented first

* Then asequence of
input/output pairs
from a training
dataset are
presented in
sequence

Figure from http://arxiv.org/abs/2005.14165

The three settings we explore for in-context learning

Zero-shot

The model predicts the answer given only a natural language
description of the task. No gradient updates are performed.

Translate English to French: task descriptior

One-shot

In addition to the task description, the model sees a single
example of the task. No gradient updates are performed.

lranslate English to French: task descriptior

sea otter => loutre de mer example

cheese =>

Few-shot

In addition to the task description, the model sees a few
examples of the task. No gradient updates are performed.

lranslate English to French: task descriptior
sea otter => loutre de mer examples
peppermint => menthe poivrée

plush girafe => girafe peluche

cheese

Traditional fine-tuning (not used for GPT-3)

Fine-tuning
The model is trained via repeated gradient updates using a
large corpus of example tasks.

sea otter » loutre de mer

peppermint => menthe poivrée

plush giraffe => girafe peluche

