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Front Matter
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 Announcements

 HW7 released 11/7, due 11/17 at 11:59 PM 

 Please be mindful of your grace day usage 

(see the course syllabus for the policy)

 Exam 2 viewings happening this week on Tuesday, 

Wednesday and Thursday, after our regularly 

scheduled OH

 Please check the OH calendar for exact times 

and locations

https://www.cs.cmu.edu/~hchai2/courses/10601/#Syllabus
https://www.cs.cmu.edu/~mgormley/courses/10601/officehours.html


Q: How can I 
get one of 
those sweet 
hoodies you’re 
wearing?

A: Apply to be 
a TA for this 
course next 
semester!

 Applications are due by 

Wednesday, November 

20th (1 week from today)

 For more information 

and the application, see 

https://www.ml.cmu.edu

/academics/ta.html

11/13/24 3

MY TA
https://www.ml.cmu.edu/academics/ta.html

https://www.ml.cmu.edu/academics/ta.html
https://www.ml.cmu.edu/academics/ta.html


Recall: 
Synchronous vs. 
Asynchronous 
Value Iteration
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 Theorem 1: Value function convergence

𝑉 will converge to 𝑉∗ if each state is “visited” 

infinitely often (Bertsekas, 1989)

 Theorem 2: Convergence criterion 

if max
𝑠 ∈ 𝒮

𝑉 𝑡+1 𝑠 − 𝑉 𝑡 𝑠 < 𝜖, 

then max
𝑠 ∈ 𝒮

𝑉 𝑡+1 𝑠 − 𝑉∗ 𝑠 <
2𝜖𝛾

1−𝛾
(Williams & Baird, 1993) 

 Theorem 3: Policy convergence

The “greedy” policy, 𝜋 𝑠 = argmax
𝑎 ∈𝒜

𝑄 𝑠, 𝑎 , converges to the 

optimal 𝜋∗ in a finite number of iterations, often before 

the value function has converged! (Bertsekas, 1987) 
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Recall: 

Value Iteration
Theory



 Theorem 1: Value function convergence

𝑉 will converge to 𝑉∗ if each state is “visited” 

infinitely often (Bertsekas, 1989)

 Theorem 2: Convergence criterion 

if max
𝑠 ∈ 𝒮

𝑉 𝑡+1 𝑠 − 𝑉 𝑡 𝑠 < 𝜖, 

then max
𝑠 ∈ 𝒮

𝑉 𝑡+1 𝑠 − 𝑉∗ 𝑠 <
2𝜖𝛾

1−𝛾
(Williams & Baird, 1993) 

 Theorem 3: Policy convergence

The “greedy” policy, 𝜋 𝑠 = argmax
𝑎 ∈𝒜

𝑄 𝑠, 𝑎 , converges to the 

optimal 𝜋∗ in a finite number of iterations, often before 

the value function has converged! (Bertsekas, 1987) 

11/13/24 6

Q: What 
happens when 
the rewards 
are stochastic? 

A: Not much!



Stochastic 
Rewards

 Insight: one way of representing stochastic rewards is 

with deterministic rewards that depend on the next state, 

𝑠𝑡+1, assuming transitions are stochastic
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Stochastic 
Rewards

 Insight: one way of representing stochastic rewards is 

with deterministic rewards that depend on the next state, 

𝑠𝑡+1, assuming transitions are stochastic
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Stochastic 
Rewards

 Insight: one way of representing stochastic rewards is 

with deterministic rewards that depend on the next state, 

𝑠𝑡+1, assuming transitions are stochastic
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Q: If the thing 
we care about 
learning is the 
policy, why 
don’t we just 
learn that 
directly?

A: Great idea!

 Insight: one way of representing stochastic rewards is 

with deterministic rewards that depend on the next state, 

𝑠𝑡+1, assuming transitions are stochastic
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 Inputs: 𝑅 𝑠, 𝑎 , 𝑝(𝑠’ | 𝑠, 𝑎)

 Initialize 𝜋 randomly 

 While not converged, do:

 Solve the Bellman equations defined by policy 𝜋

𝑉𝜋 𝑠 = 𝑅 𝑠, 𝜋 𝑠 + 𝛾 

𝑠′∈ 𝒮

𝑝 𝑠′ | 𝑠, 𝜋 𝑠 𝑉𝜋 𝑠′

 Update 𝜋

− 𝜋 𝑠 ← argmax
𝑎 ∈𝒜

𝑅 𝑠, 𝑎 + 𝛾 

𝑠′∈ 𝒮

𝑝 𝑠′ | 𝑠, 𝑎 𝑉𝜋 𝑠′

 Return 𝜋

Policy Iteration
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 In policy iteration, the policy improves in each iteration. 

 Given finite state and action spaces, there are finitely 

many possible policies

 Thus, the number of iterations needed to converge is 

bounded!

 Value iteration takes 𝑂 𝒮 2 𝒜 time / iteration

 Policy iteration takes 𝑂 𝒮 2 𝒜 + 𝒮 3 time / iteration

 However, empirically policy iteration requires fewer 

iterations to converge

12

Policy Iteration
Theory
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MDP and 
Value/Policy 
Iteration 
Learning 
Objectives

You should be able to…

 Compare reinforcement learning to other learning paradigms 

 Cast a real-world problem as a Markov Decision Process 

 Depict the exploration vs. exploitation tradeoff via MDP examples

 Explain how to solve a system of equations using fixed point iteration 

 Define the Bellman Equations 

 Show how to compute the optimal policy in terms of the optimal 
value function 

 Explain the relationship between a value function mapping states to 
expected rewards and a value function mapping state-action pairs to 
expected rewards 

 Implement value iteration and policy iteration 

 Contrast the computational complexity and empirical convergence of 
value iteration vs. policy iteration 

 Identify the conditions under which the value iteration algorithm will 
converge to the true value function

 Describe properties of the policy iteration algorithm11/13/24 13



Two big Q’s
1. What can we do if the reward and/or transition 

functions/distributions are unknown? 

• Use online learning to gather data and learn 𝑄∗ 𝑠, 𝑎

2. How can we handle infinite (or just very large) 

state/action spaces?
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(Asynchronous)
Value Iteration 

1511/13/24

 Inputs: 𝑅 𝑠, 𝑎 , 𝑝(𝑠’ | 𝑠, 𝑎), 𝛾

 Initialize 𝑉 0 𝑠 = 0 ∀ 𝑠 ∈ 𝒮 (or randomly) and set 𝑡 = 0

 While not converged, do:

 For 𝑠 ∈ 𝒮

𝑉 𝑠 ← max
𝑎 ∈𝒜

𝑅 𝑠, 𝑎 + 𝛾 

𝑠′∈ 𝒮

𝑝 𝑠′ | 𝑠, 𝑎 𝑉 𝑠′

 For 𝑠 ∈ 𝒮

𝜋∗ 𝑠 ← argmax
𝑎 ∈𝒜

𝑅 𝑠, 𝑎 + 𝛾 

𝑠′∈ 𝒮

𝑝 𝑠′ | 𝑠, 𝑎 𝑉 𝑠′

 Return 𝜋∗



 Inputs: 𝑅 𝑠, 𝑎 , 𝑝(𝑠’ | 𝑠, 𝑎), 𝛾

 Initialize 𝑉 0 𝑠 = 0 ∀ 𝑠 ∈ 𝒮 (or randomly) and set 𝑡 = 0

 While not converged, do:

 For 𝑠 ∈ 𝒮

 For 𝑎 ∈ 𝒜

𝑄 𝑠, 𝑎 = 𝑅 𝑠, 𝑎 + 𝛾 

𝑠′∈ 𝒮

𝑝 𝑠′ | 𝑠, 𝑎 𝑉 𝑠′

 𝑉 𝑠 ← max
𝑎 ∈𝒜

𝑄 𝑠, 𝑎

 For 𝑠 ∈ 𝒮

𝜋∗ 𝑠 ← argmax
𝑎 ∈𝒜

𝑅 𝑠, 𝑎 + 𝛾 

𝑠′∈ 𝒮

𝑝 𝑠′ | 𝑠, 𝑎 𝑉 𝑠′

 Return 𝜋∗

(Asynchronous)
Value Iteration 
Revisited
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𝑄∗(𝑠, 𝑎)w/ 
deterministic 
rewards

 𝑄∗ 𝑠, 𝑎 = 𝔼[total discounted reward of taking action 𝑎 in 
state 𝑠, assuming all future actions are optimal]

𝑄∗ 𝑠, 𝑎 = 𝑅 𝑠, 𝑎 + 𝛾 

𝑠′∈ 𝒮

𝑝 𝑠′ | 𝑠, 𝑎 𝑉∗ 𝑠′

𝑉∗ 𝑠′ = max
𝑎′ ∈𝒜

𝑄∗ 𝑠′, 𝑎′

𝑄∗ 𝑠, 𝑎 = 𝑅 𝑠, 𝑎 + 𝛾 

𝑠′∈ 𝒮

𝑝 𝑠′ | 𝑠, 𝑎 max
𝑎′ ∈𝒜

𝑄∗ 𝑠′, 𝑎′

𝜋∗ 𝑠 = argmax
𝑎 ∈𝒜

𝑄∗ 𝑠, 𝑎

 Insight: if we know 𝑄∗, we can compute an optimal policy 𝜋∗!
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𝑄∗(𝑠, 𝑎)w/ 
deterministic 
rewards and 
transitions

1811/13/24

 𝑄∗ 𝑠, 𝑎 = 𝔼[total discounted reward of taking action 𝑎 in 
state 𝑠, assuming all future actions are optimal]

𝑄∗ 𝑠, 𝑎 = 𝑅 𝑠, 𝑎 + 𝛾𝑉∗ 𝛿 𝑠, 𝑎

 𝑉∗ 𝛿 𝑠, 𝑎 = max
𝑎′ ∈𝒜

𝑄∗ 𝛿 𝑠, 𝑎 , 𝑎′

𝑄∗ 𝑠, 𝑎 = 𝑅 𝑠, 𝑎 + 𝛾 max
𝑎′ ∈𝒜

𝑄∗ 𝛿 𝑠, 𝑎 , 𝑎′

𝜋∗ 𝑠 = argmax
𝑎 ∈𝒜

𝑄∗ 𝑠, 𝑎

 Insight: if we know 𝑄∗, we can compute an optimal policy 𝜋∗!



Learning
𝑄∗(𝑠, 𝑎)w/
deterministic 
rewards and 
transitions

Algorithm 1: 
Online learning 
(table form) 

19

 Inputs: discount factor 𝛾, an initial state 𝑠

 Initialize 𝑄 𝑠, 𝑎 = 0 ∀ 𝑠 ∈ 𝒮, 𝑎 ∈ 𝒜 (𝑄 is a 𝒮 × 𝒜 array) 

 While TRUE, do

 Take a random action 𝑎

 Receive reward 𝑟 = 𝑅 𝑠, 𝑎

 Update the state: 𝑠 ← 𝑠′ where 𝑠′ = 𝛿 𝑠, 𝑎

 Update 𝑄 𝑠, 𝑎 :

𝑄 𝑠, 𝑎 ← 𝑟 + 𝛾max
𝑎′

𝑄 𝑠′, 𝑎′
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Learning
𝑄∗(𝑠, 𝑎)w/
deterministic 
rewards and 
transitions

Algorithm 2: 
𝜖-greedy online 
learning (table 
form) 

20

 Inputs: discount factor 𝛾, an initial state 𝑠,

greediness parameter 𝜖 ∈ 0, 1

 Initialize 𝑄 𝑠, 𝑎 = 0 ∀ 𝑠 ∈ 𝒮, 𝑎 ∈ 𝒜 (𝑄 is a 𝒮 × 𝒜 array) 

 While TRUE, do

 With probability 𝜖, take the greedy action 

𝑎 = argmax
𝑎′ ∈𝒜

𝑄 𝑠, 𝑎′

Otherwise, with probability 1 − 𝜖, take a random action 𝑎

 Receive reward 𝑟 = 𝑅 𝑠, 𝑎

 Update the state: 𝑠 ← 𝑠′ where 𝑠′ = 𝛿 𝑠, 𝑎

 Update 𝑄 𝑠, 𝑎 :

𝑄 𝑠, 𝑎 ← 𝑟 + 𝛾max
𝑎′

𝑄 𝑠′, 𝑎′

11/13/24



21

 Inputs: discount factor 𝛾, an initial state 𝑠,

greediness parameter 𝜖 ∈ 0, 1 ,

learning rate 𝛼 ∈ 0, 1 (“trust parameter”)

 Initialize 𝑄 𝑠, 𝑎 = 0 ∀ 𝑠 ∈ 𝒮, 𝑎 ∈ 𝒜 (𝑄 is a 𝒮 × 𝒜 array) 

 While TRUE, do

 With probability 𝜖, take the greedy action 

𝑎 = argmax
𝑎′ ∈𝒜

𝑄 𝑠, 𝑎′

Otherwise, with probability 1 − 𝜖, take a random action 𝑎

 Receive reward 𝑟 = 𝑅 𝑠, 𝑎

 Update the state: 𝑠 ← 𝑠′ where 𝑠′ ∼ 𝑝 𝑠′ 𝑠, 𝑎

 Update 𝑄 𝑠, 𝑎 :

𝑄 𝑠, 𝑎 ← 1 − 𝛼 𝑄 𝑠, 𝑎 + 𝛼 𝑟 + 𝛾max
𝑎′

𝑄 𝑠′, 𝑎′

Current 
value

Update w/ 
deterministic transitions

Learning
𝑄∗(𝑠, 𝑎)w/
deterministic 
rewards 

Algorithm 3: 
𝜖-greedy online 
learning (table 
form) 

11/13/24
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 Inputs: discount factor 𝛾, an initial state 𝑠,

greediness parameter 𝜖 ∈ 0, 1 ,

learning rate 𝛼 ∈ 0, 1 (“trust parameter”)

 Initialize 𝑄 𝑠, 𝑎 = 0 ∀ 𝑠 ∈ 𝒮, 𝑎 ∈ 𝒜 (𝑄 is a 𝒮 × 𝒜 array) 

 While TRUE, do

 With probability 𝜖, take the greedy action 

𝑎 = argmax
𝑎′ ∈𝒜

𝑄 𝑠, 𝑎′

Otherwise, with probability 1 − 𝜖, take a random action 𝑎

 Receive reward 𝑟 = 𝑅 𝑠, 𝑎

 Update the state: 𝑠 ← 𝑠′ where 𝑠′ ∼ 𝑝 𝑠′ 𝑠, 𝑎

 Update 𝑄 𝑠, 𝑎 :

𝑄 𝑠, 𝑎 ← 𝑄 𝑠, 𝑎 + 𝛼 𝑟 + 𝛾max
𝑎′

𝑄 𝑠′, 𝑎′ − 𝑄 𝑠, 𝑎

Learning
𝑄∗(𝑠, 𝑎)w/
deterministic 
rewards 

Algorithm 3: 
𝜖-greedy online 
learning (table 
form) 

Current 
value

Temporal difference 
target

Temporal 
difference

11/13/24
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7

3

−2
0

5

61 2 3 4

𝛾 = 0.9

Learning
𝑄∗(𝑠, 𝑎): 
Example

11/13/24

𝑅 𝑠, 𝑎 =

−2 if entering state 0 safety

3 if entering state 5 field goal
7 if entering state 6 (touch down)
0 otherwise
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0

5

61 2 3 40

0

0

0

0

0
7

3

-2

0

0 0

𝑅 𝑠, 𝑎 represented by 

𝛾 = 0.9

Learning
𝑄∗(𝑠, 𝑎): 
Example

11/13/24



0

5

61 2 3 40

0

0

0

0

0
7

3

-2

0

0 0

Poll Question 1:

Which set of 
blue arrows
(roughly) 
corresponds to 
𝑄∗(𝑠, 𝑎)?

5

2 3 4

5.10

5.67

5.67

6.3

6.3
7

3

-2

0

0 0

5

2 3 44.59

5.10 5.67

5.67

6.3
7

3

-2

0

0 0

0 61

0 61

5.10

5.10

𝛾 = 0.9
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A.

C.

D.

B. (TOXIC)
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𝑄∗ 𝑠, 𝑎 = 𝑅 𝑠, 𝑎 + 𝛾𝑉∗ 𝛿 𝑠, 𝑎

5.10 5.67 6.3 7

5

2 3 4

5.10

5.67

5.67

6.3

6.3
7

3

-2

0

0 0

5.10 5.67 6.3 7

5

2 3 44.59

5.10 5.67

5.67

6.3
7

3

-2

0

0 0

61

61

5.10

5.10

𝑉∗ 𝑠 shown in green

11/13/24

Poll Question 1:

Which set of 
blue arrows
(roughly) 
corresponds to 
𝑄∗(𝑠, 𝑎)?
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6

𝑄(𝑠, 𝑎) → ← ↑ ↻

0 0 0 0 0

1 0 0 0 0

2 0 0 0 0

3 0 0 0 0

4 0 0 0 0

5 0 0 0 0

6 0 0 0 0

5

62 3 40

0

0

0

0

0
7

3

-2

0

0 0
0 1

Learning
𝑄∗(𝑠, 𝑎): 
Example

𝑅 𝑠, 𝑎 represented by 

𝛾 = 0.9
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6

𝑄(𝑠, 𝑎) → ← ↑ ↻

0 0 0 0 0

1 0 0 0 0

2 0 0 0 0

3 0 0 0 0

4 0 0 0 0

5 0 0 0 0

6 0 0 0 0

5

62 3 40

0

0

0

0

0
7

3

-2

0

0 0
0 1

𝑄 3,→ ← 0 + 0.9 max
𝑎′∈ →,←,↑,↻

𝑄 4, 𝑎′ = 0
Learning
𝑄∗(𝑠, 𝑎): 
Example

𝑅 𝑠, 𝑎 represented by 

𝛾 = 0.9
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6

5

62 3 40

0

0

0

0

0
7

3

-2

0

0 0
0 1

𝑄(𝑠, 𝑎) → ← ↑ ↻

0 0 0 0 0

1 0 0 0 0

2 0 0 0 0

3 0 0 0 0

4 0 0 0 0

5 0 0 0 0

6 0 0 0 0

Learning
𝑄∗(𝑠, 𝑎): 
Example

𝑅 𝑠, 𝑎 represented by 

𝛾 = 0.9
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6

5

62 3 40

0

0

0

0

0
7

3

-2

0

0 0
0 1

𝑄(𝑠, 𝑎) → ← ↑ ↻

0 0 0 0 0

1 0 0 0 0

2 0 0 0 0

3 0 0 0 0

4 0 0 0 0

5 0 0 0 0

6 0 0 0 0

𝑄 4, ↑ ← 3 + 0.9 max
𝑎′∈ →,←,↑,↻

𝑄 5, 𝑎′ = 3
Learning
𝑄∗(𝑠, 𝑎): 
Example

𝑅 𝑠, 𝑎 represented by 

𝛾 = 0.9
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6

𝑄(𝑠, 𝑎) → ← ↑ ↻

0 0 0 0 0

1 0 0 0 0

2 0 0 0 0

3 0 0 0 0

4 0 0 3 0

5 0 0 0 0

6 0 0 0 0

5

62 3 40

0

0

0

0

0
7

3

-2

0

0 0
0 1

𝑄 3,→ ← 0 + 0.9 max
𝑎′∈ →,←,↑,↻

𝑄 4, 𝑎′ = 2.7
Learning
𝑄∗(𝑠, 𝑎): 
Example

𝑅 𝑠, 𝑎 represented by 

𝛾 = 0.9
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6

5

62 3 40

0

0

0

0

0
7

3

-2

0

0 0
0 1

𝑄(𝑠, 𝑎) → ← ↑ ↻

0 0 0 0 0

1 0 0 0 0

2 0 0 0 0

3 2.7 0 0 0

4 0 0 3 0

5 0 0 0 0

6 0 0 0 0

𝑄 3,→ ← 0 + 0.9 max
𝑎′∈ →,←,↑,↻

𝑄 4, 𝑎′ = 2.7
Learning
𝑄∗(𝑠, 𝑎): 
Example

𝑅 𝑠, 𝑎 represented by 

𝛾 = 0.9
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Learning
𝑄∗(𝑠, 𝑎): 
Convergence

33

 For Algorithms 1 & 2 (deterministic transitions), 

𝑄 converges to 𝑄∗ if

1. Every valid state-action pair is visited infinitely often

 Q-learning is exploration-insensitive: any visitation 

strategy that satisfies this property will work!

2. 0 ≤ 𝛾 < 1

3. ∃ 𝛽 s.t. 𝑅 𝑠, 𝑎 < 𝛽 ∀ 𝑠 ∈ 𝒮, 𝑎 ∈ 𝒜

4. Initial 𝑄 values are finite

11/13/24



Learning
𝑄∗(𝑠, 𝑎): 
Convergence

34

 For Algorithm 3 (temporal difference learning),  

𝑄 converges to 𝑄∗ if

1. Every valid state-action pair is visited infinitely often 

 Q-learning is exploration-insensitive: any visitation 

strategy that satisfies this property will work!

2. 0 ≤ 𝛾 < 1

3. ∃ 𝛽 s.t. 𝑅 𝑠, 𝑎 < 𝛽 ∀ 𝑠 ∈ 𝒮, 𝑎 ∈ 𝒜

4. Initial 𝑄 values are finite

5. Learning rate 𝛼𝑡 follows some “schedule” s.t.

σ𝑡=0
∞ 𝛼𝑡 = ∞ and σ𝑡=0

∞ 𝛼𝑡
2 < ∞ e.g., 𝛼𝑡 = Τ1 𝑡+1

11/13/24



Two big Q’s
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1. What can we do if the reward and/or transition 

functions/distributions are unknown? 

• A: Use online learning to gather data and learn 𝑄∗ 𝑠, 𝑎

2. How can we handle infinite (or just very large) 

state/action spaces?



Playing Go

36

AlphaGo (Black) vs. Lee Sedol (White) 
Game 2 final position (AlphaGo wins) 

Source: https://en.wikipedia.org/wiki/AlphaGo_versus_Lee_Sedol
11/13/24

 19-by-19 board 

 Players alternate 
placing black and 
white stones

 The goal is claim 
more territory 
than the opponent
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Source: https://en.wikipedia.org/wiki/AlphaGo_versus_Lee_Sedol

11/13/24
Source: https://en.wikipedia.org/wiki/Go_and_mathematics

Poll Question 1: Which is the best 
approximation to the number 
of legal board states in Go?

A. 42 (TOXIC)

B. The number of stars in the 
universe ∼ 1024

C. The number of atoms in the 
universe ∼ 1080

D. A googol = 10100

E. The number of possible 
games of chess ∼ 10120

F. A googolplex = 10googol



Playing Go

38

AlphaGo (Black) vs. Lee Sedol (White) 
Game 2 final position (AlphaGo wins) 

Source: https://en.wikipedia.org/wiki/AlphaGo_versus_Lee_Sedol
11/13/24

 19-by-19 board 

 Players alternate 
placing black and 
white stones

 The goal is claim 
more territory 
than the opponent

 There are ~10170  

legal Go board 
states!

Source: https://en.wikipedia.org/wiki/Go_and_mathematics



Two big Q’s
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1. What can we do if the reward and/or transition 

functions/distributions are unknown? 

• A: Use online learning to gather data and learn 𝑄∗ 𝑠, 𝑎

2. How can we handle infinite (or just very large) 

state/action spaces?

• A: Throw a neural network at it! 



Deep 
Q-learning

 Use a parametric function, 𝑄 𝑠, 𝑎; Θ , to approximate 

𝑄∗ 𝑠, 𝑎

 Learn the parameters using SGD

 Training data 𝒔𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝒔𝑡+1 gathered online by 

the agent/learning algorithm 
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 Represent states using some feature vector 𝒔𝑡 ∈ ℝ𝑀

e.g. for Go, 𝒔𝑡 = 1, 0, −1,… , 1 𝑇

 Define a neural network

Deep 
Q-learning:
Model

41

𝒔𝑡

𝑎𝑡

Θ 𝑄 𝒔𝑡, 𝑎𝑡; Θ

𝒔𝑡 Θ

𝑄 𝒔𝑡, 𝑎1; Θ

𝑄 𝒔𝑡, 𝑎2; Θ

𝑄 𝒔𝑡 , 𝑎 𝒜 ; Θ

⋮

Model 1:

Model 2:
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 “True” loss

ℓ Θ = 

𝑠 ∈ 𝒮



𝑎 ∈𝒜

𝑄∗ 𝑠, 𝑎 − 𝑄 𝑠, 𝑎; Θ
2

1. Use stochastic gradient descent: just consider one 
state-action pair in each iteration

2. Use temporal difference learning: 

 Given current parameters Θ t the temporal 
difference target is 

𝑄∗ 𝑠, 𝑎 ≈ 𝑟 + 𝛾max
𝑎′

𝑄 𝑠′, 𝑎′; Θ 𝑡 ≔ 𝑦

 Set the parameters in the next iteration Θ 𝑡+1 such 

that 𝑄 𝑠, 𝑎; Θ 𝑡+1 ≈ 𝑦

ℓ Θ 𝑡 , Θ = 𝑦 − 𝑄 𝑠, 𝑎; Θ
2

1. 𝒮 too big to compute this sum

Deep 
Q-learning:
Loss Function
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2. Don’t know 𝑄∗
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Deep 
Q-learning

Algorithm 4: 
Online learning 
(parametric 
form)
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 Inputs: discount factor 𝛾, an initial state 𝑠0,

learning rate 𝛼

 Initialize parameters Θ 0

 For 𝑡 = 0, 1, 2, …

 Gather training sample 𝒔𝑡 , 𝒂𝑡 , 𝑟𝑡 , 𝒔𝑡+1

 Update Θ 𝑡 by taking a step opposite the gradient

Θ 𝑡+1 ← Θ 𝑡 − 𝛼∇Θℓ Θ 𝑡 , Θ

where

∇Θℓ Θ 𝑡 , Θ = 2 𝑦 − 𝑄 𝑠, 𝑎; Θ ∇Θ𝑄 𝑠, 𝑎; Θ
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Deep 
Q-learning:
Experience
Replay
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 SGD assumes iid training samples but in RL, samples are 

highly correlated

 Idea: maintain a “replay buffer” 𝒟 = {𝑒1, 𝑒2, … , 𝑒𝑁} of the 

𝑁 most recent experiences 𝑒𝑡 = 𝒔𝑡, 𝒂𝑡 , 𝑟𝑡 , 𝒔𝑡+1 (Lin, 1992)

 Keeps the agent from “forgetting” recent experiences

 In each iteration, we:

1. Sample some experience 𝑒𝑖 (or a mini-batch of 

experiences 𝐸 = 𝑒1, … , 𝑒𝑇 ) uniformly at random 

from 𝒟 and apply the Q-learning update 

2. Add a new experience to 𝒟

 Can also sample experiences from 𝒟 according to some 

distribution that prioritizes experiences with high error 

(Schaul et al., 2016)
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Q-learning and 
Deep RL 
Learning 
Objectives

You should be able to…

 Apply Q-Learning to a real-world environment

 Implement Q-learning 

 Identify the conditions under which the Q-learning 
algorithm will converge to the true value function 

 Adapt Q-learning to Deep Q-learning by employing a neural 
network approximation to the Q function 

 Describe the connection between Deep Q-Learning and 
regression
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