10-301/601: Introduction to Machine Learning Lecture 22: Q-learning and Deep RL

Matt Gormley & Henry Chai

11/13/24

Front Matter

- Announcements
	- HW7 released 11/7, due 11/17 at 11:59 PM
		- Please be mindful of your grace day usage (see [the course syllabus](https://www.cs.cmu.edu/~hchai2/courses/10601/#Syllabus) for the policy)
	- Exam 2 viewings happening this week on Tuesday, Wednesday and Thursday, after our regularly scheduled OH
		- Please check [the OH calendar](https://www.cs.cmu.edu/~mgormley/courses/10601/officehours.html) for exact times and locations

Q: How can I get one of those sweet hoodies you're wearing?

- Applications are due by Wednesday, November 20th (1 week from today)
- For more information and the application, see [https://www.ml.cmu.edu](https://www.ml.cmu.edu/academics/ta.html) /academics/ta.html

Recall: Synchronous vs. Asynchronous Value Iteration

Algorithm 1 Asynchronous Value Iteration

- 1: **procedure** ASYNCHRONOUSVALUEITERATION $(R(s, a), p(\cdot | s, a))$
- Initialize value function $V(s) = 0$ or randomly $2:$
- while not converged do $\overline{3}$:

$$
\mathsf{for} s \in S/\mathsf{do}
$$

$$
V(s) = \max_{a} R(s, a) + \gamma \sum_{s' \in \mathcal{S}} p(s'|s, a)V(s')
$$

Let $\pi(s) = \arg\max_a R(s, a) + \gamma \sum_{s' \in S} p(s'|s, a)V(s')$, $\forall s$ $6:$

return π $7:$

4: $5:$

Algorithm 1 Synchronous Value Iteration 1: **procedure** SYNCHRONOUSVALUE TERATION($R(s, a)$, $p(\cdot|s, a)$) Initialize value function $V(s)^{(0)} = 0$ or randomly $2:$ $t=0$ $\ddot{ }$ while not converged do $4:$ for $s \in \mathcal{S}$ do $5:$ $V(s)^{(t+1)} = \max_{a} R(s,a) + \gamma \sum_{s' \in \mathcal{S}} p(s'|s,a)V(s')^{(t)}$ 6: $t=t+1$ $7:$ Let $\pi(s) = \argmax_a R(s, a) + \gamma \sum_{s' \in S} p(s'|s, a)V(s')$, $\forall s$ 8: return π 9:

asynchronous updates: compute and update $V(s)$ for each state one at a time

synchronous updates: compute all the fresh values of $V(s)$ from all the stale values of $V(s)$, then update $V(s)$ with fresh values

Recall:

Value Iteration **Theory**

Theorem 1: Value function convergence

V will converge to V^* if each state is "visited"

infinitely often (Bertsekas, 1989)

 Theorem 2: Convergence criterion if max $s \in \mathcal{S}$ $|V^{(t+1)}(s) - V^{(t)}(s)| < \epsilon,$ then max $s \in \mathcal{S}$ $|V^{(t+1)}(s) - V^*(s)| <$ $2\epsilon\gamma$ $1-\gamma$ (Williams & Baird, 1993) **Theorem 3**: Policy convergence The "greedy" policy, $\pi(s) = \argmax\,Q(s,a)$, converges to the $a \in \mathcal{A}$ optimal π^* in a finite number of iterations, often before the value function has converged! (Bertsekas, 1987)

Q: What happens when the rewards are stochastic? **Theorem 1**: Value function convergence

V will converge to V^* if each state is "visited"

infinitely often (Bertsekas, 1989)

 Theorem 2: Convergence criterion if max $s \in \mathcal{S}$ $|V^{(t+1)}(s) - V^{(t)}(s)| < \epsilon,$ then max $s \in \mathcal{S}$ $|V^{(t+1)}(s) - V^*(s)| <$ $2\epsilon\gamma$ $1-\gamma$ (Williams & Baird, 1993) **Theorem 3**: Policy convergence

The "greedy" policy, $\pi(s) = \argmax\,Q(s,a)$, converges to the $a \in \mathcal{A}$ optimal π^* in a finite number of iterations, often before

the value function has converged! (Bertsekas, 1987)

Stochastic Rewards

• Insight: one way of representing stochastic rewards is with *deterministic* rewards that depend on the next state, s_{t+1} , assuming transitions are stochastic

Stochastic Rewards

• Insight: one way of representing stochastic rewards is with *deterministic* rewards that depend on the next state, s_{t+1} , assuming transitions are stochastic

This optimal value function can be represented recursively as:

$$
V^*(s) = \max_{a \in \mathcal{A}} \sum_{s' \in \mathcal{S}} p(s'|s, a) \underbrace{(R(s, a, s') + \gamma V^*(s'))}.
$$

If $R(s, a, s') = R(s, a)$ (deterministic reward), then we have the form:

$$
V^*(s) = \max_{a \in \mathcal{A}} \left\{ R(s, a) + \gamma \sum_{s' \in \mathcal{S}} p(s'|s, a) V^*(s') \right\}.
$$

Stochastic Rewards

• Insight: one way of representing stochastic rewards is with *deterministic* rewards that depend on the next state, s_{t+1} , assuming transitions are stochastic

Algorithm 1 Value Iteration (stochastic transitions, stochastic rewards)

- 1: **procedure** VALUEITERATION($R(s, a, s')$ reward function, $p(\cdot|s, a)$ transition probabilities)
- Initialize value function $V(s) = 0$ or randomly $2:$
- while not converged do $3:$

4: **for**
$$
s \in S
$$
 do
\n5: $V(s) = \max_{a} \sum_{s' \in S} p(s'|s, a) (R(s, a, s') + \gamma V(s'))$
\n6: Let $\pi(s) = \operatorname{argmax}_{a} \sum_{s' \in S} p(s'|s, a) (R(s, a, s') + \gamma V(s'))$, $\forall s$
\n**return** π

Q: If the thing we care about learning is the policy, why don't we just learn that directly?

• Insight: one way of representing stochastic rewards is with *deterministic* rewards that depend on the next state, s_{t+1} , assuming transitions are stochastic

Algorithm 1 Value Iteration (stochastic transitions, stochastic rewards)

- 1: **procedure** VALUEITERATION($R(s, a, s')$ reward function, $p(\cdot|s, a)$ transition probabilities)
- Initialize value function $V(s) = 0$ or randomly $2:$
- while not converged do $3:$

4: **for**
$$
s \in S
$$
 do
\n5: $V(s) = \max_{a} \sum_{s' \in S} p(s'|s, a) (R(s, a, s') + \gamma V(s'))$
\n6: Let $\pi(s) = \operatorname{argmax}_{a} \sum_{s' \in S} p(s'|s, a) (R(s, a, s') + \gamma V(s'))$, $\forall s$
\n**return** π

Policy Iteration

- \cdot Inputs: $R(s, a)$, $p(s' | s, a)$
- \cdot Initialize π randomly
- While not converged, do:

• Solve the Bellman equations defined by policy π

$$
\begin{aligned}\n\mathbf{\nabla}_{S} & V^{\pi}(s) = R(s, \pi(s)) + \gamma \sum_{s' \in S} p(s' \mid s, \pi(s)) V^{\pi}(s') \\
&\cdot \text{Update } \pi \\
\mathbf{\nabla}_{S} & \pi(s) \leftarrow \operatorname*{argmax}_{a \in \mathcal{A}} \left[R(s, a) + \gamma \sum_{s' \in S} p(s' \mid s, a) V^{\pi}(s') \right] \\
&\cdot \text{Return } \pi\n\end{aligned}
$$

Policy Iteration **Theory**

- \cdot In policy iteration, the policy improves in each iteration.
- Given finite state and action spaces, there are finitely many possible policies
- Thus, the number of iterations needed to converge is bounded!
- Value iteration takes $O(|\mathcal{S}|^2|\mathcal{A}|)$ time / iteration
- Policy iteration takes $O(|S|^2|\mathcal{A}| + |S|^3)$ time / iteration
	- However, empirically policy iteration requires fewer iterations to converge

MDP and Value/Policy Iteration Learning **Objectives**

You should be able to…

- Compare reinforcement learning to other learning paradigms
- Cast a real-world problem as a Markov Decision Process
- Depict the exploration vs. exploitation tradeoff via MDP examples
- Explain how to solve a system of equations using fixed point iteration
- Define the Bellman Equations
- Show how to compute the optimal policy in terms of the optimal value function
- Explain the relationship between a value function mapping states to expected rewards and a value function mapping state-action pairs to expected rewards
- **· Implement value iteration and policy iteration**
- Contrast the computational complexity and empirical convergence of value iteration vs. policy iteration
- Identify the conditions under which the value iteration algorithm will converge to the true value function
- ^{11/13/24} **Describe properties of the policy iteration algorithm** 13

1. What can we do if the reward and/or transition functions/distributions are unknown?

2. How can we handle infinite (or just very large) state/action spaces?

(Asynchronous) Value Iteration

- \cdot Inputs: $R(s, a)$, $p(s' | s, a)$, γ
- Initialize $V^{(0)}(s) = 0 \forall s \in S$ (or randomly) and set $t = 0$
- While not converged, do:
	- \cdot For $s \in S$

$$
\bigtimes V(s) \leftarrow \max_{a \in \mathcal{A}} R(s, a) + \gamma \sum_{s' \in \mathcal{S}} p(s' \mid s, a) V(s')
$$

• For
$$
s \in S
$$

\n $\pi^*(s) \leftarrow \operatorname*{argmax}_{a \in \mathcal{A}} R(s, a) + \gamma \sum_{s' \in S} p(s' \mid s, a)V(s')$
\n• Return π^*

(Asynchronous) Value Iteration Revisited

- \cdot Inputs: $R(s, a)$, $p(s' | s, a)$, γ
- Initialize $V^{(0)}(s) = 0 \forall s \in S$ (or randomly) and set $t = 0$
- While not converged, do:
	- \cdot For $s \in \mathcal{S}$

 \cdot For $a \in \mathcal{A}$

$$
Q(s, a) = R(s, a) + \gamma \sum_{s' \in S} p(s' \mid s, a)V(s')
$$

• $V(s) \leftarrow \max_{a \in \mathcal{A}} Q(s, a)$

 \cdot For $s \in S$ $\pi^*(s) \leftarrow \text{argmax}$ $a \in \mathcal{A}$ $R(s, a) + \gamma$ $s' \in \mathcal{S}$ $p(s' \mid s, a)V(s')$ • Return π^*

 $Q^*(s, a)$ w/ deterministic rewards

• $Q^*(s, a) =$ F [total discounted reward of taking action a in state s, assuming all future actions are optimal] $= R(s, a) + \gamma$ $s' \in \mathcal{S}$ $p(s' \mid s, a)V^*(s')$ $V^*(s') = \max$ $a^{\prime} \in \mathcal{A}$ $Q^*(s', a')$ $Q^*(s, a) = R(s, a) + \gamma$ $s' \in \mathcal{S}$ $p(s'\mid s,a) \big\vert$ max $a^{\dagger} \in \mathcal{A}$ $Q^*(s', a')$ $\pi^*(s) = \text{argmax } Q^*(s, a)$ $a \in \mathcal{A}$

• Insight: if we know Q^* , we can compute an optimal policy $\pi^*!$

 $Q^*(s, a)$ w/ deterministic rewards and transitions

• $Q^*(s, a) =$ E[total discounted reward of taking action a in state s , assuming all future actions are optimal]

 $= R(s, a) + \gamma V^* (\delta(s, a))$

• $V^*(\delta(s, a)) = \max$ $a^{\dagger} \in \mathcal{A}$ $Q^*(\delta(s, a), a')$ $Q^*(s, a) = R(s, a) + \gamma$ max $a^{\dagger} \in \mathcal{A}$ $Q^*(\delta(s, a), a')$

 $\pi^*(s) = \text{argmax} Q^*(s, a)$ $a \in A$

• Insight: if we know Q^* , we can compute an optimal policy $\pi^*!$

11/13/24 **18**

 \rightarrow $s' = \mathcal{S}(s,a)$

Learning $Q^*(s, a)$ w/ deterministic rewards and transitions

Algorithm 1: Online learning (table form)

 \cdot Inputs: discount factor γ , an initial state s

 \cdot Initialize $Q(s, a) = 0 \forall s \in S, a \in \mathcal{A}$ (Q is a $|S| \times |A|$ array)

- While TRUE, do
	- \cdot Take a random action a

- Receive reward $r = R(s, a)$
- Update the state: $s \leftarrow s'$ where $s' = \delta(s, a)$

 \cdot Update $Q(s, a)$:

 $Q(s, a) \leftarrow r + \gamma$ max $\overline{a'}$ $Q(s', a')$

Learning $Q^*(s, a)$ w/ deterministic rewards and transitions

Algorithm 2: ϵ -greedy online learning (table form)

 \cdot Inputs: discount factor γ , an initial state s , greediness parameter $\epsilon \in [0,1]$

 \cdot Initialize $Q(s, a) = 0 \forall s \in \mathcal{S}, a \in \mathcal{A}$ (Q is a $|\mathcal{S}| \times |\mathcal{A}|$ array)

- While TRUE, do
	- With probability ϵ , take the greedy action

 $a = \argmax$ $a^{\mathsf{T}} \in \mathcal{A}$ $Q(s, a^{\prime})$

Otherwise, with probability $1 - \epsilon$, take a random action a

- Receive reward $r = R(s, a)$
- Update the state: $s \leftarrow s'$ where $s' = \delta(s, a)$

 \cdot Update $Q(s, a)$:

 $Q(s, a) \leftarrow r + \gamma$ max $\overline{a'}$ $Q(s', a')$

Learning $Q^*(s, a)$ w/ deterministic rewards

Algorithm 3: -greedy online learning (table form)

 \cdot Inputs: discount factor γ , an initial state s , greediness parameter $\epsilon \in [0, 1]$, learning rate $\alpha \in [0,1]$ ("trust parameter")

 \cdot Initialize $Q(s, a) = 0 \forall s \in S, a \in \mathcal{A}$ (Q is a $|S| \times |A|$ array)

- While TRUE, do
	- With probability ϵ , take the greedy action

 $a = \argmax Q(s, a')$ $a^{\bar{I}} \in A$

Otherwise, with probability $1 - \epsilon$, take a random action a

- Receive reward $r = R(s, a)$
- Update the state: $s \leftarrow s'$ where $s' \sim p(s' | s, a)$

 \cdot Update $Q(s, a)$: $Q(s, a) \leftarrow (1 - \alpha)Q(s, a) + \alpha (r + \gamma)$ max $\overline{a'}$ $Q(s', a')$ Current value Update w/ deterministic transitions

Learning $Q^*(s, a)$ w/ deterministic rewards

Algorithm 3: ϵ -greedy online learning (table form)

 \cdot Inputs: discount factor γ , an initial state s , greediness parameter $\epsilon \in [0, 1]$, learning rate $\alpha \in [0,1]$ ("trust parameter")

 \cdot Initialize $Q(s, a) = 0 \forall s \in \mathcal{S}, a \in \mathcal{A}$ (Q is a $|\mathcal{S}| \times |\mathcal{A}|$ array)

While TRUE, do

• With probability ϵ , take the greedy action

 $a = \argmax Q(s, a')$ $a' \in A$

Otherwise, with probability $1 - \epsilon$, take a random action a

- Receive reward $r = R(s, a)$
- Update the state: $s \leftarrow s'$ where $s' \sim p(s' | s, a)$ Temporal \cdot Update $Q(s, a)$:

difference

$$
Q(s, a) \leftarrow Q(s, a) + \alpha \left(r + \gamma \max_{a'} Q(s', a') - Q(s, a) \right)
$$

Current Temporal difference
value target

$$
\gamma = 0.9
$$
\n
$$
\begin{bmatrix}\n0 & 1 & 2 \\
0 & 2 & 3\n\end{bmatrix}
$$
\n
$$
\begin{bmatrix}\n5 & 3 & 3 \\
4 & 6 & 7\n\end{bmatrix}
$$

$$
R(s,a) = \left\{\n \begin{array}{c}\n \vdots \\
 \vdots \\
 \vdots \\
 \vdots\n \end{array}\n \right.
$$

 $\sqrt{-2}$ if entering state 0 (safety) 3 if entering state 5 (field goal) 7 if entering state 6 (touch down) 0 otherwise

Poll Question 1:

Which set of blue arrows (roughly) corresponds to $Q^*(s, a)$?

Poll Question 1:

Which set of blue arrows (roughly) corresponds to $Q^*(s, a)$?

Learning $Q^*(s, a)$: **Convergence** For Algorithms 1 & 2 (deterministic transitions), Q converges to Q^* if

- 1. Every valid state-action pair is visited infinitely often
	- Q-learning is exploration-insensitive: any visitation strategy that satisfies this property will work!
- 2. $0 \leq \gamma < 1$
- 3. $\exists \beta$ s.t. $|R(s, a)| < \beta \forall s \in \mathcal{S}, a \in \mathcal{A}$
- 4. Initial Q values are finite

Learning $Q^*(s, a)$: **Convergence** • For Algorithm 3 (temporal difference learning), Q converges to Q^* if

- 1. Every valid state-action pair is visited infinitely often
	- Q-learning is exploration-insensitive: any visitation strategy that satisfies this property will work!
- 2. $0 \leq \gamma < 1$
- 3. $\exists \beta$ s.t. $|R(s, a)| < \beta \forall s \in \mathcal{S}, a \in \mathcal{A}$
- 4. Initial Q values are finite
- 5. Learning rate α_t follows some "schedule" s.t.

 $\sum_{t=0}^{\infty}\alpha_t = \infty$ and $\sum_{t=0}^{\infty}\alpha_t^2 < \infty$ e.g., $\alpha_t = \frac{1}{n}$ $t+1$

Two big Q's

- 1. What can we do if the reward and/or transition functions/distributions are unknown?
	- A: Use online learning to gather data and learn $Q^*(s, a)$
- 2. How can we handle infinite (or just very large) state/action spaces?

AlphaGo (Black) vs. Lee Sedol (White) Game 2 final position (AlphaGo wins)

Playing Go

- 19-by-19 board
- Players alternate placing black and white stones
- The goal is claim more territory than the opponent

Poll Question 2: Which is the best approximation to the number of legal board states in Go?

- A. 42 **(TOXIC)**
- B. The number of stars in the universe ~ 10^{24}
- C. The number of atoms in the universe ~ 1080
- \overline{D} . A googol = 10^{100}
- E. The number of possible *games* of chess ∼ 10¹²⁰
- F. A googolplex $= 10^{g \text{o o gol}}$

AlphaGo (Black) vs. Lee Sedol (White) Game 2 final position (AlphaGo wins)

Playing Go

- 19-by-19 board
- Players alternate placing black and white stones
- The goal is claim more territory than the opponent
- \cdot There are $^{\sim}10^{170}$ legal Go board states!

Two big Q's

- 1. What can we do if the reward and/or transition functions/distributions are unknown?
	- A: Use online learning to gather data and learn $Q^*(s, a)$
- 2. How can we handle infinite (or just very large) state/action spaces?
	- A: Throw a neural network at it!

Deep Q-learning

- Use a parametric function, $Q(s, a; \Theta)$, to approximate $Q^*(s, a)$
	- Learn the parameters using SGD
	- Training data (s_t, a_t, r_t, s_{t+1}) gathered online by the agent/learning algorithm

Deep Q-learning: Model

- Represent states using some feature vector $s_t \in \mathbb{R}^M$ e.g. for Go, $\bm{s}_{t}=[1, 0, -1, ..., 1]^{T}$
- Define a neural network

Deep Q-learning: Loss Function • "True" loss $\ell(\Theta) = \sum_{n=1}^{\infty} \binom{Q^*(s, a) - Q(s, a; \Theta)}{n}$ $s \in \mathcal{S}$ $a \in \mathcal{A}$ 2 1. S too big to compute this sum 2. Don't know Q^*

-
- 1. Use stochastic gradient descent: just consider one state-action pair in each iteration
- 2. Use temporal difference learning:
	- Given current parameters $\Theta^{(t)}$ the temporal difference target is

 $Q^*(s, a) \approx r + \gamma$ max $\overline{a'}$ $Q(s', a'; \Theta^{(t)}) \coloneqq y$

• Set the parameters in the next iteration $\Theta^{(t+1)}$ such that $Q\big(s,a;\Theta^{(t+1)}\big)\approx y$ $\ell(\Theta^{(t)}, \Theta) = (y - Q(s, a; \Theta))$ 2

Deep Q-learning

Algorithm 4: Online learning (parametric form)

 \cdot Inputs: discount factor γ , an initial state s_0 , learning rate α • Initialize parameters $\Theta^{(0)}$

• For $t = 0, 1, 2, ...$

- Gather training sample (s_t, a_t, r_t, s_{t+1})
- Update $\Theta^{(t)}$ by taking a step opposite the gradient

$$
\Theta^{(t+1)} \leftarrow \Theta^{(t)} - \alpha \nabla_{\Theta} \ell(\Theta^{(t)}, \Theta)
$$

where

$$
\nabla_{\Theta} \ell(\Theta^{(t)}, \Theta) = 2(y - Q(s, a; \Theta)) \nabla_{\Theta} Q(s, a; \Theta)
$$

Deep Q-learning: **Experience** Replay

• SGD assumes iid training samples but in RL, samples are *highly* correlated

• Idea: maintain a "replay buffer" $\mathcal{D} = \{e_1, e_2, ..., e_N\}$ of the N most recent experiences $e_t = (\mathbf{s}_t, \mathbf{a}_t, r_t, \mathbf{s}_{t+1})$ (Lin, 1992)

- Keeps the agent from "forgetting" recent experiences
- \cdot In each iteration, we:
	- 1. Sample some experience e_i (or a mini-batch of experiences $E = \{e_1, ..., e_T\}$) uniformly at random from D and apply the Q-learning update
	- 2. Add a new experience to D
- \cdot Can also sample experiences from $\mathcal D$ according to some distribution that prioritizes experiences with high error $11/13/24$ (Schaul et al., 2016)

Q-learning and Deep RL **Learning Objectives**

You should be able to…

- Apply Q-Learning to a real-world environment
- Implement Q-learning
- Identify the conditions under which the Q-learning algorithm will converge to the true value function
- Adapt Q-learning to Deep Q-learning by employing a neural network approximation to the Q function
- Describe the connection between Deep Q-Learning and regression