
10-301/601: Introduction
to Machine Learning
Lecture 22: Q-learning
and Deep RL
Matt Gormley & Henry Chai

11/13/24

Front Matter

11/13/24 2

 Announcements

 HW7 released 11/7, due 11/17 at 11:59 PM

 Please be mindful of your grace day usage

(see the course syllabus for the policy)

 Exam 2 viewings happening this week on Tuesday,

Wednesday and Thursday, after our regularly

scheduled OH

 Please check the OH calendar for exact times

and locations

https://www.cs.cmu.edu/~hchai2/courses/10601/#Syllabus
https://www.cs.cmu.edu/~mgormley/courses/10601/officehours.html

Q: How can I
get one of
those sweet
hoodies you’re
wearing?

A: Apply to be
a TA for this
course next
semester!

 Applications are due by

Wednesday, November

20th (1 week from today)

 For more information

and the application, see

https://www.ml.cmu.edu

/academics/ta.html

11/13/24 3

MY TA
https://www.ml.cmu.edu/academics/ta.html

https://www.ml.cmu.edu/academics/ta.html
https://www.ml.cmu.edu/academics/ta.html

Recall:
Synchronous vs.
Asynchronous
Value Iteration

11/13/24 4

 Theorem 1: Value function convergence

𝑉 will converge to 𝑉∗ if each state is “visited”

infinitely often (Bertsekas, 1989)

 Theorem 2: Convergence criterion

if max
𝑠 ∈ 𝒮

𝑉 𝑡+1 𝑠 − 𝑉 𝑡 𝑠 < 𝜖,

then max
𝑠 ∈ 𝒮

𝑉 𝑡+1 𝑠 − 𝑉∗ 𝑠 <
2𝜖𝛾

1−𝛾
(Williams & Baird, 1993)

 Theorem 3: Policy convergence

The “greedy” policy, 𝜋 𝑠 = argmax
𝑎 ∈𝒜

𝑄 𝑠, 𝑎 , converges to the

optimal 𝜋∗ in a finite number of iterations, often before

the value function has converged! (Bertsekas, 1987)

11/13/24 5

Recall:

Value Iteration
Theory

 Theorem 1: Value function convergence

𝑉 will converge to 𝑉∗ if each state is “visited”

infinitely often (Bertsekas, 1989)

 Theorem 2: Convergence criterion

if max
𝑠 ∈ 𝒮

𝑉 𝑡+1 𝑠 − 𝑉 𝑡 𝑠 < 𝜖,

then max
𝑠 ∈ 𝒮

𝑉 𝑡+1 𝑠 − 𝑉∗ 𝑠 <
2𝜖𝛾

1−𝛾
(Williams & Baird, 1993)

 Theorem 3: Policy convergence

The “greedy” policy, 𝜋 𝑠 = argmax
𝑎 ∈𝒜

𝑄 𝑠, 𝑎 , converges to the

optimal 𝜋∗ in a finite number of iterations, often before

the value function has converged! (Bertsekas, 1987)

11/13/24 6

Q: What
happens when
the rewards
are stochastic?

A: Not much!

Stochastic
Rewards

 Insight: one way of representing stochastic rewards is

with deterministic rewards that depend on the next state,

𝑠𝑡+1, assuming transitions are stochastic

11/13/24 7

Stochastic
Rewards

 Insight: one way of representing stochastic rewards is

with deterministic rewards that depend on the next state,

𝑠𝑡+1, assuming transitions are stochastic

11/13/24 8

Stochastic
Rewards

 Insight: one way of representing stochastic rewards is

with deterministic rewards that depend on the next state,

𝑠𝑡+1, assuming transitions are stochastic

11/13/24 9

Q: If the thing
we care about
learning is the
policy, why
don’t we just
learn that
directly?

A: Great idea!

 Insight: one way of representing stochastic rewards is

with deterministic rewards that depend on the next state,

𝑠𝑡+1, assuming transitions are stochastic

11/13/24 10

 Inputs: 𝑅 𝑠, 𝑎 , 𝑝(𝑠’ | 𝑠, 𝑎)

 Initialize 𝜋 randomly

 While not converged, do:

 Solve the Bellman equations defined by policy 𝜋

𝑉𝜋 𝑠 = 𝑅 𝑠, 𝜋 𝑠 + 𝛾

𝑠′∈ 𝒮

𝑝 𝑠′ | 𝑠, 𝜋 𝑠 𝑉𝜋 𝑠′

 Update 𝜋

− 𝜋 𝑠 ← argmax
𝑎 ∈𝒜

𝑅 𝑠, 𝑎 + 𝛾

𝑠′∈ 𝒮

𝑝 𝑠′ | 𝑠, 𝑎 𝑉𝜋 𝑠′

 Return 𝜋

Policy Iteration

11/13/24 11

 In policy iteration, the policy improves in each iteration.

 Given finite state and action spaces, there are finitely

many possible policies

 Thus, the number of iterations needed to converge is

bounded!

 Value iteration takes 𝑂 𝒮 2 𝒜 time / iteration

 Policy iteration takes 𝑂 𝒮 2 𝒜 + 𝒮 3 time / iteration

 However, empirically policy iteration requires fewer

iterations to converge

12

Policy Iteration
Theory

11/13/24

MDP and
Value/Policy
Iteration
Learning
Objectives

You should be able to…

 Compare reinforcement learning to other learning paradigms

 Cast a real-world problem as a Markov Decision Process

 Depict the exploration vs. exploitation tradeoff via MDP examples

 Explain how to solve a system of equations using fixed point iteration

 Define the Bellman Equations

 Show how to compute the optimal policy in terms of the optimal
value function

 Explain the relationship between a value function mapping states to
expected rewards and a value function mapping state-action pairs to
expected rewards

 Implement value iteration and policy iteration

 Contrast the computational complexity and empirical convergence of
value iteration vs. policy iteration

 Identify the conditions under which the value iteration algorithm will
converge to the true value function

 Describe properties of the policy iteration algorithm11/13/24 13

Two big Q’s
1. What can we do if the reward and/or transition

functions/distributions are unknown?

• Use online learning to gather data and learn 𝑄∗ 𝑠, 𝑎

2. How can we handle infinite (or just very large)

state/action spaces?

1411/13/24

(Asynchronous)
Value Iteration

1511/13/24

 Inputs: 𝑅 𝑠, 𝑎 , 𝑝(𝑠’ | 𝑠, 𝑎), 𝛾

 Initialize 𝑉 0 𝑠 = 0 ∀ 𝑠 ∈ 𝒮 (or randomly) and set 𝑡 = 0

 While not converged, do:

 For 𝑠 ∈ 𝒮

𝑉 𝑠 ← max
𝑎 ∈𝒜

𝑅 𝑠, 𝑎 + 𝛾

𝑠′∈ 𝒮

𝑝 𝑠′ | 𝑠, 𝑎 𝑉 𝑠′

 For 𝑠 ∈ 𝒮

𝜋∗ 𝑠 ← argmax
𝑎 ∈𝒜

𝑅 𝑠, 𝑎 + 𝛾

𝑠′∈ 𝒮

𝑝 𝑠′ | 𝑠, 𝑎 𝑉 𝑠′

 Return 𝜋∗

 Inputs: 𝑅 𝑠, 𝑎 , 𝑝(𝑠’ | 𝑠, 𝑎), 𝛾

 Initialize 𝑉 0 𝑠 = 0 ∀ 𝑠 ∈ 𝒮 (or randomly) and set 𝑡 = 0

 While not converged, do:

 For 𝑠 ∈ 𝒮

 For 𝑎 ∈ 𝒜

𝑄 𝑠, 𝑎 = 𝑅 𝑠, 𝑎 + 𝛾

𝑠′∈ 𝒮

𝑝 𝑠′ | 𝑠, 𝑎 𝑉 𝑠′

 𝑉 𝑠 ← max
𝑎 ∈𝒜

𝑄 𝑠, 𝑎

 For 𝑠 ∈ 𝒮

𝜋∗ 𝑠 ← argmax
𝑎 ∈𝒜

𝑅 𝑠, 𝑎 + 𝛾

𝑠′∈ 𝒮

𝑝 𝑠′ | 𝑠, 𝑎 𝑉 𝑠′

 Return 𝜋∗

(Asynchronous)
Value Iteration
Revisited

1611/13/24

𝑄∗(𝑠, 𝑎)w/
deterministic
rewards

 𝑄∗ 𝑠, 𝑎 = 𝔼[total discounted reward of taking action 𝑎 in
state 𝑠, assuming all future actions are optimal]

𝑄∗ 𝑠, 𝑎 = 𝑅 𝑠, 𝑎 + 𝛾

𝑠′∈ 𝒮

𝑝 𝑠′ | 𝑠, 𝑎 𝑉∗ 𝑠′

𝑉∗ 𝑠′ = max
𝑎′ ∈𝒜

𝑄∗ 𝑠′, 𝑎′

𝑄∗ 𝑠, 𝑎 = 𝑅 𝑠, 𝑎 + 𝛾

𝑠′∈ 𝒮

𝑝 𝑠′ | 𝑠, 𝑎 max
𝑎′ ∈𝒜

𝑄∗ 𝑠′, 𝑎′

𝜋∗ 𝑠 = argmax
𝑎 ∈𝒜

𝑄∗ 𝑠, 𝑎

 Insight: if we know 𝑄∗, we can compute an optimal policy 𝜋∗!

1711/13/24

𝑄∗(𝑠, 𝑎)w/
deterministic
rewards and
transitions

1811/13/24

 𝑄∗ 𝑠, 𝑎 = 𝔼[total discounted reward of taking action 𝑎 in
state 𝑠, assuming all future actions are optimal]

𝑄∗ 𝑠, 𝑎 = 𝑅 𝑠, 𝑎 + 𝛾𝑉∗ 𝛿 𝑠, 𝑎

 𝑉∗ 𝛿 𝑠, 𝑎 = max
𝑎′ ∈𝒜

𝑄∗ 𝛿 𝑠, 𝑎 , 𝑎′

𝑄∗ 𝑠, 𝑎 = 𝑅 𝑠, 𝑎 + 𝛾 max
𝑎′ ∈𝒜

𝑄∗ 𝛿 𝑠, 𝑎 , 𝑎′

𝜋∗ 𝑠 = argmax
𝑎 ∈𝒜

𝑄∗ 𝑠, 𝑎

 Insight: if we know 𝑄∗, we can compute an optimal policy 𝜋∗!

Learning
𝑄∗(𝑠, 𝑎)w/
deterministic
rewards and
transitions

Algorithm 1:
Online learning
(table form)

19

 Inputs: discount factor 𝛾, an initial state 𝑠

 Initialize 𝑄 𝑠, 𝑎 = 0 ∀ 𝑠 ∈ 𝒮, 𝑎 ∈ 𝒜 (𝑄 is a 𝒮 × 𝒜 array)

 While TRUE, do

 Take a random action 𝑎

 Receive reward 𝑟 = 𝑅 𝑠, 𝑎

 Update the state: 𝑠 ← 𝑠′ where 𝑠′ = 𝛿 𝑠, 𝑎

 Update 𝑄 𝑠, 𝑎 :

𝑄 𝑠, 𝑎 ← 𝑟 + 𝛾max
𝑎′

𝑄 𝑠′, 𝑎′

11/13/24

Learning
𝑄∗(𝑠, 𝑎)w/
deterministic
rewards and
transitions

Algorithm 2:
𝜖-greedy online
learning (table
form)

20

 Inputs: discount factor 𝛾, an initial state 𝑠,

greediness parameter 𝜖 ∈ 0, 1

 Initialize 𝑄 𝑠, 𝑎 = 0 ∀ 𝑠 ∈ 𝒮, 𝑎 ∈ 𝒜 (𝑄 is a 𝒮 × 𝒜 array)

 While TRUE, do

 With probability 𝜖, take the greedy action

𝑎 = argmax
𝑎′ ∈𝒜

𝑄 𝑠, 𝑎′

Otherwise, with probability 1 − 𝜖, take a random action 𝑎

 Receive reward 𝑟 = 𝑅 𝑠, 𝑎

 Update the state: 𝑠 ← 𝑠′ where 𝑠′ = 𝛿 𝑠, 𝑎

 Update 𝑄 𝑠, 𝑎 :

𝑄 𝑠, 𝑎 ← 𝑟 + 𝛾max
𝑎′

𝑄 𝑠′, 𝑎′

11/13/24

21

 Inputs: discount factor 𝛾, an initial state 𝑠,

greediness parameter 𝜖 ∈ 0, 1 ,

learning rate 𝛼 ∈ 0, 1 (“trust parameter”)

 Initialize 𝑄 𝑠, 𝑎 = 0 ∀ 𝑠 ∈ 𝒮, 𝑎 ∈ 𝒜 (𝑄 is a 𝒮 × 𝒜 array)

 While TRUE, do

 With probability 𝜖, take the greedy action

𝑎 = argmax
𝑎′ ∈𝒜

𝑄 𝑠, 𝑎′

Otherwise, with probability 1 − 𝜖, take a random action 𝑎

 Receive reward 𝑟 = 𝑅 𝑠, 𝑎

 Update the state: 𝑠 ← 𝑠′ where 𝑠′ ∼ 𝑝 𝑠′ 𝑠, 𝑎

 Update 𝑄 𝑠, 𝑎 :

𝑄 𝑠, 𝑎 ← 1 − 𝛼 𝑄 𝑠, 𝑎 + 𝛼 𝑟 + 𝛾max
𝑎′

𝑄 𝑠′, 𝑎′

Current
value

Update w/
deterministic transitions

Learning
𝑄∗(𝑠, 𝑎)w/
deterministic
rewards

Algorithm 3:
𝜖-greedy online
learning (table
form)

11/13/24

22

 Inputs: discount factor 𝛾, an initial state 𝑠,

greediness parameter 𝜖 ∈ 0, 1 ,

learning rate 𝛼 ∈ 0, 1 (“trust parameter”)

 Initialize 𝑄 𝑠, 𝑎 = 0 ∀ 𝑠 ∈ 𝒮, 𝑎 ∈ 𝒜 (𝑄 is a 𝒮 × 𝒜 array)

 While TRUE, do

 With probability 𝜖, take the greedy action

𝑎 = argmax
𝑎′ ∈𝒜

𝑄 𝑠, 𝑎′

Otherwise, with probability 1 − 𝜖, take a random action 𝑎

 Receive reward 𝑟 = 𝑅 𝑠, 𝑎

 Update the state: 𝑠 ← 𝑠′ where 𝑠′ ∼ 𝑝 𝑠′ 𝑠, 𝑎

 Update 𝑄 𝑠, 𝑎 :

𝑄 𝑠, 𝑎 ← 𝑄 𝑠, 𝑎 + 𝛼 𝑟 + 𝛾max
𝑎′

𝑄 𝑠′, 𝑎′ − 𝑄 𝑠, 𝑎

Learning
𝑄∗(𝑠, 𝑎)w/
deterministic
rewards

Algorithm 3:
𝜖-greedy online
learning (table
form)

Current
value

Temporal difference
target

Temporal
difference

11/13/24

23

7

3

−2
0

5

61 2 3 4

𝛾 = 0.9

Learning
𝑄∗(𝑠, 𝑎):
Example

11/13/24

𝑅 𝑠, 𝑎 =

−2 if entering state 0 safety

3 if entering state 5 field goal
7 if entering state 6 (touch down)
0 otherwise

24

0

5

61 2 3 40

0

0

0

0

0
7

3

-2

0

0 0

𝑅 𝑠, 𝑎 represented by

𝛾 = 0.9

Learning
𝑄∗(𝑠, 𝑎):
Example

11/13/24

0

5

61 2 3 40

0

0

0

0

0
7

3

-2

0

0 0

Poll Question 1:

Which set of
blue arrows
(roughly)
corresponds to
𝑄∗(𝑠, 𝑎)?

5

2 3 4

5.10

5.67

5.67

6.3

6.3
7

3

-2

0

0 0

5

2 3 44.59

5.10 5.67

5.67

6.3
7

3

-2

0

0 0

0 61

0 61

5.10

5.10

𝛾 = 0.9

11/13/24

A.

C.

D.

B. (TOXIC)

25

26

𝑄∗ 𝑠, 𝑎 = 𝑅 𝑠, 𝑎 + 𝛾𝑉∗ 𝛿 𝑠, 𝑎

5.10 5.67 6.3 7

5

2 3 4

5.10

5.67

5.67

6.3

6.3
7

3

-2

0

0 0

5.10 5.67 6.3 7

5

2 3 44.59

5.10 5.67

5.67

6.3
7

3

-2

0

0 0

61

61

5.10

5.10

𝑉∗ 𝑠 shown in green

11/13/24

Poll Question 1:

Which set of
blue arrows
(roughly)
corresponds to
𝑄∗(𝑠, 𝑎)?

27

6

𝑄(𝑠, 𝑎) → ← ↑ ↻

0 0 0 0 0

1 0 0 0 0

2 0 0 0 0

3 0 0 0 0

4 0 0 0 0

5 0 0 0 0

6 0 0 0 0

5

62 3 40

0

0

0

0

0
7

3

-2

0

0 0
0 1

Learning
𝑄∗(𝑠, 𝑎):
Example

𝑅 𝑠, 𝑎 represented by

𝛾 = 0.9

11/13/24

28

6

𝑄(𝑠, 𝑎) → ← ↑ ↻

0 0 0 0 0

1 0 0 0 0

2 0 0 0 0

3 0 0 0 0

4 0 0 0 0

5 0 0 0 0

6 0 0 0 0

5

62 3 40

0

0

0

0

0
7

3

-2

0

0 0
0 1

𝑄 3,→ ← 0 + 0.9 max
𝑎′∈ →,←,↑,↻

𝑄 4, 𝑎′ = 0
Learning
𝑄∗(𝑠, 𝑎):
Example

𝑅 𝑠, 𝑎 represented by

𝛾 = 0.9

11/13/24

29

6

5

62 3 40

0

0

0

0

0
7

3

-2

0

0 0
0 1

𝑄(𝑠, 𝑎) → ← ↑ ↻

0 0 0 0 0

1 0 0 0 0

2 0 0 0 0

3 0 0 0 0

4 0 0 0 0

5 0 0 0 0

6 0 0 0 0

Learning
𝑄∗(𝑠, 𝑎):
Example

𝑅 𝑠, 𝑎 represented by

𝛾 = 0.9

11/13/24

30

6

5

62 3 40

0

0

0

0

0
7

3

-2

0

0 0
0 1

𝑄(𝑠, 𝑎) → ← ↑ ↻

0 0 0 0 0

1 0 0 0 0

2 0 0 0 0

3 0 0 0 0

4 0 0 0 0

5 0 0 0 0

6 0 0 0 0

𝑄 4, ↑ ← 3 + 0.9 max
𝑎′∈ →,←,↑,↻

𝑄 5, 𝑎′ = 3
Learning
𝑄∗(𝑠, 𝑎):
Example

𝑅 𝑠, 𝑎 represented by

𝛾 = 0.9

11/13/24

31

6

𝑄(𝑠, 𝑎) → ← ↑ ↻

0 0 0 0 0

1 0 0 0 0

2 0 0 0 0

3 0 0 0 0

4 0 0 3 0

5 0 0 0 0

6 0 0 0 0

5

62 3 40

0

0

0

0

0
7

3

-2

0

0 0
0 1

𝑄 3,→ ← 0 + 0.9 max
𝑎′∈ →,←,↑,↻

𝑄 4, 𝑎′ = 2.7
Learning
𝑄∗(𝑠, 𝑎):
Example

𝑅 𝑠, 𝑎 represented by

𝛾 = 0.9

11/13/24

32

6

5

62 3 40

0

0

0

0

0
7

3

-2

0

0 0
0 1

𝑄(𝑠, 𝑎) → ← ↑ ↻

0 0 0 0 0

1 0 0 0 0

2 0 0 0 0

3 2.7 0 0 0

4 0 0 3 0

5 0 0 0 0

6 0 0 0 0

𝑄 3,→ ← 0 + 0.9 max
𝑎′∈ →,←,↑,↻

𝑄 4, 𝑎′ = 2.7
Learning
𝑄∗(𝑠, 𝑎):
Example

𝑅 𝑠, 𝑎 represented by

𝛾 = 0.9

11/13/24

Learning
𝑄∗(𝑠, 𝑎):
Convergence

33

 For Algorithms 1 & 2 (deterministic transitions),

𝑄 converges to 𝑄∗ if

1. Every valid state-action pair is visited infinitely often

 Q-learning is exploration-insensitive: any visitation

strategy that satisfies this property will work!

2. 0 ≤ 𝛾 < 1

3. ∃ 𝛽 s.t. 𝑅 𝑠, 𝑎 < 𝛽 ∀ 𝑠 ∈ 𝒮, 𝑎 ∈ 𝒜

4. Initial 𝑄 values are finite

11/13/24

Learning
𝑄∗(𝑠, 𝑎):
Convergence

34

 For Algorithm 3 (temporal difference learning),

𝑄 converges to 𝑄∗ if

1. Every valid state-action pair is visited infinitely often

 Q-learning is exploration-insensitive: any visitation

strategy that satisfies this property will work!

2. 0 ≤ 𝛾 < 1

3. ∃ 𝛽 s.t. 𝑅 𝑠, 𝑎 < 𝛽 ∀ 𝑠 ∈ 𝒮, 𝑎 ∈ 𝒜

4. Initial 𝑄 values are finite

5. Learning rate 𝛼𝑡 follows some “schedule” s.t.

σ𝑡=0
∞ 𝛼𝑡 = ∞ and σ𝑡=0

∞ 𝛼𝑡
2 < ∞ e.g., 𝛼𝑡 = Τ1 𝑡+1

11/13/24

Two big Q’s

3511/13/24

1. What can we do if the reward and/or transition

functions/distributions are unknown?

• A: Use online learning to gather data and learn 𝑄∗ 𝑠, 𝑎

2. How can we handle infinite (or just very large)

state/action spaces?

Playing Go

36

AlphaGo (Black) vs. Lee Sedol (White)
Game 2 final position (AlphaGo wins)

Source: https://en.wikipedia.org/wiki/AlphaGo_versus_Lee_Sedol
11/13/24

 19-by-19 board

 Players alternate
placing black and
white stones

 The goal is claim
more territory
than the opponent

37
Source: https://en.wikipedia.org/wiki/AlphaGo_versus_Lee_Sedol

11/13/24
Source: https://en.wikipedia.org/wiki/Go_and_mathematics

Poll Question 1: Which is the best
approximation to the number
of legal board states in Go?

A. 42 (TOXIC)

B. The number of stars in the
universe ∼ 1024

C. The number of atoms in the
universe ∼ 1080

D. A googol = 10100

E. The number of possible
games of chess ∼ 10120

F. A googolplex = 10googol

Playing Go

38

AlphaGo (Black) vs. Lee Sedol (White)
Game 2 final position (AlphaGo wins)

Source: https://en.wikipedia.org/wiki/AlphaGo_versus_Lee_Sedol
11/13/24

 19-by-19 board

 Players alternate
placing black and
white stones

 The goal is claim
more territory
than the opponent

 There are ~10170

legal Go board
states!

Source: https://en.wikipedia.org/wiki/Go_and_mathematics

Two big Q’s

3911/13/24

1. What can we do if the reward and/or transition

functions/distributions are unknown?

• A: Use online learning to gather data and learn 𝑄∗ 𝑠, 𝑎

2. How can we handle infinite (or just very large)

state/action spaces?

• A: Throw a neural network at it!

Deep
Q-learning

 Use a parametric function, 𝑄 𝑠, 𝑎; Θ , to approximate

𝑄∗ 𝑠, 𝑎

 Learn the parameters using SGD

 Training data 𝒔𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝒔𝑡+1 gathered online by

the agent/learning algorithm

4011/13/24

 Represent states using some feature vector 𝒔𝑡 ∈ ℝ𝑀

e.g. for Go, 𝒔𝑡 = 1, 0, −1,… , 1 𝑇

 Define a neural network

Deep
Q-learning:
Model

41

𝒔𝑡

𝑎𝑡

Θ 𝑄 𝒔𝑡, 𝑎𝑡; Θ

𝒔𝑡 Θ

𝑄 𝒔𝑡, 𝑎1; Θ

𝑄 𝒔𝑡, 𝑎2; Θ

𝑄 𝒔𝑡 , 𝑎 𝒜 ; Θ

⋮

Model 1:

Model 2:

11/13/24

 “True” loss

ℓ Θ =

𝑠 ∈ 𝒮

𝑎 ∈𝒜

𝑄∗ 𝑠, 𝑎 − 𝑄 𝑠, 𝑎; Θ
2

1. Use stochastic gradient descent: just consider one
state-action pair in each iteration

2. Use temporal difference learning:

 Given current parameters Θ t the temporal
difference target is

𝑄∗ 𝑠, 𝑎 ≈ 𝑟 + 𝛾max
𝑎′

𝑄 𝑠′, 𝑎′; Θ 𝑡 ≔ 𝑦

 Set the parameters in the next iteration Θ 𝑡+1 such

that 𝑄 𝑠, 𝑎; Θ 𝑡+1 ≈ 𝑦

ℓ Θ 𝑡 , Θ = 𝑦 − 𝑄 𝑠, 𝑎; Θ
2

1. 𝒮 too big to compute this sum

Deep
Q-learning:
Loss Function

42

2. Don’t know 𝑄∗

11/13/24

Deep
Q-learning

Algorithm 4:
Online learning
(parametric
form)

43

 Inputs: discount factor 𝛾, an initial state 𝑠0,

learning rate 𝛼

 Initialize parameters Θ 0

 For 𝑡 = 0, 1, 2, …

 Gather training sample 𝒔𝑡 , 𝒂𝑡 , 𝑟𝑡 , 𝒔𝑡+1

 Update Θ 𝑡 by taking a step opposite the gradient

Θ 𝑡+1 ← Θ 𝑡 − 𝛼∇Θℓ Θ 𝑡 , Θ

where

∇Θℓ Θ 𝑡 , Θ = 2 𝑦 − 𝑄 𝑠, 𝑎; Θ ∇Θ𝑄 𝑠, 𝑎; Θ

11/13/24

Deep
Q-learning:
Experience
Replay

44

 SGD assumes iid training samples but in RL, samples are

highly correlated

 Idea: maintain a “replay buffer” 𝒟 = {𝑒1, 𝑒2, … , 𝑒𝑁} of the

𝑁 most recent experiences 𝑒𝑡 = 𝒔𝑡, 𝒂𝑡 , 𝑟𝑡 , 𝒔𝑡+1 (Lin, 1992)

 Keeps the agent from “forgetting” recent experiences

 In each iteration, we:

1. Sample some experience 𝑒𝑖 (or a mini-batch of

experiences 𝐸 = 𝑒1, … , 𝑒𝑇) uniformly at random

from 𝒟 and apply the Q-learning update

2. Add a new experience to 𝒟

 Can also sample experiences from 𝒟 according to some

distribution that prioritizes experiences with high error

(Schaul et al., 2016)
11/13/24

Q-learning and
Deep RL
Learning
Objectives

You should be able to…

 Apply Q-Learning to a real-world environment

 Implement Q-learning

 Identify the conditions under which the Q-learning
algorithm will converge to the true value function

 Adapt Q-learning to Deep Q-learning by employing a neural
network approximation to the Q function

 Describe the connection between Deep Q-Learning and
regression

11/13/24 45

