
10-301/601: Introduction
to Machine Learning
Lecture 22: Q-learning
and Deep RL
Matt Gormley & Henry Chai

11/13/24

Front Matter

11/13/24 2

 Announcements

 HW7 released 11/7, due 11/17 at 11:59 PM

 Please be mindful of your grace day usage

(see the course syllabus for the policy)

 Exam 2 viewings happening this week on Tuesday,

Wednesday and Thursday, after our regularly

scheduled OH

 Please check the OH calendar for exact times

and locations

https://www.cs.cmu.edu/~hchai2/courses/10601/#Syllabus
https://www.cs.cmu.edu/~mgormley/courses/10601/officehours.html

Recall:
Synchronous vs.
Asynchronous
Value Iteration

11/13/24 3

 Theorem 1: Value function convergence

𝑉 will converge to 𝑉∗ if each state is “visited”

infinitely often (Bertsekas, 1989)

 Theorem 2: Convergence criterion

if max
𝑠 ∈ 𝒮

𝑉 𝑡+1 𝑠 − 𝑉 𝑡 𝑠 < 𝜖,

then max
𝑠 ∈ 𝒮

𝑉 𝑡+1 𝑠 − 𝑉∗ 𝑠 <
2𝜖𝛾

1−𝛾
(Williams & Baird, 1993)

 Theorem 3: Policy convergence

The “greedy” policy, 𝜋 𝑠 = argmax
𝑎 ∈𝒜

𝑄 𝑠, 𝑎 , converges to the

optimal 𝜋∗ in a finite number of iterations, often before

the value function has converged! (Bertsekas, 1987)

11/13/24 4

Recall:

Value Iteration
Theory

 Theorem 1: Value function convergence

𝑉 will converge to 𝑉∗ if each state is “visited”

infinitely often (Bertsekas, 1989)

 Theorem 2: Convergence criterion

if max
𝑠 ∈ 𝒮

𝑉 𝑡+1 𝑠 − 𝑉 𝑡 𝑠 < 𝜖,

then max
𝑠 ∈ 𝒮

𝑉 𝑡+1 𝑠 − 𝑉∗ 𝑠 <
2𝜖𝛾

1−𝛾
(Williams & Baird, 1993)

 Theorem 3: Policy convergence

The “greedy” policy, 𝜋 𝑠 = argmax
𝑎 ∈𝒜

𝑄 𝑠, 𝑎 , converges to the

optimal 𝜋∗ in a finite number of iterations, often before

the value function has converged! (Bertsekas, 1987)

11/13/24 5

Q: What
happens when
the rewards
are stochastic?

A: Not much!

Stochastic
Rewards

 Insight: one way of representing stochastic rewards is

with deterministic rewards that depend on the next state,

𝑠𝑡+1, assuming transitions are stochastic

11/13/24 6

Stochastic
Rewards

 Insight: one way of representing stochastic rewards is

with deterministic rewards that depend on the next state,

𝑠𝑡+1, assuming transitions are stochastic

11/13/24 7

Stochastic
Rewards

 Insight: one way of representing stochastic rewards is

with deterministic rewards that depend on the next state,

𝑠𝑡+1, assuming transitions are stochastic

11/13/24 8

Q: If the thing
we care about
learning is the
policy, why
don’t we just
learn that
directly?

A: Great idea!

 Insight: one way of representing stochastic rewards is

with deterministic rewards that depend on the next state,

𝑠𝑡+1, assuming transitions are stochastic

11/13/24 9

 Inputs: 𝑅 𝑠, 𝑎 , 𝑝(𝑠’ | 𝑠, 𝑎)

 Initialize 𝜋 randomly

 While not converged, do:

 Solve the Bellman equations defined by policy 𝜋

𝑉𝜋 𝑠 = 𝑅 𝑠, 𝜋 𝑠 + 𝛾 ෍

𝑠′∈ 𝒮

𝑝 𝑠′ | 𝑠, 𝜋 𝑠 𝑉𝜋 𝑠′

 Update 𝜋

− 𝜋 𝑠 ← argmax
𝑎 ∈𝒜

𝑅 𝑠, 𝑎 + 𝛾 ෍

𝑠′∈ 𝒮

𝑝 𝑠′ | 𝑠, 𝑎 𝑉𝜋 𝑠′

 Return 𝜋

Policy Iteration

11/13/24 10

 In policy iteration, the policy improves in each iteration.

 Given finite state and action spaces, there are finitely

many possible policies

 Thus, the number of iterations needed to converge is

bounded!

 Value iteration takes 𝑂 𝒮 2 𝒜 time / iteration

 Policy iteration takes 𝑂 𝒮 2 𝒜 + 𝒮 3 time / iteration

 However, empirically policy iteration requires fewer

iterations to converge

11

Policy Iteration
Theory

11/13/24

MDP and
Value/Policy
Iteration
Learning
Objectives

You should be able to…

 Compare reinforcement learning to other learning paradigms

 Cast a real-world problem as a Markov Decision Process

 Depict the exploration vs. exploitation tradeoff via MDP examples

 Explain how to solve a system of equations using fixed point iteration

 Define the Bellman Equations

 Show how to compute the optimal policy in terms of the optimal
value function

 Explain the relationship between a value function mapping states to
expected rewards and a value function mapping state-action pairs to
expected rewards

 Implement value iteration and policy iteration

 Contrast the computational complexity and empirical convergence of
value iteration vs. policy iteration

 Identify the conditions under which the value iteration algorithm will
converge to the true value function

 Describe properties of the policy iteration algorithm11/13/24 12

Two big Q’s
1. What can we do if the reward and/or transition

functions/distributions are unknown?

• Use online learning to gather data and learn 𝑄∗ 𝑠, 𝑎

2. How can we handle infinite (or just very large)

state/action spaces?

1311/13/24

(Asynchronous)
Value Iteration

1411/13/24

 Inputs: 𝑅 𝑠, 𝑎 , 𝑝(𝑠’ | 𝑠, 𝑎), 𝛾

 Initialize 𝑉 0 𝑠 = 0 ∀ 𝑠 ∈ 𝒮 (or randomly) and set 𝑡 = 0

 While not converged, do:

 For 𝑠 ∈ 𝒮

𝑉 𝑠 ← max
𝑎 ∈𝒜

𝑅 𝑠, 𝑎 + 𝛾 ෍

𝑠′∈ 𝒮

𝑝 𝑠′ | 𝑠, 𝑎 𝑉 𝑠′

 For 𝑠 ∈ 𝒮

𝜋∗ 𝑠 ← argmax
𝑎 ∈𝒜

𝑅 𝑠, 𝑎 + 𝛾 ෍

𝑠′∈ 𝒮

𝑝 𝑠′ | 𝑠, 𝑎 𝑉 𝑠′

 Return 𝜋∗

 Inputs: 𝑅 𝑠, 𝑎 , 𝑝(𝑠’ | 𝑠, 𝑎), 𝛾

 Initialize 𝑉 0 𝑠 = 0 ∀ 𝑠 ∈ 𝒮 (or randomly) and set 𝑡 = 0

 While not converged, do:

 For 𝑠 ∈ 𝒮

 For 𝑎 ∈ 𝒜

𝑄 𝑠, 𝑎 = 𝑅 𝑠, 𝑎 + 𝛾 ෍

𝑠′∈ 𝒮

𝑝 𝑠′ | 𝑠, 𝑎 𝑉 𝑠′

 𝑉 𝑠 ← max
𝑎 ∈𝒜

𝑄 𝑠, 𝑎

 For 𝑠 ∈ 𝒮

𝜋∗ 𝑠 ← argmax
𝑎 ∈𝒜

𝑅 𝑠, 𝑎 + 𝛾 ෍

𝑠′∈ 𝒮

𝑝 𝑠′ | 𝑠, 𝑎 𝑉 𝑠′

 Return 𝜋∗

(Asynchronous)
Value Iteration
Revisited

1511/13/24

𝑄∗(𝑠, 𝑎)w/
deterministic
rewards

 𝑄∗ 𝑠, 𝑎 = 𝔼[total discounted reward of taking action 𝑎 in
state 𝑠, assuming all future actions are optimal]

𝑄∗ 𝑠, 𝑎 = 𝑅 𝑠, 𝑎 + 𝛾 ෍

𝑠′∈ 𝒮

𝑝 𝑠′ | 𝑠, 𝑎 𝑉∗ 𝑠′

𝑉∗ 𝑠′ = max
𝑎′ ∈𝒜

𝑄∗ 𝑠′, 𝑎′

𝑄∗ 𝑠, 𝑎 = 𝑅 𝑠, 𝑎 + 𝛾 ෍

𝑠′∈ 𝒮

𝑝 𝑠′ | 𝑠, 𝑎 max
𝑎′ ∈𝒜

𝑄∗ 𝑠′, 𝑎′

𝜋∗ 𝑠 = argmax
𝑎 ∈𝒜

𝑄∗ 𝑠, 𝑎

 Insight: if we know 𝑄∗, we can compute an optimal policy 𝜋∗!

1611/13/24

𝑄∗(𝑠, 𝑎)w/
deterministic
rewards and
transitions

1711/13/24

 𝑄∗ 𝑠, 𝑎 = 𝔼[total discounted reward of taking action 𝑎 in
state 𝑠, assuming all future actions are optimal]

𝑄∗ 𝑠, 𝑎 = 𝑅 𝑠, 𝑎 + 𝛾𝑉∗ 𝛿 𝑠, 𝑎

 𝑉∗ 𝛿 𝑠, 𝑎 = max
𝑎′ ∈𝒜

𝑄∗ 𝛿 𝑠, 𝑎 , 𝑎′

𝑄∗ 𝑠, 𝑎 = 𝑅 𝑠, 𝑎 + 𝛾 max
𝑎′ ∈𝒜

𝑄∗ 𝛿 𝑠, 𝑎 , 𝑎′

𝜋∗ 𝑠 = argmax
𝑎 ∈𝒜

𝑄∗ 𝑠, 𝑎

 Insight: if we know 𝑄∗, we can compute an optimal policy 𝜋∗!

Learning
𝑄∗(𝑠, 𝑎)w/
deterministic
rewards and
transitions

Algorithm 1:
Online learning
(table form)

18

 Inputs: discount factor 𝛾, an initial state 𝑠

 Initialize 𝑄 𝑠, 𝑎 = 0 ∀ 𝑠 ∈ 𝒮, 𝑎 ∈ 𝒜 (𝑄 is a 𝒮 × 𝒜 array)

 While TRUE, do

 Take a random action 𝑎

 Receive reward 𝑟 = 𝑅 𝑠, 𝑎

 Update the state: 𝑠 ← 𝑠′ where 𝑠′ = 𝛿 𝑠, 𝑎

 Update 𝑄 𝑠, 𝑎 :

𝑄 𝑠, 𝑎 ← 𝑟 + 𝛾max
𝑎′

𝑄 𝑠′, 𝑎′

11/13/24

Learning
𝑄∗(𝑠, 𝑎)w/
deterministic
rewards and
transitions

Algorithm 2:
𝜖-greedy online
learning (table
form)

19

 Inputs: discount factor 𝛾, an initial state 𝑠,

greediness parameter 𝜖 ∈ 0, 1

 Initialize 𝑄 𝑠, 𝑎 = 0 ∀ 𝑠 ∈ 𝒮, 𝑎 ∈ 𝒜 (𝑄 is a 𝒮 × 𝒜 array)

 While TRUE, do

 With probability 𝜖, take the greedy action

𝑎 = argmax
𝑎′ ∈𝒜

𝑄 𝑠, 𝑎′

Otherwise, with probability 1 − 𝜖, take a random action 𝑎

 Receive reward 𝑟 = 𝑅 𝑠, 𝑎

 Update the state: 𝑠 ← 𝑠′ where 𝑠′ = 𝛿 𝑠, 𝑎

 Update 𝑄 𝑠, 𝑎 :

𝑄 𝑠, 𝑎 ← 𝑟 + 𝛾max
𝑎′

𝑄 𝑠′, 𝑎′

11/13/24

20

 Inputs: discount factor 𝛾, an initial state 𝑠,

greediness parameter 𝜖 ∈ 0, 1 ,

learning rate 𝛼 ∈ 0, 1 (“trust parameter”)

 Initialize 𝑄 𝑠, 𝑎 = 0 ∀ 𝑠 ∈ 𝒮, 𝑎 ∈ 𝒜 (𝑄 is a 𝒮 × 𝒜 array)

 While TRUE, do

 With probability 𝜖, take the greedy action

𝑎 = argmax
𝑎′ ∈𝒜

𝑄 𝑠, 𝑎′

Otherwise, with probability 1 − 𝜖, take a random action 𝑎

 Receive reward 𝑟 = 𝑅 𝑠, 𝑎

 Update the state: 𝑠 ← 𝑠′ where 𝑠′ ∼ 𝑝 𝑠′ 𝑠, 𝑎

 Update 𝑄 𝑠, 𝑎 :

𝑄 𝑠, 𝑎 ← 1 − 𝛼 𝑄 𝑠, 𝑎 + 𝛼 𝑟 + 𝛾max
𝑎′

𝑄 𝑠′, 𝑎′

Current
value

Update w/
deterministic transitions

Learning
𝑄∗(𝑠, 𝑎)w/
deterministic
rewards

Algorithm 3:
𝜖-greedy online
learning (table
form)

11/13/24

21

 Inputs: discount factor 𝛾, an initial state 𝑠,

greediness parameter 𝜖 ∈ 0, 1 ,

learning rate 𝛼 ∈ 0, 1 (“trust parameter”)

 Initialize 𝑄 𝑠, 𝑎 = 0 ∀ 𝑠 ∈ 𝒮, 𝑎 ∈ 𝒜 (𝑄 is a 𝒮 × 𝒜 array)

 While TRUE, do

 With probability 𝜖, take the greedy action

𝑎 = argmax
𝑎′ ∈𝒜

𝑄 𝑠, 𝑎′

Otherwise, with probability 1 − 𝜖, take a random action 𝑎

 Receive reward 𝑟 = 𝑅 𝑠, 𝑎

 Update the state: 𝑠 ← 𝑠′ where 𝑠′ ∼ 𝑝 𝑠′ 𝑠, 𝑎

 Update 𝑄 𝑠, 𝑎 :

𝑄 𝑠, 𝑎 ← 𝑄 𝑠, 𝑎 + 𝛼 𝑟 + 𝛾max
𝑎′

𝑄 𝑠′, 𝑎′ − 𝑄 𝑠, 𝑎

Learning
𝑄∗(𝑠, 𝑎)w/
deterministic
rewards

Algorithm 3:
𝜖-greedy online
learning (table
form)

Current
value

Temporal difference
target

Temporal
difference

11/13/24

22

7

3

−2
0

5

61 2 3 4

𝛾 = 0.9

Learning
𝑄∗(𝑠, 𝑎):
Example

11/13/24

𝑅 𝑠, 𝑎 =

−2 if entering state 0 safety

3 if entering state 5 field goal
7 if entering state 6 (touch down)
0 otherwise

23

0

5

61 2 3 40

0

0

0

0

0
7

3

-2

0

0 0

𝑅 𝑠, 𝑎 represented by

𝛾 = 0.9

Learning
𝑄∗(𝑠, 𝑎):
Example

11/13/24

0

5

61 2 3 40

0

0

0

0

0
7

3

-2

0

0 0

Poll Question 1:

Which set of
blue arrows
(roughly)
corresponds to
𝑄∗(𝑠, 𝑎)?

5

2 3 4

5.10

5.67

5.67

6.3

6.3
7

3

-2

0

0 0

5

2 3 44.59

5.10 5.67

5.67

6.3
7

3

-2

0

0 0

0 61

0 61

5.10

5.10

𝛾 = 0.9

11/13/24

A.

C.

D.

B. (TOXIC)

24

25

𝑄∗ 𝑠, 𝑎 = 𝑅 𝑠, 𝑎 + 𝛾𝑉∗ 𝛿 𝑠, 𝑎

5.10 5.67 6.3 7

5

2 3 4

5.10

5.67

5.67

6.3

6.3
7

3

-2

0

0 0

5.10 5.67 6.3 7

5

2 3 44.59

5.10 5.67

5.67

6.3
7

3

-2

0

0 0

61

61

5.10

5.10

𝑉∗ 𝑠 shown in green

11/13/24

Poll Question 1:

Which set of
blue arrows
(roughly)
corresponds to
𝑄∗(𝑠, 𝑎)?

26

6

𝑄(𝑠, 𝑎) → ← ↑ ↻

0 0 0 0 0

1 0 0 0 0

2 0 0 0 0

3 0 0 0 0

4 0 0 0 0

5 0 0 0 0

6 0 0 0 0

5

62 3 40

0

0

0

0

0
7

3

-2

0

0 0
0 1

Learning
𝑄∗(𝑠, 𝑎):
Example

𝑅 𝑠, 𝑎 represented by

𝛾 = 0.9

11/13/24

27

6

𝑄(𝑠, 𝑎) → ← ↑ ↻

0 0 0 0 0

1 0 0 0 0

2 0 0 0 0

3 0 0 0 0

4 0 0 0 0

5 0 0 0 0

6 0 0 0 0

5

62 3 40

0

0

0

0

0
7

3

-2

0

0 0
0 1

𝑄 3,→ ← 0 + 0.9 max
𝑎′∈ →,←,↑,↻

𝑄 4, 𝑎′ = 0
Learning
𝑄∗(𝑠, 𝑎):
Example

𝑅 𝑠, 𝑎 represented by

𝛾 = 0.9

11/13/24

28

6

5

62 3 40

0

0

0

0

0
7

3

-2

0

0 0
0 1

𝑄(𝑠, 𝑎) → ← ↑ ↻

0 0 0 0 0

1 0 0 0 0

2 0 0 0 0

3 0 0 0 0

4 0 0 0 0

5 0 0 0 0

6 0 0 0 0

Learning
𝑄∗(𝑠, 𝑎):
Example

𝑅 𝑠, 𝑎 represented by

𝛾 = 0.9

11/13/24

29

6

5

62 3 40

0

0

0

0

0
7

3

-2

0

0 0
0 1

𝑄(𝑠, 𝑎) → ← ↑ ↻

0 0 0 0 0

1 0 0 0 0

2 0 0 0 0

3 0 0 0 0

4 0 0 0 0

5 0 0 0 0

6 0 0 0 0

𝑄 4, ↑ ← 3 + 0.9 max
𝑎′∈ →,←,↑,↻

𝑄 5, 𝑎′ = 3
Learning
𝑄∗(𝑠, 𝑎):
Example

𝑅 𝑠, 𝑎 represented by

𝛾 = 0.9

11/13/24

30

6

𝑄(𝑠, 𝑎) → ← ↑ ↻

0 0 0 0 0

1 0 0 0 0

2 0 0 0 0

3 0 0 0 0

4 0 0 3 0

5 0 0 0 0

6 0 0 0 0

5

62 3 40

0

0

0

0

0
7

3

-2

0

0 0
0 1

𝑄 3,→ ← 0 + 0.9 max
𝑎′∈ →,←,↑,↻

𝑄 4, 𝑎′ = 2.7
Learning
𝑄∗(𝑠, 𝑎):
Example

𝑅 𝑠, 𝑎 represented by

𝛾 = 0.9

11/13/24

31

6

5

62 3 40

0

0

0

0

0
7

3

-2

0

0 0
0 1

𝑄(𝑠, 𝑎) → ← ↑ ↻

0 0 0 0 0

1 0 0 0 0

2 0 0 0 0

3 2.7 0 0 0

4 0 0 3 0

5 0 0 0 0

6 0 0 0 0

𝑄 3,→ ← 0 + 0.9 max
𝑎′∈ →,←,↑,↻

𝑄 4, 𝑎′ = 2.7
Learning
𝑄∗(𝑠, 𝑎):
Example

𝑅 𝑠, 𝑎 represented by

𝛾 = 0.9

11/13/24

Learning
𝑄∗(𝑠, 𝑎):
Convergence

32

 For Algorithms 1 & 2 (deterministic transitions),

𝑄 converges to 𝑄∗ if

1. Every valid state-action pair is visited infinitely often

 Q-learning is exploration-insensitive: any visitation

strategy that satisfies this property will work!

2. 0 ≤ 𝛾 < 1

3. ∃ 𝛽 s.t. 𝑅 𝑠, 𝑎 < 𝛽 ∀ 𝑠 ∈ 𝒮, 𝑎 ∈ 𝒜

4. Initial 𝑄 values are finite

11/13/24

Learning
𝑄∗(𝑠, 𝑎):
Convergence

33

 For Algorithm 3 (temporal difference learning),

𝑄 converges to 𝑄∗ if

1. Every valid state-action pair is visited infinitely often

 Q-learning is exploration-insensitive: any visitation

strategy that satisfies this property will work!

2. 0 ≤ 𝛾 < 1

3. ∃ 𝛽 s.t. 𝑅 𝑠, 𝑎 < 𝛽 ∀ 𝑠 ∈ 𝒮, 𝑎 ∈ 𝒜

4. Initial 𝑄 values are finite

5. Learning rate 𝛼𝑡 follows some “schedule” s.t.

σ𝑡=0
∞ 𝛼𝑡 = ∞ and σ𝑡=0

∞ 𝛼𝑡
2 < ∞ e.g., 𝛼𝑡 = Τ1 𝑡+1

11/13/24

Two big Q’s
1. What can we do if the reward and/or transition

functions/distributions are unknown?

• A: Use online learning to gather data and learn 𝑄∗ 𝑠, 𝑎

2. How can we handle infinite (or just very large)

state/action spaces?

3411/13/24

Playing Go

35

AlphaGo (Black) vs. Lee Sedol (White)
Game 2 final position (AlphaGo wins)

Source: https://en.wikipedia.org/wiki/AlphaGo_versus_Lee_Sedol
11/13/24

 19-by-19 board

 Players alternate
placing black and
white stones

 The goal is claim
more territory
than the opponent

36
Source: https://en.wikipedia.org/wiki/AlphaGo_versus_Lee_Sedol

11/13/24
Source: https://en.wikipedia.org/wiki/Go_and_mathematics

Poll Question 1: Which is the best
approximation to the number
of legal board states in Go?

A. 42 (TOXIC)

B. The number of stars in the
universe ∼ 1024

C. The number of atoms in the
universe ∼ 1080

D. A googol = 10100

E. The number of possible
games of chess ∼ 10120

F. A googolplex = 10googol

Playing Go

37

AlphaGo (Black) vs. Lee Sedol (White)
Game 2 final position (AlphaGo wins)

Source: https://en.wikipedia.org/wiki/AlphaGo_versus_Lee_Sedol
11/13/24

 19-by-19 board

 Players alternate
placing black and
white stones

 The goal is claim
more territory
than the opponent

 There are ~10170

legal Go board
states!

Source: https://en.wikipedia.org/wiki/Go_and_mathematics

Two big Q’s
1. What can we do if the reward and/or transition

functions/distributions are unknown?

• A: Use online learning to gather data and learn 𝑄∗ 𝑠, 𝑎

2. How can we handle infinite (or just very large)

state/action spaces?

• A: Throw a neural network at it!

3811/13/24

Deep
Q-learning

 Use a parametric function, 𝑄 𝑠, 𝑎; Θ , to approximate

𝑄∗ 𝑠, 𝑎

 Learn the parameters using SGD

 Training data 𝒔𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝒔𝑡+1 gathered online by

the agent/learning algorithm

3911/13/24

 Represent states using some feature vector 𝒔𝑡 ∈ ℝ𝑀

e.g. for Go, 𝒔𝑡 = 1, 0, −1,… , 1 𝑇

 Define a neural network

Deep
Q-learning:
Model

40

𝒔𝑡

𝑎𝑡

Θ 𝑄 𝒔𝑡, 𝑎𝑡; Θ

𝒔𝑡 Θ

𝑄 𝒔𝑡, 𝑎1; Θ

𝑄 𝒔𝑡, 𝑎2; Θ

𝑄 𝒔𝑡 , 𝑎 𝒜 ; Θ

⋮

Model 1:

Model 2:

11/13/24

Deep
Q-learning:
Loss Function

4111/13/24

 “True” loss

ℓ Θ = ෍

𝑠 ∈ 𝒮

෍

𝑎 ∈𝒜

𝑄∗ 𝑠, 𝑎 − 𝑄 𝑠, 𝑎; Θ
2

1. Use stochastic gradient descent: just consider one
state-action pair in each iteration

2. Use temporal difference learning:

 Given current parameters Θ t the temporal
difference target is

𝑄∗ 𝑠, 𝑎 ≈ 𝑟 + 𝛾max
𝑎′

𝑄 𝑠′, 𝑎′; Θ 𝑡 ≔ 𝑦

 Set the parameters in the next iteration Θ 𝑡+1 such

that 𝑄 𝑠, 𝑎; Θ 𝑡+1 ≈ 𝑦

ℓ Θ 𝑡 , Θ = 𝑦 − 𝑄 𝑠, 𝑎; Θ
2

1. 𝒮 too big to compute this sum

2. Don’t know 𝑄∗

Deep
Q-learning

Algorithm 4:
Online learning
(parametric
form)

42

 Inputs: discount factor 𝛾, an initial state 𝑠0,

learning rate 𝛼

 Initialize parameters Θ 0

 For 𝑡 = 0, 1, 2, …

 Gather training sample 𝒔𝑡 , 𝒂𝑡 , 𝑟𝑡 , 𝒔𝑡+1

 Update Θ 𝑡 by taking a step opposite the gradient

Θ 𝑡+1 ← Θ 𝑡 − 𝛼∇Θℓ Θ 𝑡 , Θ

where

∇Θℓ Θ 𝑡 , Θ = 2 𝑦 − 𝑄 𝑠, 𝑎; Θ ∇Θ𝑄 𝑠, 𝑎; Θ

11/13/24

Deep
Q-learning:
Experience
Replay

43

 SGD assumes iid training samples but in RL, samples are

highly correlated

 Idea: maintain a “replay buffer” 𝒟 = {𝑒1, 𝑒2, … , 𝑒𝑁} of the

𝑁 most recent experiences 𝑒𝑡 = 𝒔𝑡, 𝒂𝑡 , 𝑟𝑡 , 𝒔𝑡+1 (Lin, 1992)

 Keeps the agent from “forgetting” recent experiences

 In each iteration, we:

1. Sample some experience 𝑒𝑖 (or a mini-batch of

experiences 𝐸 = 𝑒1, … , 𝑒𝑇) uniformly at random

from 𝒟 and apply the Q-learning update

2. Add a new experience to 𝒟

 Can also sample experiences from 𝒟 according to some

distribution that prioritizes experiences with high error

(Schaul et al., 2016)
11/13/24

Q-learning and
Deep RL
Learning
Objectives

You should be able to…

 Apply Q-Learning to a real-world environment

 Implement Q-learning

 Identify the conditions under which the Q-learning
algorithm will converge to the true value function

 Adapt Q-learning to Deep Q-learning by employing a neural
network approximation to the Q function

 Describe the connection between Deep Q-Learning and
regression

11/13/24 44

