10-301/10-601 Introduction to Machine Learning

Machine Learning Department
School of Computer Science
Carnegie Mellon University

Ensemble Methods: Bagging

+
K-Means

Matt Gormley & Henry Chai
Lecture 24
Nov. 20, 2024

Reminders

* Homework 8: Deep RL
— Out: Sun, Now. 17
— Due: Mon, Nov. 25 at 11:59pm

* Homework 9: Learning Paradigms
— Out: Mon, Nov. 25

— Due: Thu, Dec. 5 at 11:59pm
(only two grace/late days permitted)

ADABOOST

Comparison

Weighted Majority Algorithm AdaBoost
* an example of an ensemble method * anexample of a boosting method
* assumes the classifiers are learned * simultaneously learns:
ahead of time — the classifiers themselves
 onlylearns (majority vote) weight for — (majority vote) weight for each classifiers

each classifiers

AdaBoost

 Definitions

— Def: a weak learner is one that returns a hypothesis that is not
much better than random guessing

— Def: a strong learner is one that returns a hypothesis of arbitrarily
low error

* AdaBoost answers the following question:

— Does that exist an efficient learning algorithm that can combine
weak learners to obtain a strong learner?

AdaBoost: Toy Example

weak classifiers = vertical or horizontal half-planes

Slide from Schapire NeurlIPS Tutorial

AdaBoost: Toy Example

Slide from Schapire NeurlIPS Tutorial

AdaBoost: Toy Example

£5=0.21

Slide from Schapire NeurlPS Tutorial

10

AdaBoost: Toy Example

£3=0.14

Slide from Schapire NeurlPS Tutorial

11

AdaBoost: Toy Example

H =sign | 0.42
final

+0.92

12
Slide from Schapire NeurlPS Tutorial

AdaBoost

Algorithm 1 AdaBoost Algorithm

1 Given: (x1,%1), ..., (Xn,yn) wherex; € RM g, € {—1,+1}
2: Initialize D1 (i) = %
3: fort =1,...,Tdo

4:
5:

Train weak learner using distribution D;.
Get weak hypothesis h; : RM — {1, +1} with error

e = Piwp,[ht(xi) # yi]

Choose o = lln l—& _ for high error, we get ar
2 €t forlow error, we get a,
fort=1,...,Ndo
Update:
, Dy () e~ if hy(x;) =y; If correct,
D 1) = X o
t+1<) Zt {eat if ht (Xz) ?é n if Incorrect,
. , for high error,
_ D (7’) eXp(_atyiht (Xz)) l, for low error,
Zy

where normalization const. Z; chosen s.t. D, is a distribution.

T
9: Output the final hypothesis: H(x) = sign (Z ahy (x)> :
t=1

Algorithm adapted from (Freund & Schapire, 1999)

13

AdaBoost: Theory

(Training) Mistake Bound

The most basic theoretical property of AdaBoost concerns its ability to reduce the training error.
Let us write the error ¢, of /i, as 5 — 7;. Since a hypothesis that guesses each instance’s class
at random has an error rate of 1/2 (on binary problems), +; thus measures how much better than
random are £, ’s predictions. Freund and Schapire [23] prove that the training error (the fraction of
mistakes on the training set) of the final hypothesis H is at most

11 2\/1——6,] H 1 — 42 <oxp<—)z~) (D

t
Thus, if each weak hypothesis is slightly better than random so that 7; = 7 for some 7 > 0, then
the training error drops exponentially fast.

Figure from (Freund & Schapire, 1999)

15

AdaBoost: Theory

Generalization Error

Freund and Schapire [23] showed how to bound the generalization error of the final hypothesis in
terms of its training error, the sample size /V, the VC-dimension d of the weak hypothesis space and
the number of boosting rounds 7". (The VC-dimension is a standard measure of the “complexity”
of a space of hypotheses. See, for instance, Blumer et al. [5].) Specifically, they used techniques
from Baum and Haussler [4] to show that the generalization error, with high probability, is at most

Pr|H(z) #y| + O (\/% ’

where Pr[] denotes empirical probability on the training sample. This bound suggests that boost-
ing will overfit if run for too many rounds, i.e., as 7 becomes large. In fact, this sometimes does
happen. However, in early experiments, several authors [9, 15, 36] observed empirically that boost-
ing often does not overfit, even when run for thousands of rounds. Moreover, it was observed that
AdaBoost would sometimes continue to drive down the generalization error long after the training
error had reached zero, clearly contradicting the spirit of the bound above. For instance, the left

Figure from (Freund & Schapire, 1999)

16

AdaBoost

1.0-
g -
g
=)
=
j:; -
75]
‘g 5 0.5-
o L '
g
=
e
10 100 1000 5 05
rounds margin

Figure 2: Error curves and the margin distribution graph for boosting C4.5 on the letter dataset as
reported by Schapire et al. [41]. Left: the training and test error curves (lower and upper curves,
respectively) of the combined classifier as a function of the number of rounds of boosting. The
horizontal lines indicate the test error rate of the base classifier as well as the test error of the final
combined classifier. Right: The cumulative distribution of margins of the training examples after 5,
100 and 1000 iterations, indicated by short-dashed, long-dashed (mostly hidden) and solid curves,
respectively.

Figure from (Freund & Schapire, 1999)

17

Learning Objectives

Ensemble Methods: Boosting
You should be able to...

1. Explain how a weighted majority vote over linear classifiers
can lead to a non-linear decision boundary

2. Implement AdaBoost

3. Describe a surprisingly common empirical result regarding
Adaboost train/test curves

Ensemble Methods

Ensemble methods learn a collection of models (i.e. the ensemble) and combine their
predictions on a test instance.

We consider two types:
* Bagging: learns models in parallel by taking many subsets of the training data

* Boosting: learns models serially by reweighting the training data

BAGGING

Bagging

“BAGGing” is also called Boostrap AGGregretion

Bagging answers the question:
How can | obtain many classifiers/regressors to ensemble together?

We’ll consider three possible answers:
1. (sample) bagging
2. feature bagging (aka. random subspace method)

3. random forests (which combine sample bagging and feature bagging to train a
‘““forest” of decision trees)

(Sample) Bagging

Key idea: Repeatedly sample with replacement a collection of training
examples and train a model on that sample.

Return an ensemble of the trained models; combine predictions by
majority vote for classification and by averaging for regression.

Algorithm 1 (Sample) Bagging

1: procedure SAMPLEBAGGING(D, T, S)

2: fort=1,...,17do

3 fors=1,...,5do

4: is ~ Uniform(1,..., N)

5 S; = {(x%), ylB))}5_, > Bootstrap sample

6 hy = train(S;) > Classifier
return h(x) = aggregate(hy, ..., hr) > Ensemble

for classification: h(x) = argmax, .y, Zthl [ly = ht(x)] > Majority vote

for regression: h(x) = - ZtT:1 he(X) > Average

(Sample) Bagging

training data D

HEAESESFE
1 1 o 1 +

vi b~ W N

—

o O O

+

bootstrap sample &,

3 1 1 0 +

bootstrap sample S,

INERESESER o dassifier h,
> o 1 1 -

¥\ | | | | . S . l

51oo-§ ?;&

1 1 0 1 + » @

bootstrap sample Sy

ENEAENEN - ocasster
2 o 1 1 -

X
SEEEENENE AN
4 0 1 0 + ,VX% &

1 1 o 1 + + -

test instance

0O O O
majority
% vote
b g -
>+

27

Feature Bagging

Key idea: Repeatedly sample with replacement a subset of the features,
create a copy of the training data with only those features, and train a
model on the copy.

Return an ensemble of the trained models; combine predictions by
majority vote for classification and by averaging for regression.

Algorithm 2 Feature Bagging
1: procedure SAMPLEBAGGING(D, T, S)
2: fort=1,....Tdo
3 fors=1,...,5do
4 ms ~ Uniform(1,..., M)

5 fori=1,...,Ndo

6

7

8

() — [(2) ,.(9) (2)]T

Ty s Torig s« + - s Long
D, = {(x) ¢y N > Random subspace
hy = train(Dy) > Classifier

return h(x) = aggregate(hq, ..., hr) > Ensemble

test instance

Feature Bagging x, % % %,

bOOtStrap Sample 81 ¢ ° ISS55055055005500554 05000050 050000500004

nmu - Leclassifier hy
1 0 0 + ¥

training data D

ﬂﬂﬂﬂ. bootstrap sample Sy
0o + ! n Laclassifier Ay majorlty
1 0 1 +

. < - vote
e R Al SRR S > AN s o i+
31 1 0 0 + 2 - ?;&

3 1 0O + ® €

IERERRE sdassifier by
101 1+

29

RANDOM FORESTS

Random Forests

Key idea: Combine (sample) bagging and a specific variant of feature
bagging to train decision trees.

Repeat the following to train many decision trees:
* draw a sample with replacement from the training examples,
* recursively learn the decision tree

* but at each node when choosing a feature on which to split, first
randomly sample a subset of the features, then pick the best feature
from among that subset.

Return an ensemble of the trained decision trees.

Random

Forests

4/15/24

- Combines the prediction of many diverse decision trees to reduce

their variability

* If B independent random variables x(l),x(z), ...,x(B) all have

B

- 2 1N, » . O
variance g, then the variance of B z x\ s i
b=1
- Random forests = sample bagging + feature bagging

= bootstrap aggregating + split-feature randomization

40

Split-feature

Randomization

4/15/24

* Issue: decision trees trained on bootstrapped samples

still behave similarly

* Idea: in addition to sampling the data points (i.e., the

rows), also sample the features (i.e., the columns)

* Each time a split is being considered, limit the possible

features to a randomly sampled subset

Runime | Gonre| Budges | vear | b | g

46

Split-feature

Randomization

4/15/24

* Issue: decision trees trained on bootstrapped samples

still behave similarly

* Idea: in addition to sampling the data points (i.e., the

rows), also sample the features (i.e., the columns)

* Each time a split is being considered, limit the possible

features to a randomly sampled subset

47

Split-feature

Randomization

4/15/24

* Issue: decision trees trained on bootstrapped samples

still behave similarly

* Idea: in addition to sampling the data points (i.e., the

rows), also sample the features (i.e., the columns)

* Each time a split is being considered, limit the possible

features to a randomly sampled subset

Runtime

Runtime | Gonr| sucses | Yar | 08| g

48

* Issue: decision trees trained on bootstrapped samples
still behave similarly

* Idea: in addition to sampling the data points (i.e., the
rows), also sample the features (i.e., the columns)

Sp“t_featu re * Each time a split is being considered, limit the possible
features to a randomly sampled subset

Randomization

Runtime

4/15/24 49

* Input: D = {(x("),y("))}ivlzl, B, p

*Forb=1,2,..,B
* Create a dataset, Dy, by sampling N points from the

Random

original training data D with replacement

Forests * Learn a decision tree, tp, using Dy, and the ID3

algorithm with split-feature randomization,

sampling p features for each split

* Qutput: t = f(tq, ..., tg), the aggregated hypothesis

4/15/24 50

* Input: D = {(x("),y("))}ivlzl, B, p

*Forb=1,2,..,B

* Create a dataset, Dy, by sampling N points from the

How can we original training data D with replacement

set B and p?

* Learn a decision tree, tp, using Dy and the ID3
algorithm with split-feature randomization,

sampling p features for each split

* Qutput: t = f(tq, ..., tg), the aggregated hypothesis

4/15/24 51

Recall:

Validation Sets

4/15/24

- Suppose we want to compare multiple
hyperparameter settings 04, ..., Ok

* Fork = 1;2; IK
* Train @ model on D¢, USINg Oy

* Evaluate each model on D,,,; and find
the best hyperparameter setting, 6,

- Compute the error of a model trained
with 85+ on Dipgt

52

Out-of-bag

Error

4/15/24

* For each training point, x(™ there are some decision trees

which x(™ was not used to train (roughly B /e trees or 37%)

- Let these be t(-™ = {tf_n), tg_n), . tlg,__:)}

- Compute an aggregated prediction for each x (™ using the

trees in tM (-1 (x("))

* Compute the out-of-bag (OOB) error, e.g., for regression

N
1
Eoos = Z(E(_n) (xM) — y)
n=1

53

Out-of-bag

Error

4/15/24

* For each training point, x(™ there are some decision trees

which x(™ was not used to train (roughly B /e trees or 37%)

- Let these be t(-™ = {tf_n), tg_n), . t,ﬁ,‘_’;)}

- Compute an aggregated prediction for each x (™ using the

treesin tM (-1 (x("))

* Compute the out-of-bag (OOB) error, e.g., for classification

N
1
Eoos = z 1(EE (M) % y™)
n=1

* Eppp can be used for hyperparameter optimization!

54

- Suppose we want to compare different
numbers of trees in our random forest

*Fork=1,2,.., K
* Train a random forest on D¢,gqin
with B}, trees

Out-of-bag

Error

* Compute Eypp for each random forest
and find the best number of trees, B,

* Evaluate the random forest with B,
trees on D¢,pqt

4/15/24 55

Setting Hyperparameters

4/15/24

Out-of-bag Error

Converges quickly

200

400 600 800
B, # of Decision Trees

1000

Out-of-bag Error

Optimal value
somewhere in the middle

3 4
p, # of Features

56

Feature

Importance

4/15/24

- Some of the interpretability of decision trees gets lost

when switching to random forests

- Random forests allow for the computation of “feature
importance”, a way of ranking features based on how

useful they are at predicting the target
* Initialize each feature’s importance to zero

* Each time a feature is chosen to be split on, add the
reduction in entropy (weighted by the number of data

points in the split) to its importance

57

Feature

Importance

4/15/24

0.20 4

0.15 1

Importance

0.05

0.00 -

Runtime Budget Year
Features

58

Key Takeaways

Henry Chai - 8/2/22

* Ensemble methods employ a “wisdom of

crowds” philosophy

 Can reduce the variance of high variance methods

- Random forests = bagging + split-feature

randomization
- Aggregate multiple decision trees together

* Bootstrapping and split-feature randomization

increase diversity in the decision trees

* Use out-of-bag errors for hyperparameter

optimization

 Use feature importance to identify useful attributes

59

Learning Objectives

Ensemble Methods: Bagging
You should be able to...

1. Distinguish between (sample) bagging, the random subspace method, and random
forests.

Implement (sample) bagging for an arbitrary base classifier/regressor.

Implement the random subspace method for an arbitrary base classifier/ regressor.
Implement random forests.

Contrast out-of-bag error with cross-validation error.

Differentiate boosting from bagging.

Compare and contrast weighted and unweighted majority vote of a collection of
classifiers.

Discuss the relation in bagging between the sample size and variance of the base
classifier/regressor.

9. Bound the generalization error of a random forest classifier.

N oV W

&

CLUSTERING

Clustering, Informal Goals

Goal: Automatically partition unlabeled data into groups of similar

data points.

Question: When and why would we want to do this?

Useful for:

e Automatically organizing data.

e Understanding hidden structure in data.

* Preprocessing for further analysis.

® Representing high-dimensional data in a low-dimensional space (e.g.,
for visualization purposes).

Slide courtesy of Nina Balcan

Applications (Clustering comes up everywhere...)

e (Cluster news articles or web pages or search results by topic.

Ao
ARMANI

HOPVOGLE

e (luster protein sequences by function or genes according to expression
profile. —

L INLLRGSF

NTES ELPGP - - -SGDSG- - - ISTTVILMANNVIAVLLFLLRP P BOVPPAPPYE -
-MTEGGFD LIN= RA RL-ELPGP - - -S5GD=6- - - ISITVILMANMVIAVLLFLLR? P\ -GOVPPAPPVE - -
MTEGGFDF INL A 3 ELPGP 5GD:=6 ISITAILMVAMVIAVLLFLLR® PN GOVPPAPPVG
MTEGGPDE IN " {TEQL-ELPGP 8GD:=G ISITAILMAWMVIAVLLFLLRI P GOVEPPAPEVL
-MTEGGFD I R DTECLRELPGP - - -SGDSG- - - ISITVILMARMVIAVLLFLLRY PY! -GOVPPAPRVE - -
-MAEGGFD INL RA EQLRELPGP - - -SGDSE - - - ISTTVILMAWNMVIAVLFFLLR? P -GOVPPAPPYE - -
MVEGGFD FINL! Q5 0L < EL PGP 5GD:-6 ISITVILMAWMVITVLLFLLRY P GOVPPAPPVG
MVEGGFD IN S RELPGP 8GD:=0 ISITVILMAWNVIAVLLFLLR? P GOVPPAPPVG
NMTEGGFD I Qs > RELPGP 8606 ISITVILMANMVIAVLLFLLRS PY GOVPPAPPVE
-MAEGGFD LINL! Q8 RELPGP - - -8GDSE - - - ISITVILMANNVIAVLLFLLRS P GCDPPAPPYC
MARGGFD LINL! EQL - ELPGP 8sDs6 ISITVILMANMVIAMLLFLLR? P GCOPPAFPY
MARGGFD LINL! Q8! DTECLOEL PGP SGONG ISTTMILMAWMVIAVILFLLRP P GCOPPAPPY

o (luster users of social networks by interest (community detection).

Facebook network R Twitter Network

Slide courtesy of Nina Balcan

99

Applications (Clustering comes up everywhere...)

e (luster customers according to purchase history.

¢ And many many more applications....

Slide courtesy of Nina Balcan

Clustering

Question: Which of these partitions is “better’”?

O
oOO O
OO OoO
O -0
R

oQ. o

O
oS
OO0

O

65

OPTIMIZATION BACKGROUND

Coordinate Descent

* Goal: minimize some objective
g* = argmin](é)
6

* ldea: iteratively pick one variable and minimize the objective w.r.t.
just that one variable, keeping all the others fixed.

67

Block Coordinate Descent

* Goal: minimize some objective (with 2 blocks)
a* B = argmin J (&, E)
@B
* ldea: iteratively pick one block of variables (a or E) and minimize the
objective w.r.t. that block, keeping the other(s) fixed.

while not converged:

a =arg£nin](c?,,§)
(04

E =arg£nin](c?, E)
B

K-MEANS

K-Means Algorithm (Derivation)

K-Means Algorithm (Derivation)

Input: unlabeled data D = {x(}¥ = x() ¢ RM

Goal: Find an assignment of points to clusters
Model Paramters:
o cluster centers: C = [cy,Ca,...,Ck], ¢; € RM
o clusterassignments: z = [z(D), 2(2) .. (V] 0 c {1 .. K}

Decision Rule: assign each point x(%) to its nearest cluster center c;

K-Means Algorithm (Derivation)

Input: unlabeled data D = {x(}¥ = x() ¢ RM

Goal: Find an assignment of points to clusters

Model Paramters:

Question: In

o cluster centers: C = [cy,Ca,...,Ck], ¢; € RM English what is
.)
o clusterassignments: z = [z(1), 22 . (V] 200 € {1,... K} this quantity?

Decision Rule: assign each point x(%) to its nearest cluster center c;

——

Objective:
- / Answer:

N
C= argminz min |[x9 — c;]||2
= 1=1 J

K-Means Algorithm (Derivation)

Input: unlabeled data D = {x(}¥ = x() ¢ RM

Goal: Find an assignment of points to clusters

Model Paramters:

o cluster centers: C = [cy,Ca,...,Ck], ¢; € RM

o clusterassignments: z = [z(D), 2(2) .. (V] 0 c {1 .. K}

Decision Rule: assign each point x(%) to its nearest cluster center c;

Objective:

N
C= argminz min |[x9 — c;]||2
c =’

N
= argmin g min ||x¥ — ¢,
C

(4)
i=1 °

2
2

K-Means Algorithm (Derivation)

Input: unlabeled data D = {x(}¥ = x() ¢ RM

Goal: Find an assignment of points to clusters

Model Paramters:

o cluster centers: C = [cy,Ca,...,Ck], ¢; € RM

o clusterassignments: z = [z(D), 2(2) .. (V] 0 c {1 .. K}

Decision Rule: assign each point x(%) to its nearest cluster center c;

Objective:

N
C= argminz min |[x9 — c;]||2
c =’

N
= argmin g min ||x¥ — ¢,
C

(4)
i=1 °

2
2

N
C,z = argmin E 1% — ¢
Cz =1

2
2

K-Means Algorithm (Derivation)

Input: unlabeled data D = {x(}¥ = x() ¢ RM

Goal: Find an assignment of points to clusters

Model Paramters:

o cluster centers: C = [cy,Ca,...,Ck], ¢; € RM

o clusterassignments: z = [z(D), 2(2) .. (V] 0 c {1 .. K}

Decision Rule: assign each point x(%) to its nearest cluster center c;

Objective:

N
C = argminz min HX(i) — CjH%
C J

=1
N
— argmin min | (X — C._@
o ; O ! 2112 Now apply
Block Coordinate Descent!

N
C,z = argmin E 1% — ¢
Cz =

2
2

N>

= argmin J(C, z)
C,z

K-Means Algorithm

unlabeled feature vectors
D = {x(, x®),..., x(N}

cluster centers ¢ = {c,,..., ¢}

until convergence:
a) z« argmin, J(C,z)
(pick each cluster assignment to minimize distance)
b) C < argmingJ(C, 2)
(pick each cluster center to minimize distance)

—

This is an application of
Block Coordinate Descent!
The only remaining step is to figure out
what the argmins boil down to...

77

K-Means Algori

1) Given unlabeled feature vectors
D = {x(, x®),..., x(N}

2) Initialize cluster centers c = {c,,..., ¢k}

3) Repeat until convergence:
a) foriin{1,..., N}

z0) < argmin; (|| xO - ¢/ |[,)?
b) forjin{s,...,K}

Geargmin 3 (O L)

K-Means Algorithm

unlabeled feature vectors
D = {x(, x®),..., x(N}

cluster centers ¢ = {c,,..., ¢}

until convergence:
a) foriin{1,..., N}
z() « index j of cluster center nearest to x(
b) forjin{s,...,K}
¢, < mean of all points assigned to cluster |

79

K-MEANS EXAMPLE

Example: K-Means

6_I | | |
[|
[|
[]
4_ v v " .. ‘ | |
v v . n i~ gud B = ;
A% ' ! vv " m m " T . " n
v Vv v —
vvvvv ' Yvy =ut ‘ I. w "
2 - MR A w : .
vy -
v v 7V v] u
v V v [|
v v
v v e =
0- v ¢ ° .
o)
)
Q)
° o* *e
b ° ®opn o °
-2 - ° o
‘ o.o. .0 ¢
o ° °
)
° ° ¢ °
4 ..
_67 I 1 | 1
-4 -2 0 2 4

83

Example: K-Means

o o LY ‘
° L A
°)
3 . S
o o ° s
[J
[] [
° [)
o®
%
[}
[J
[J
o
s *
... ..
—4 -2 0 2 4

84

K-Means

Example

3, iter=0)

fe .
e ‘ /=
e
% o

<

”
[

S

e
e

4

€CSe

(2

e
&

r
()

- Clustering with K-Means (k

L

85

Example: K-Means

~ Clustering with K-Means (k=3, iter=1)

86

K-Means

Example

3, iter=2)

an
eV

e
€

S

e
fe

.
Sl

€CSe
&r
S
Ce

G

- Clustering with K-Means (k

L

87

K-Means

Example

3, iter=3)

- Clustering with K-Means (k

88

K-Means

Example

3, iter=4)

- Clustering with K-Means (k

89

K-Means

Example

3, iter=5)

- Clustering with K-Means (k

90

K-MEANS EXAMPLE

Example: K-Means

6_I | | |
[|
[|
[]
4_ v v " .. ‘ | |
v EE n
vv v Vv — . ﬁ I--] |
v v Vv v Y - n " ma L]
I s ">
vy Vayy Em . m "
2 - MR A w : .
\A/ [
v v 7V v] u
v V v [|
v v
v v
e =
0- v ® ° ©
o)
)
Q)
° o* *e
b ° ®opn o °
-2 - °
‘ o.o. .0 e
) .. ’ °
° ° ¢ °
4 ..
_67 I 1 | 1
-4 -2 0 2 4

92

Example: K-Means

o o LY ‘
° L A
° °
° °
.\... ; s g
°
e o
. 'S
o
%
°
°
°
»
s ®
... ..
-4 -2 0 2 4

93

Example: K-Means

- Clustering with K-Means (k=2, iter=0)

94

Example: K-Means

~ Clustering with K-Means (k=2, iter=2)

95

Example: K-Means

~ Clustering with K-Means (k=2, iter=3) |

96

K-Means

Example

2, iter=4)

~ Clustering with K-Means (k

e
. e

<
Y
-~
e

€

&
o

4
Qe

0029

97

K-Means

Example

2, iter=5)

~ Clustering with K-Means (k

e
fe. ce

<
Y
-~
e

€

&
o

4
Qe

0029

98

K-Means

Example

2, iter=6)

~ Clustering with K-Means (k

&
(G,; co 8
(>

e
GG .
iee

&3
e

(D

99

K-Means

Example

2, iter=7)

~ Clustering with K-Means (k

e
& ce

<
Y
-~
e

€

&
o

4
Qe

0029

100

INITIALIZING K-MEANS

Initialization of K-Means

K-Means Algorithm

1) Given unlabeled feature vectors
D = {x(, x(),..., x(N)]

2) Initialize cluster centers c = {c,,..., ¢}
3) Repeat until

a) foriin{y,..., N;

z(0) « ind

b) forjin{s,...,K}
¢, < mea

102

Initialization for K-Means

Example 1:

 Initialized randomly such
that each cluster centeris
in a well separated
Gaussian

o O
@ O ©
@ oo O
O o o

> 103

Initialization for K-Means

O Example 1:
 Initialized randomly such
o that each cluster centeris
O o in a well separated
Gaussian
* Good overall performance

>

8o

o O o
0®© 0Q@O
0 A

> 104

Initialization for K-Means

4 Example 2:

O @) * Initialized
o O randomly such
@) that two centers
@ are in the same

Gaussian cluster

> 105

Initialization for K-Means

Example 2:
Initialized

randomly such
that two centers
are in the same
Gaussian cluster
Poor performance
Can be arbitrarily
bad (imagine the
final red cluster
points moving
arbitrarily far

away!)
> 106

Initialization for K-Means

K-Mean Performance (with Random Initialization)
If we do random initialization, as k increases, it becomes more likely we

won’t have perfectly picked one center per Gaussian in our initialization

(so K-Means will output a bad solution).

* Fork equal-sized Gaussians,

- . . . K1
Prleach initial center is in a different Gaussian] = = ~ —

* Becomes unlikely as k gets large.

Slide courtesy of Nina Balcan

Initialization for K-Means

Algorithm #2: Furthest Point Heuristic Observations:

1. Pick the first cluster center c, * Solves the problem with Gaussian
randomly data

2. Pick each subsequent center ¢; so * But outliers pose a new problem!

that it is as far as possible from the

previously chosen centers ¢, ¢,,..., ¢, Example 1:
* No outliers
A Good performance
o® P
o O
@)
@)
o ©
o O @)
O o0 ®
@) o o
>

Initialization for K-Means

Algorithm #2: Furthest Point Heuristic Observations:

1. Pick the first cluster center c, * Solves the problem with Gaussian
randomly data

2. Pick each subsequent center ¢; so * But outliers pose a new problem!

that it is as far as possible from the

previously chosen centers ¢, ¢,,..., ¢, Example 1
* No outliers
A e Good performance
oO P
0 0O
@
@
@
o@ ©
O o
>

Initialization for K-Means

Algorithm #2: Furthest Point Heuristic Observations:

1. Pick the first cluster center c, * Solves the problem with Gaussian
randomly data

2. Pick each subsequent center ¢; so * But outliers pose a new problem!

that it is as far as possible from the
previously chosen centers ¢, ¢,,..., ¢,

A
Example 2: O O O
* One outlier
throws off o 8
the algorithm O
* Poor
performance
o O
o O O
@) oo O
@ O o

Initialization for K-Means

Algorithm #2: Furthest Point Heuristic Observations:

1. Pick the first cluster center c, * Solves the problem with Gaussian
randomly data

2. Pick each subsequent center ¢; so * But outliers pose a new problem!

that it is as far as possible from the
previously chosen centers ¢, ¢,,..., ¢,

Example 2:

* One outlier
throws off
the algorithm

* Poor
performance

1M1

Initialization for K-Means

Algorithm #3: K-Means++
Let D(x) be the distance between a
point x and its nearest center. Chose
the next center proportional to D?(x).

A o O
o O
OO
o O
o O O
O oo0©
@ O O

e i | D(x) | D*(x) | P(c, =x0) |
Initialization for K-\t 3 9 937

2 2 4 4137
Algorithm #3: K-Means++
* Let D(x) be the distance between a
point x and its nearest center. Chose /74
the next center proportional to D?(x).

16 16/137

N 3 9 9/137

Sum: 137 1.0
A ()

* Choose ¢ at random.

* Forj=2,..,K
» Pick ¢; among xM,x@), .. x™ according to the distribution

P& =) s@ing [« — [p2(x)

I N O OV
Theorem: K-Means++ always attains an O(log k) approximation to optimal

K-Means solution in expectation.

I > 13
Slide adapted from Nina Balcan

e i | D(x) | D*(x) | P(c, =x0) |
Initialization for K-\t 3 9 937

2 2 4 4137
Algorithm #3: K-Means++
* Let D(x) be the distance between a
point x and its nearest center. Chose /74
the next center proportional to D?(x).

16 16/137

N 3 9 9/137
Sum: 137 1.0

Example 1: t O O O
* One outlier
* Good O 8
performance O
o O
o O O
O oo ®
() o o
> 114

e i | D(x) | D*(x) | P(c, =x0) |
Initialization for K-\t 3 9 937

2 2 4 4137
Algorithm #3: K-Means++
* Let D(x) be the distance between a
point x and its nearest center. Chose /74
the next center proportional to D?(x).

16 16/137

N 3 9 9/137
Sum: 137 1.0

Example 1: t O O O
* One outlier

* Good 0‘8

performance O
o O
O
<0°O 0@ O
O o o
> 115

Initialization for K-Means

Algorithm #3: K-Means++ Observations:
* Let D(x) be the distance between a * Interpolates between random and
point x and its nearest center. Chose farthest point initialization

Solves the problem with Gaussian
data
* And solves the outlier problem

the next center proportional to D?(x).

A
Example 1: O O O
* One outlier 'Ye)
* Good o o
performance O

Q&A

In k-Means, since we don’t have a validation set, how do we
pick k?

Look at the training objective
function as a functionof k (¢, 2)
and pick the value at the

“elbo” of the curve.

A

What if our random initialization for k-Means gives us poor
performance?

Do random restarts: that is, run k-means from scratch, say, 10
times and pick the run that gives the lowest training objective
function value.

The objective function is nonconvex, so we’re just looking for
the best local minimum.

Learning Objectives

K-Means
You should be able to...

1. Distinguish between coordinate descent and block coordinate
descent

2. Define an objective function that gives rise to a "good"
clustering

3. Apply block coordinate descent to an objective function
preferring each point to be close to its nearest objective
function to obtain the K-Means algorithm

4. Implement the K-Means algorithm

Connect the non-convexity of the K-Means objective function
with the (possibly) poor performance of random initialization

4

