
Ensemble Methods: Bagging
+

K-Means

1

10-301/10-601 Introduction to Machine Learning

Matt Gormley & Henry Chai
Lecture 24

Nov. 20, 2024

Machine Learning Department
School of Computer Science
Carnegie Mellon University

Reminders

• Homework 8: Deep RL
– Out: Sun, Nov. 17
– Due: Mon, Nov. 25 at 11:59pm

• Homework 9: Learning Paradigms
– Out: Mon, Nov. 25
– Due: Thu, Dec. 5 at 11:59pm

(only two grace/late days permitted)

3

ADABOOST

5

Comparison

Weighted Majority Algorithm
• an example of an ensemble method
• assumes the classifiers are learned

ahead of time
• only learns (majority vote) weight for

each classifiers

AdaBoost
• an example of a boosting method
• simultaneously learns:

– the classifiers themselves
– (majority vote) weight for each classifiers

6

AdaBoost

• Definitions
– Def: a weak learner is one that returns a hypothesis that is not

much better than random guessing
– Def: a strong learner is one that returns a hypothesis of arbitrarily

low error

• AdaBoost answers the following question:
– Does that exist an efficient learning algorithm that can combine

weak learners to obtain a strong learner?

7

Toy ExampleToy ExampleToy ExampleToy ExampleToy Example

D1

weak classifiers = vertical or horizontal half-planes

AdaBoost: Toy Example

8
Slide from Schapire NeurIPS Tutorial

Round 1Round 1Round 1Round 1Round 1

h1

α

ε1
1

=0.30
=0.42

2D

AdaBoost: Toy Example

9
Slide from Schapire NeurIPS Tutorial

Round 2Round 2Round 2Round 2Round 2

α

ε2
2

=0.21
=0.65

h2 3D

AdaBoost: Toy Example

10
Slide from Schapire NeurIPS Tutorial

Round 3Round 3Round 3Round 3Round 3

h3

α

ε3
3=0.92
=0.14

AdaBoost: Toy Example

11
Slide from Schapire NeurIPS Tutorial

Final ClassifierFinal ClassifierFinal ClassifierFinal ClassifierFinal Classifier

H
final

+ 0.92+ 0.650.42sign=

=

AdaBoost: Toy Example

12
Slide from Schapire NeurIPS Tutorial

AdaBoost

13
Algorithm adapted from (Freund & Schapire, 1999)

Algorithm 1 AdaBoost Algorithm
1: Given: (x1, y1), . . . , (xN , yN)where xi → R

M , yi → {−1,+1}
2: InitializeD1(i) =

1

N

3: for t = 1, . . . , T do
4: Train weak learner using distributionDt.
5: Get weak hypothesis ht : R

M → {−1,+1}with error

εt = Pi∼Dt
[ht(xi) $= yi]

6: Choose αt =
1

2
ln
)

1− εt

εt

)

.

7: for i = 1, . . . , N do
8: Update:

Dt+1(i) =
Dt(i)

Zt

×

{

e−αt if ht(xi) = yi

eαt if ht(xi) $= yi

=
Dt(i) exp(−αtyiht(xi))

Zt

where normalization const. Zt chosen s.t. Dt+1 is a distribution.

9: Output the final hypothesis: H(x) = sign

(

T
∑

t=1

αtht(x)

)

.

for high error, we get ______ 𝛼t
for low error, we get ______ 𝛼t

if correct, ________________
if incorrect, ________________
 ↳ for high error, _________________
 ↳ for low error, _________________

AdaBoost: Theory

15
Figure from (Freund & Schapire, 1999)

(Training) Mistake Bound

AdaBoost: Theory

16
Figure from (Freund & Schapire, 1999)

Generalization Error

N

N

AdaBoost

17
Figure from (Freund & Schapire, 1999)

er
ro
r

10 100 1000
0

5

10

15

20

cu
m
ul
at
iv
e
di
st
rib
ut
io
n

-1 -0.5 0.5 1

0.5

1.0

rounds margin

Figure 2: Error curves and the margin distribution graph for boosting C4.5 on the letter dataset as
reported by Schapire et al. [41]. Left: the training and test error curves (lower and upper curves,
respectively) of the combined classifier as a function of the number of rounds of boosting. The
horizontal lines indicate the test error rate of the base classifier as well as the test error of the final
combined classifier. Right: The cumulative distribution of margins of the training examples after 5,
100 and 1000 iterations, indicated by short-dashed, long-dashed (mostly hidden) and solid curves,
respectively.

Analyzing the training error
The most basic theoretical property of AdaBoost concerns its ability to reduce the training error.
Let us write the error of as . Since a hypothesis that guesses each instance’s class
at random has an error rate of (on binary problems), thus measures how much better than
random are ’s predictions. Freund and Schapire [23] prove that the training error (the fraction of
mistakes on the training set) of the final hypothesis is at most

(1)

Thus, if each weak hypothesis is slightly better than random so that for some , then
the training error drops exponentially fast.

A similar property is enjoyed by previous boosting algorithms. However, previous algorithms
required that such a lower bound be known a priori before boosting begins. In practice, knowl-
edge of such a bound is very difficult to obtain. AdaBoost, on the other hand, is adaptive in that it
adapts to the error rates of the individual weak hypotheses. This is the basis of its name — “Ada”
is short for “adaptive.”

The bound given in Eq. (1), combined with the bounds on generalization error given below,
prove that AdaBoost is indeed a boosting algorithm in the sense that it can efficiently convert
a weak learning algorithm (which can always generate a hypothesis with a weak edge for any
distribution) into a strong learning algorithm (which can generate a hypothesis with an arbitrarily
low error rate, given sufficient data).

4

Learning Objectives

Ensemble Methods: Boosting
You should be able to…
1. Explain how a weighted majority vote over linear classifiers

can lead to a non-linear decision boundary
2. Implement AdaBoost
3. Describe a surprisingly common empirical result regarding

Adaboost train/test curves

22

Ensemble Methods
Ensemble methods learn a collection of models (i.e. the ensemble) and combine their
predictions on a test instance.

We consider two types:
• Bagging: learns models in parallel by taking many subsets of the training data
• Boosting: learns models serially by reweighting the training data

23

BAGGING

24

Bagging
“BAGGing” is also called Boostrap AGGregretion
Bagging answers the question:
How can I obtain many classifiers/regressors to ensemble together?

We’ll consider three possible answers:
1. (sample) bagging
2. feature bagging (aka. random subspace method)
3. random forests (which combine sample bagging and feature bagging to train a

“forest” of decision trees)

25

(Sample) Bagging
Key idea: Repeatedly sample with replacement a collection of training
examples and train a model on that sample.
Return an ensemble of the trained models; combine predictions by
majority vote for classification and by averaging for regression.

26

Algorithm 1 (Sample) Bagging
1: procedure SĆĒĕđĊBĆČČĎēČ(D, T , S)
2: for t = 1, . . . , T do
3: for s = 1, . . . , S do
4: is ∼ Uniform(1, . . . , N)

5: St = {(x(is), y(is))}Ss=1 ! Bootstrap sample
6: ht = train(St) ! ClassiƤer

return ĥ(x) = aggregate(h1, . . . , hT) ! Ensemble

for classiƤcation: ĥ(x) = argmaxy∈Y

∑T
t=1

I[y = ht(x)] !Majority vote

for regression: ĥ(x) = 1

T

∑T
t=1

ht(x) ! Average

(Sample) Bagging

27

i x1 x2 x3 y

1 1 0 1 +

2 0 1 1 -

3 1 1 0 +

4 0 1 0 +

5 1 0 0 -

i x1 x2 x3 y

3 1 1 0 +

5 1 0 0 -

3 1 1 0 +

i x1 x2 x3 y

2 0 1 1 -

5 1 0 0 -

1 1 0 1 +

training dataD

bootstrap sample S1

bootstrap sample S2

i x1 x2 x3 y

2 0 1 1 -

4 0 1 0 +

1 1 0 1 +

bootstrap sample S3

x2
0 1

- +

x1

x3

0 1

0 1
-

- +

x1

+

x3

0 1

0 1

-

+

classiƤer h1

classiƤer h2

classiƤer h3

test instance

x1 x2 x3

0 0 0

-

-

+

-
majority

vote

Feature Bagging
Key idea: Repeatedly sample with replacement a subset of the features,
create a copy of the training data with only those features, and train a
model on the copy.
Return an ensemble of the trained models; combine predictions by
majority vote for classification and by averaging for regression.

28

Algorithm 2 Feature Bagging
1: procedure SĆĒĕđĊBĆČČĎēČ(D, T , S)
2: for t = 1, . . . , T do
3: for s = 1, . . . , S do
4: ms ∼ Uniform(1, . . . ,M)

5: for i = 1, . . . , N do
6: x̃(i) = [x(i)

m1
, x

(i)
m2

, . . . , x
(i)
mS

]T

7: Dt = {(x̃(i), y(i)}Ni=1 ! Random subspace
8: ht = train(Dt) ! ClassiƤer

return ĥ(x) = aggregate(h1, . . . , hT) ! Ensemble

Feature Bagging

29

i x1 x2 x3 x4 y

1 1 0 1 0 +

2 0 1 1 1 -

3 1 1 0 0 +

i x4 x2 y

1 0 0 +

2 1 1 -

3 0 1 +

i x2 x3 y

1 0 1 +

2 1 1 -

3 1 0 +

training dataD

bootstrap sample S1

bootstrap sample S2

i x1 x3 y

1 1 1 +

2 0 1 -

3 1 0 +

bootstrap sample S3

x4
0 1

+ -

x2

x3

0 1

0 1
-

+ -

classiƤer h1

classiƤer h2

classiƤer h3

test instance

x1 x2 x3 x4

0 1 0 0

+

+

-

+
majority

vote

x1
0 1

- +

RANDOM FORESTS

30

Random Forests
Key idea: Combine (sample) bagging and a specific variant of feature
bagging to train decision trees.

Repeat the following to train many decision trees:
• draw a sample with replacement from the training examples,
• recursively learn the decision tree
• but at each node when choosing a feature on which to split, first

randomly sample a subset of the features, then pick the best feature
from among that subset.

Return an ensemble of the trained decision trees.

31

Random
Forests

� Combines the prediction of many diverse decision trees to reduce

their variability

� If 𝐵 independent random variables 𝑥 ! , 𝑥 " , … , 𝑥 # all have

variance 𝜎", then the variance of is $
!

%

� Random forests = sample bagging + feature bagging

 - = bootstrap aggregating + split-feature randomization

40

1
𝐵
'
&'!

#

𝑥 & 𝜎"

𝐵

4/15/24

Split-feature
Randomization

� Issue: decision trees trained on bootstrapped samples
still behave similarly

� Idea: in addition to sampling the data points (i.e., the
rows), also sample the features (i.e., the columns)

� Each time a split is being considered, limit the possible
features to a randomly sampled subset

4/15/24 46

Runtime Genre Budget Year IMDB Rating

Split-feature
Randomization

� Issue: decision trees trained on bootstrapped samples
still behave similarly

� Idea: in addition to sampling the data points (i.e., the
rows), also sample the features (i.e., the columns)

� Each time a split is being considered, limit the possible
features to a randomly sampled subset

4/15/24 47

Runtime Genre Budget Year IMDB Rating

Runtime

Split-feature
Randomization

� Issue: decision trees trained on bootstrapped samples
still behave similarly

� Idea: in addition to sampling the data points (i.e., the
rows), also sample the features (i.e., the columns)

� Each time a split is being considered, limit the possible
features to a randomly sampled subset

4/15/24 48

Runtime Genre Budget Year IMDB Rating

Runtime

Genre

Split-feature
Randomization

� Issue: decision trees trained on bootstrapped samples
still behave similarly

� Idea: in addition to sampling the data points (i.e., the
rows), also sample the features (i.e., the columns)

� Each time a split is being considered, limit the possible
features to a randomly sampled subset

4/15/24 49

Runtime Genre Budget Year IMDB Rating

Runtime

Genre Genre

Random
Forests

� Input: 𝒟 = 𝒙 % , 𝑦 %
%'!
(

, 𝐵, 𝜌

� For 𝑏 = 1, 2, … , 𝐵
� Create a dataset, 𝒟&, by sampling 𝑁 points from the

original training data 𝒟 with replacement

� Learn a decision tree, 𝑡&, using 𝒟& and the ID3
algorithm with split-feature randomization,

sampling 𝜌 features for each split

� Output: ̅𝑡 = 𝑓 𝑡!, … , 𝑡# , the aggregated hypothesis

504/15/24

514/15/24

How can we
set 𝐵 and 𝜌?

� Input: 𝒟 = 𝒙 % , 𝑦 %
%'!
(

, 𝐵, 𝜌

� For 𝑏 = 1, 2, … , 𝐵
� Create a dataset, 𝒟&, by sampling 𝑁 points from the

original training data 𝒟 with replacement

� Learn a decision tree, 𝑡&, using 𝒟& and the ID3
algorithm with split-feature randomization,

sampling 𝜌 features for each split

� Output: ̅𝑡 = 𝑓 𝑡!, … , 𝑡# , the aggregated hypothesis

Recall:
Validation Sets

� Suppose we want to compare multiple
hyperparameter settings 𝜃!, … , 𝜃)

� For 𝑘 = 1, 2, … , 𝐾
� Train a model on 𝐷*+,-% using 𝜃.

� Evaluate each model on 𝐷/,0 and find
the best hyperparameter setting, 𝜃.∗

� Compute the error of a model trained
with 𝜃.∗ on 𝐷*12*

4/15/24 52

𝐷*+,-%

𝐷/,0

𝐷*12*

Out-of-bag
Error

� For each training point, 𝒙 % , there are some decision trees

which 𝒙 % 	was not used to train (roughly ⁄𝐵 𝑒 trees or 37%)

� Let these be 𝑡 3% = 𝑡!
3% , 𝑡"

3% , … , 𝑡(#$
3%

� Compute an aggregated prediction for each 𝒙 % 	using the

trees in 𝑡 3% , ̅𝑡 3% 𝒙 %

� Compute the out-of-bag (OOB) error, e.g., for regression

53

𝐸44# =
1
𝑁
'
%'!

(

̅𝑡 3% 𝒙 % − 𝑦 % "

4/15/24

Out-of-bag
Error

� For each training point, 𝒙 % , there are some decision trees

which 𝒙 % 	was not used to train (roughly ⁄𝐵 𝑒 trees or 37%)

� Let these be 𝑡 3% = 𝑡!
3% , 𝑡"

3% , … , 𝑡(#$
3%

� Compute an aggregated prediction for each 𝒙 % 	using the

trees in 𝑡 3% , ̅𝑡 3% 𝒙 %

� Compute the out-of-bag (OOB) error, e.g., for classification

� 𝐸44# can be used for hyperparameter optimization!

544/15/24

𝐸44# =
1
𝑁
'
%'!

(

𝟙 ̅𝑡 3% 𝒙 % ≠ 𝑦 %

Out-of-bag
Error

� Suppose we want to compare different
numbers of trees in our random forest
𝐵!, … , 𝐵)

� For 𝑘 = 1, 2, … , 𝐾
� Train a random forest on 𝐷*+,-%

with 𝐵. trees

� Compute 𝐸44# for each random forest
and find the best number of trees, 𝐵.∗

� Evaluate the random forest with 𝐵.∗
trees on 𝐷*12*

4/15/24 55

𝐷*+,-%

𝐷*12*

Setting Hyperparameters
4/15/24 56

Converges quickly

Optimal value
somewhere in the middle

Feature
Importance

574/15/24

� Some of the interpretability of decision trees gets lost

when switching to random forests

� Random forests allow for the computation of “feature
importance”, a way of ranking features based on how

useful they are at predicting the target

� Initialize each feature’s importance to zero

� Each time a feature is chosen to be split on, add the
reduction in entropy (weighted by the number of data

points in the split) to its importance

Feature
Importance

584/15/24

Key Takeaways

� Ensemble methods employ a “wisdom of

crowds” philosophy
� Can reduce the variance of high variance methods

� Random forests = bagging + split-feature
randomization

� Aggregate multiple decision trees together

� Bootstrapping and split-feature randomization
increase diversity in the decision trees

� Use out-of-bag errors for hyperparameter
optimization

� Use feature importance to identify useful attributes

Henry Chai - 8/2/22 59

Learning Objectives
Ensemble Methods: Bagging

You should be able to…
1. Distinguish between (sample) bagging, the random subspace method, and random

forests.
2. Implement (sample) bagging for an arbitrary base classifier/regressor.
3. Implement the random subspace method for an arbitrary base classifier/ regressor.
4. Implement random forests.
5. Contrast out-of-bag error with cross-validation error.
6. Differentiate boosting from bagging.
7. Compare and contrast weighted and unweighted majority vote of a collection of

classifiers.
8. Discuss the relation in bagging between the sample size and variance of the base

classifier/regressor.
9. Bound the generalization error of a random forest classifier.

60

CLUSTERING

61

Clustering, Informal Goals

Goal: Automatically partition unlabeled data into groups of similar
data points.

Question: When and why would we want to do this?

• Automatically organizing data.

Useful for:

• Representing high-dimensional data in a low-dimensional space (e.g.,
 for visualization purposes).

• Understanding hidden structure in data.

• Preprocessing for further analysis.

Slide courtesy of Nina Balcan

Applications (Clustering comes up everywhere…)

• Cluster protein sequences by function or genes according to expression
profile.

• Cluster users of social networks by interest (community detection).

Facebook network Twitter Network

Slide courtesy of Nina Balcan

• Cluster news articles or web pages or search results by topic.

• Cluster customers according to purchase history.

Applications (Clustering comes up everywhere…)

• Cluster galaxies or nearby stars (e.g. Sloan Digital Sky Survey)

• And many many more applications….

Slide courtesy of Nina Balcan

Clustering

Question: Which of these partitions is “better”?

65

OPTIMIZATION BACKGROUND

66

Block Coordinate Descent
• Goal: minimize some objective

�⃗�∗ = argmin
"

𝐽 �⃗�

• Idea: iteratively pick one variable and minimize the objective w.r.t.
just that one variable, keeping all the others fixed.

67

𝜃!

𝜃"

�⃗� 5

�⃗� !

�⃗� " �⃗� 6

Block Coordinate Descent
• Goal: minimize some objective (with 2 blocks)

�⃗�∗, 𝛽∗ = argmin
#,%

𝐽 �⃗�, 𝛽

• Idea: iteratively pick one block of variables (�⃗�	or	𝛽) and minimize the
objective w.r.t. that block, keeping the other(s) fixed.

68

�⃗� 	= argmin
7

𝐽 �⃗�, 𝛽

𝛽 = argmin
8

𝐽 �⃗�, 𝛽

while not converged:

K-MEANS

69

K-Means Algorithm (Derivation)

70

Recipe for K-Means Derivation:

1) Define a Model.
2) Choose an objective function.
3) Optimize it!

K-Means Algorithm (Derivation)

71

• Input: unlabeled dataD = {x(i)}Ni=1, x(i) ∈ RM

• Goal: Find an assignment of points to clusters

• Model Paramters:

◦ cluster centers: C = [c1, c2, . . . , cK], cj ∈ RM

◦ cluster assignments: z = [z(1), z(2), . . . , z(N)], z(i) ∈ {1, . . . ,K}

• Decision Rule: assign each point x(i) to its nearest cluster center cj

• Objective:

Ĉ = argmin
C

N∑

i=1

min
j

||x(i) − cj ||
2
2

= argmin
C

N∑

i=1

min
z(i)

||x(i) − cz(i) ||22

Ĉ, ẑ = argmin
C,z

N∑

i=1

||x(i) − cz(i) ||22

= argmin
C,z

J(C, z)

K-Means Algorithm (Derivation)

72

• Input: unlabeled dataD = {x(i)}Ni=1, x(i) ∈ RM

• Goal: Find an assignment of points to clusters

• Model Paramters:

◦ cluster centers: C = [c1, c2, . . . , cK], cj ∈ RM

◦ cluster assignments: z = [z(1), z(2), . . . , z(N)], z(i) ∈ {1, . . . ,K}

• Decision Rule: assign each point x(i) to its nearest cluster center cj

• Objective:

Ĉ = argmin
C

N∑

i=1

min
j

||x(i) − cj ||
2
2

= argmin
C

N∑

i=1

min
z(i)

||x(i) − cz(i) ||22

Ĉ, ẑ = argmin
C,z

N∑

i=1

||x(i) − cz(i) ||22

= argmin
C,z

J(C, z)

Question: In
English, what is
this quantity?

Answer:

K-Means Algorithm (Derivation)

73

• Input: unlabeled dataD = {x(i)}Ni=1, x(i) ∈ RM

• Goal: Find an assignment of points to clusters

• Model Paramters:

◦ cluster centers: C = [c1, c2, . . . , cK], cj ∈ RM

◦ cluster assignments: z = [z(1), z(2), . . . , z(N)], z(i) ∈ {1, . . . ,K}

• Decision Rule: assign each point x(i) to its nearest cluster center cj

• Objective:

Ĉ = argmin
C

N∑

i=1

min
j

||x(i) − cj ||
2
2

= argmin
C

N∑

i=1

min
z(i)

||x(i) − cz(i) ||22

Ĉ, ẑ = argmin
C,z

N∑

i=1

||x(i) − cz(i) ||22

= argmin
C,z

J(C, z)

K-Means Algorithm (Derivation)

74

• Input: unlabeled dataD = {x(i)}Ni=1, x(i) ∈ RM

• Goal: Find an assignment of points to clusters

• Model Paramters:

◦ cluster centers: C = [c1, c2, . . . , cK], cj ∈ RM

◦ cluster assignments: z = [z(1), z(2), . . . , z(N)], z(i) ∈ {1, . . . ,K}

• Decision Rule: assign each point x(i) to its nearest cluster center cj

• Objective:

Ĉ = argmin
C

N∑

i=1

min
j

||x(i) − cj ||
2
2

= argmin
C

N∑

i=1

min
z(i)

||x(i) − cz(i) ||22

Ĉ, ẑ = argmin
C,z

N∑

i=1

||x(i) − cz(i) ||22

= argmin
C,z

J(C, z)

K-Means Algorithm (Derivation)

75

• Input: unlabeled dataD = {x(i)}Ni=1, x(i) ∈ RM

• Goal: Find an assignment of points to clusters

• Model Paramters:

◦ cluster centers: C = [c1, c2, . . . , cK], cj ∈ RM

◦ cluster assignments: z = [z(1), z(2), . . . , z(N)], z(i) ∈ {1, . . . ,K}

• Decision Rule: assign each point x(i) to its nearest cluster center cj

• Objective:

Ĉ = argmin
C

N∑

i=1

min
j

||x(i) − cj ||
2
2

= argmin
C

N∑

i=1

min
z(i)

||x(i) − cz(i) ||22

Ĉ, ẑ = argmin
C,z

N∑

i=1

||x(i) − cz(i) ||22

= argmin
C,z

J(C, z)

Now apply
Block Coordinate Descent!

1) Given unlabeled feature vectors
D = {x(1), x(2),…, x(N)}

2) Initialize cluster centers c = {c1,…, cK}
3) Repeat until convergence:

a) z ← argminz J(C, z)
(pick each cluster assignment to minimize distance)

b) C ← argminC J(C, z)
(pick each cluster center to minimize distance)

K-Means Algorithm

77

This is an application of
Block Coordinate Descent!

The only remaining step is to figure out
what the argmins boil down to…

K-Means Algorithm
1) Given unlabeled feature vectors

D = {x(1), x(2),…, x(N)}
2) Initialize cluster centers c = {c1,…, cK}
3) Repeat until convergence:

a) for i in {1,…, N}
 z(i) ← argminj (|| x(i) - cj ||2)2

b) for j in {1,…,K}
 cj ← argmin ∑ (|| x(i) - cj ||2)2

78

cj i:z(i) = j

Likewise, the
minimization over

cluster centers
decomposes, so we

can find each cj
independently

The minimization
over cluster
assignments

decomposes, so
that we can find

each z(i)
independently of

the others

K-Means Algorithm
1) Given unlabeled feature vectors

D = {x(1), x(2),…, x(N)}
2) Initialize cluster centers c = {c1,…, cK}
3) Repeat until convergence:

a) for i in {1,…, N}
 z(i) ← index j of cluster center nearest to x(i)

b) for j in {1,…,K}
 cj ← mean of all points assigned to cluster j

79

K-MEANS EXAMPLE
K=3 cluster centers

82

Example: K-Means

83

Example: K-Means

84

Example: K-Means

85

Example: K-Means

86

Example: K-Means

87

Example: K-Means

88

Example: K-Means

89

Example: K-Means

90

K-MEANS EXAMPLE
K=2 cluster centers

91

Example: K-Means

92

Example: K-Means

93

Example: K-Means

94

Example: K-Means

95

Example: K-Means

96

Example: K-Means

97

Example: K-Means

98

Example: K-Means

99

Example: K-Means

100

INITIALIZING K-MEANS

101

Initialization of K-Means
K-Means Algorithm
1) Given unlabeled feature vectors

D = {x(1), x(2),…, x(N)}
2) Initialize cluster centers c = {c1,…, cK}
3) Repeat until convergence:

a) for i in {1,…, N}
 z(i) ← index j of cluster center nearest to x(i)

b) for j in {1,…,K}
 cj ← mean of all points assigned to cluster j

102

Remaining Question:
How should we initialize the cluster centers?

Three Solutions:
1. Random centers (picked from the data

points)
2. Furthest point heuristic
3. K-Means++

Initialization for K-Means

103

Example 1:
• Initialized randomly such

that each cluster center is
in a well separated
Gaussian

• Good overall performance

Algorithm #1: Random Initialization
Select each cluster center uniformly at
random from the data points in the
training data

Observations:
Even when data comes from well-
separated Gaussians…
• …sometimes works great!
• …sometimes get stuck in poor local

optima.

Initialization for K-Means

104

Algorithm #1: Random Initialization
Select each cluster center uniformly at
random from the data points in the
training data

Observations:
Even when data comes from well-
separated Gaussians…
• …sometimes works great!
• …sometimes get stuck in poor local

optima.

Example 1:
• Initialized randomly such

that each cluster center is
in a well separated
Gaussian

• Good overall performance

Initialization for K-Means

105

Algorithm #1: Random Initialization
Select each cluster center uniformly at
random from the data points in the
training data

Observations:
Even when data comes from well-
separated Gaussians…
• …sometimes works great!
• …sometimes get stuck in poor local

optima.

Example 2:
• Initialized

randomly such
that two centers
are in the same
Gaussian cluster

• Poor performance
• Can be arbitrarily

bad (imagine the
final red cluster
points moving
arbitrarily far
away!)

Initialization for K-Means

106

Algorithm #1: Random Initialization
Select each cluster center uniformly at
random from the data points in the
training data

Observations:
Even when data comes from well-
separated Gaussians…
• …sometimes works great!
• …sometimes get stuck in poor local

optima.

Example 2:
• Initialized

randomly such
that two centers
are in the same
Gaussian cluster

• Poor performance
• Can be arbitrarily

bad (imagine the
final red cluster
points moving
arbitrarily far
away!)

Initialization for K-Means

• For k equal-sized Gaussians,

 Pr[each initial center is in a different Gaussian] ≈ #!
#!
≈ %

&!

• Becomes unlikely as k gets large.

K-Mean Performance (with Random Initialization)
If we do random initialization, as k increases, it becomes more likely we
won’t have perfectly picked one center per Gaussian in our initialization

(so K-Means will output a bad solution).

Slide courtesy of Nina Balcan

Initialization for K-Means

108

Algorithm #2: Furthest Point Heuristic
1. Pick the first cluster center c1

randomly
2. Pick each subsequent center cj so

that it is as far as possible from the
previously chosen centers c1, c2,…, cj-1

Observations:
• Solves the problem with Gaussian

data
• But outliers pose a new problem!

Example 1:
• No outliers
• Good performance

Initialization for K-Means

109

Algorithm #2: Furthest Point Heuristic
1. Pick the first cluster center c1

randomly
2. Pick each subsequent center cj so

that it is as far as possible from the
previously chosen centers c1, c2,…, cj-1

Observations:
• Solves the problem with Gaussian

data
• But outliers pose a new problem!

Example 1:
• No outliers
• Good performance

Initialization for K-Means

110

Algorithm #2: Furthest Point Heuristic
1. Pick the first cluster center c1

randomly
2. Pick each subsequent center cj so

that it is as far as possible from the
previously chosen centers c1, c2,…, cj-1

Observations:
• Solves the problem with Gaussian

data
• But outliers pose a new problem!

Example 2:
• One outlier

throws off
the algorithm

• Poor
performance

Initialization for K-Means

111

Algorithm #2: Furthest Point Heuristic
1. Pick the first cluster center c1

randomly
2. Pick each subsequent center cj so

that it is as far as possible from the
previously chosen centers c1, c2,…, cj-1

Observations:
• Solves the problem with Gaussian

data
• But outliers pose a new problem!

Example 2:
• One outlier

throws off
the algorithm

• Poor
performance

Initialization for K-Means

112

Algorithm #3: K-Means++
• Let D(x) be the distance between a

point 𝑥 and its nearest center. Chose
the next center proportional to D"(𝐱).

Initialization for K-Means

113

Algorithm #3: K-Means++
• Let D(x) be the distance between a

point 𝑥 and its nearest center. Chose
the next center proportional to D"(𝐱).

• Choose 𝐜𝟏 at random.

• Pick 𝐜𝐣 among 𝐱(𝟏), 𝐱(𝟐), … , 𝐱(𝒏) according to the distribution
• For j = 2,… , K

𝐏(𝐜𝐣 = 𝐱(𝐢)) ∝ 𝐦𝐢𝐧𝐣!%𝐣 𝐱(𝐢) − 𝐜𝐣!
𝟐
D-(𝐱𝐢)

Slide adapted from Nina Balcan

Theorem: K-Means++ always attains an O(log k) approximation to optimal
K-Means solution in expectation.

i D(x) D2(x) P(c2 = x(i))

1 3 9 9/137

2 2 4 4/137

…

7 4 16 16/137

…

N 3 9 9/137

Sum: 137 1.0

Initialization for K-Means

114

Example 1:
• One outlier
• Good

performance

Algorithm #3: K-Means++
• Let D(x) be the distance between a

point 𝑥 and its nearest center. Chose
the next center proportional to D"(𝐱).

i D(x) D2(x) P(c2 = x(i))

1 3 9 9/137

2 2 4 4/137

…

7 4 16 16/137

…

N 3 9 9/137

Sum: 137 1.0

Initialization for K-Means

115

Example 1:
• One outlier
• Good

performance

Algorithm #3: K-Means++
• Let D(x) be the distance between a

point 𝑥 and its nearest center. Chose
the next center proportional to D"(𝐱).

i D(x) D2(x) P(c2 = x(i))

1 3 9 9/137

2 2 4 4/137

…

7 4 16 16/137

…

N 3 9 9/137

Sum: 137 1.0

Initialization for K-Means

116

Example 1:
• One outlier
• Good

performance

Algorithm #3: K-Means++
• Let D(x) be the distance between a

point 𝑥 and its nearest center. Chose
the next center proportional to D"(𝐱).

Observations:
• Interpolates between random and

farthest point initialization
• Solves the problem with Gaussian

data
• And solves the outlier problem

Q&A

117

Q: In k-Means, since we don’t have a validation set, how do we
pick k?

A: Look at the training objective
function as a function of k
and pick the value at the
“elbo” of the curve.

Q: What if our random initialization for k-Means gives us poor
performance?

A: Do random restarts: that is, run k-means from scratch, say, 10
times and pick the run that gives the lowest training objective
function value.
The objective function is nonconvex, so we’re just looking for
the best local minimum.

J(c, z)

k

Learning Objectives
K-Means

You should be able to…
1. Distinguish between coordinate descent and block coordinate

descent
2. Define an objective function that gives rise to a "good"

clustering
3. Apply block coordinate descent to an objective function

preferring each point to be close to its nearest objective
function to obtain the K-Means algorithm

4. Implement the K-Means algorithm
5. Connect the non-convexity of the K-Means objective function

with the (possibly) poor performance of random initialization
118

