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Front Matter

11/25/24

* Announcements

- HWS8 released 11/17, due 11/25 (today!) at 11:59 PM

* Please be mindful of your grace day usage

(see the course syllabus for the policy)

* HW9 released 11/25 (today!), due 12/5 at 11:59 PM

* You are not expected to work on HW9 over

Thanksgiving break
* Relatedly, there are no OH over break
* You may only take at most 2 grace days on HW9

* Recitation for HW9 on Monday, 12/2 (after break)


https://www.cs.cmu.edu/~hchai2/courses/10601/#Syllabus
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* Input: D = {(x(") )}n=1'K
1. Initialize cluster centers u4, ..., Uy

2. While NOT CONVERGED
a. Assign each data point to the cluster with the

t cluster center:
2 ” neares
ecCd z(M) = arglinin ||x(") ~ ﬂkllz

K-means
Algorithm

b. Recompute the cluster centers:

1
— (n)
Hie = z *

n :Z(n)zk
where Nj, is the number of data points in cluster k

° Output: cluster centers u4, ..., g and cluster
assignments z(1, ..., z(V)

11/25/24



* |[dea: choose the value of K that minimizes the
objective function

Setting K
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- Randomly choose K data points to be the initial
cluster centers

Initializing Ve e
K-means:

Lloyd’s Method
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Initializing

K-means:
Lloyd’s Method
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- Randomly choose K data points to be the initial
cluster centers
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Initializing

K-means:
Lloyd’s Method
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- Randomly choose K data points to be the initial
cluster centers
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- Randomly choose K data points to be the initial
cluster centers

Initializing . . .
K-means:
® () ®

Lloyd’s Method

* Lloyd’s method converges to a local minimum and that
local minimum can be arbitrarily bad (relative to the

optimal clusters)

* Intuition: want initial cluster centers to be far apart
from one another
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Initializing

K-means:
Furthest Point
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Choose the first cluster center randomly from the
data points

For each other data point x, compute D(x), the
distance between x and the closest cluster center to x

Select the data point with the largest D (x) as the next
cluster center

Repeat 2 and 3 K — 1 times
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Initializing

K-means:
Furthest Point

11/25/24

Choose the first cluster center randomly from the
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Initializing

K-means:
Furthest Point
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Choose the first cluster center randomly from the
data points

For each other data point x, compute D(x), the
distance between x and the closest cluster center to x

Select the data point with the largest D (x) as the next
cluster center

Repeat 2 and 3 K — 1 times

.... o .
:.’.:. oo: @
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1. Choose the first cluster center randomly from the
data points

2. For each other data point x, compute D(x), the
distance between x and the closest cluster center to x

Initializing 3. Select the data point with the largest D(x) as the next
K-means: cluster center

Furthest Point 4. Repeat2and3 K — 1times
* Works great in the case of well-clustered data!

* Can struggle with outliers...

11/25/24
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Initializing

K-means:
K-means++

11/25/24

Choose the first cluster center randomly from the
data points

For each other data point x, compute D(x), the
distance between x and the closest cluster center to x

Sample the next cluster center with probability
proportional to D(x)?

Repeat 2 and 3 K — 1 times

. Probability of Being Selected

16/123
2 7 49 49/123
N 1 1 1/123

123 123/123 = 1
19



1. Choose the first cluster center randomly from the
data points

2. For each other data point x, compute D(x), the
distance between x and the closest cluster center to x

Initializing 3. Sample the next cluster center with probability
K-means: proportional to D (x)?

K-means++ 4. Repeat2and 3 K — 1 times

* K-means++ achieves a O(log K) approximation to the
optimal clustering in expectation!

* All initialization methods can benefit from multiple
random restarts

11/25/24
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K-means
Learning
Objectives

11/25/24

You should be able to...

* Distinguish between coordinate descent and block
coordinate descent

- Define an objective function that gives rise to a "good"
clustering

* Apply block coordinate descent to an objective function
preferring each point to be close to its nearest objective
function to obtain the K-Means algorithm

* Implement the K-Means algorithm

* Connect the nonconvexity of the K-Means objective
function with the (possibly) poor performance of
random initialization

21



- Goal: given some unlabeled data set, learn a latent
(typically lower-dimensional) representation

- Use cases:

* Reducing computational cost (runtime, storage, etc...)
Dimensiona“ty * Improving generalization

Reduction * Visualizing data

* Applications:

~ Lord em&éémfp
— i’V‘O\?&/vi&oAv Ao
— V‘é‘:‘cvw)s oN §0Cv&\ MLA,\Q F(.L&‘Jg//\ns

11/25/24

22



11/25/24

J(B) J(B)

Ridge or L2 Lasso or L1

Recall: L1 (or LO) Regularization

LO

J(B)
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Feature Elimination

11/25/24
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Feature Reduction

11/25/24
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Option A Option B (TOXIC) Option C

Which projection do you prefer (Q1) and why (Q2)?

11/25/24

26



Background:
Sample

Variance and
Covariance
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* Given a collection of N 1-dimensional samples

[x(l),x(z), ...,x(N)] from some random variable,

the sample variance is

1 = 1= 1 —
==Y (x®—p) ==Y [xO -2 ) 1@
N H) =N N £

* Given a collection of N D-dimensional samples

[x(l),x(z), . x(N)] from some random variable,

the sample covariance between dimension j and k is

@NE( ﬂ] —ﬁk Where “d__z (n)
=1
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Background:
Sample

Variance and
Covariance
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* Given a collection of N 1-dimensional samples

[x(l),x(z), ...,x(N)] from some random variable,

the sample variance is

1 1 1 —
— G2 =NZ(XO) _.a)z =Nz X(l) —Nz (n)
i=1 l=1 n=1

* Given a collection of N D-dimensional samples

[x(l),x(z), . x(N)] from some random variable,

the sample covariance matrix is
—[ (™ —pw™

- @) _ T
Z—NXTX where X =| (X7 — 1)
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* To be consistent, we will constrain principal components

to be orthogonal unit vectors that begin at the origin

* Preprocess data to be centered around the origin:

N
1
: — (n)
Centering the LK NZ"
n=
Data 2. %™ =xMW —yvn
B0k
72"

. T
F V)
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Reconstruction
Error
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* The projection of ™ onto a

vector v is

T~(n)
() — (v X
vl

"

Length of projection

) II;]IIz
v\

Direction of projection
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Reconstruction
Error

11/25/24

* The projection of %™ onto a unit vector v is

zW = (vTE™)p

N
D = argmi Z”az(m - (vT’JZ(”))v B
(;C'(n\ \ITX((\\>\/> < (n) (V(~(/\3\\/>

KT
(v (V\\TN ("\\ \/T - ~( “\> l
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Minimizing the
Reconstruction
Error
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V= argmln

i)

—_—
—

Z [# - ") |
V: IIVII2=1 =

N
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Maximizing the
Variance
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D = argmax v! (XTX)v
v:||v||5=1

k L(v) = yTx Xy — AT =)

\//\ \S AN nge\r\\f\&é(of %r "}'\7\
Mo\‘\’T\K KT% w/ {csmva\\rc >\
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Background:

Eigenvectors &
Eigenvalues
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* Given a square matrix A €

]RNXN RNXl :

,avectorv € is an

eigenvector of A iff there exists some scalar A such that

Av = Av
A
Ap = dv Intuition: A scales or stretches
. v but does not rotate it
>

* Key property: the eigenvectors of symmetric matrices

(e.g., the covariance matrix of a data set) are orthogonal!
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Maximizing the
Variance

11/25/24

e

D = argmax v! (XTX)v
vi|lvl|5=1
L, ) = v X"X)v—-A(lvll5 - 1)
= vIX"TX)v—-A(vTv-1)

oL
™ AX"X)v Nv

> X'X)0—-AW=0->X"X)D=AD

P

- D is an eigenvector of X7 X and A is the
corresponding eigenvalue!

- But which one?
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v =argmaxv' (X'X)v O

v:i||v||5=1 —r

XTX)o=m - p"X"X)p=0"D =21

—_—

- The first principal component is the eigenvector v, that
corresponds to the largest eigenvalue A4

- The second principal component is the eigenvector v,

Maximizing the
Variance

that corresponds to the second largest eigenvalue )1
- Y, and Y, are orthogonal
- Etc...

- A; is a measure of how much variance falls along v;

11/25/24 36



Principal

Components:
Example

11/25/24

Source: https://en.wikipedia.org/wiki/Principal

component analysis#/media/File:GaussianScatterPCA.svg
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https://en.wikipedia.org/wiki/Principal_component_analysis#/media/File:GaussianScatterPCA.svg

How can we
efficiently find

principal
components
(eigenvectors)?

11/25/24

Source: https://en.wikipedia.org/wiki/Principal component analysis#/media/File:GaussianScatterPCA.svg
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https://en.wikipedia.org/wiki/Principal_component_analysis#/media/File:GaussianScatterPCA.svg

- Every real-valued matrix X € RY*P can be expressed as

X =USsvt
- where:
Singular Value
Decomposition 1. U € RN*N _columns of U are eigenvectors of XX
(SVD) for PCA 2. Ve RP*P - columns of V are eigenvectors of XX

3. @ RY*P _ diagonal matrix whose entries are the

eigenvalues of X — squared entries are the

eigenvalues of XXT ar@

11/25/24
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PCA Algorithm
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 Input: D = {(x™ )}Z=1

1. Center the data

2. Use SVD to compute the eigenvalues and eigenvectors
of XTX

3. Collect the top p eigenvectors (corresponding to the p

largest eigenvalues), V, € RP*P
4. Project the data into the space defined by V,, Z = XV,

* Qutput: Z, the transformed (potentially

lower-dimensional) data

40



* Input: D = {(x(") )}:zl,p
1. Center the data

2. Use SVD to compute the eigenvalues and eigenvectors
of XTX

How many PCs

should we use? 3. Collect the top p eigenvectors (corresponding to the p

largest eigenvalues), V, € RP*P
4. Project the data into the space defined by V,, Z = XV,

* Qutput: Z, the transformed (potentially lower-

dimensional) data

11/25/24 41



Choosing the

number of PCs
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- Define a percentage of explained variance for the ith PC:

Ai/Z 4

* Select all PCs above some threshold of explained

variance, e.g., 5%

- Keep selecting PCs until the total explained variance

exceeds some threshold, e.g., 90%

* Evaluate on some downstream metric

42
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Figures courtesy of Matt Gormley



PCA Example:

MNIST Digits
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Figure courtesy of Matt Gormley
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PCA Example:

MNIST Digits
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Figure courtesy of Matt Gormley
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Shortcomings

of PCA
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Autoencoders
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Insight: neural
networks implicitly
learn low-dimensional
representations of

inputs in hidden layers
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(1) ~
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Autoencoders | / \\ |
(=) (&)

* Learn the weights by minimizing the reconstruction loss:

e(x) = |x—o®)|’

11111111



()
/
OOC

Autoencoders

Encoder
Decoder

11111111



Deep

Autoencoders
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Source: https://en.wikipedia.org/wiki/Autoencoder#/media/File:Autoencoder structure.png
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https://en.wikipedia.org/wiki/Autoencoder#/media/File:Autoencoder_structure.png
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PCA (A) vs. Autoencoders (B)

(Hinton and Salakhutdinov, 2006)

Source: https://www.science.org/doi/10.1126/science.1127647
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PCA

Learning
Objectives
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You should be able to...

* Define the sample mean, sample variance, and sample
covariance of a vector-valued dataset

- ldentify examples of high dimensional data and
common use cases for dimensionality reduction

- Draw the principal components of a given toy dataset

* Establish the equivalence of minimization of
reconstruction error with maximization of variance

* Given a set of principal components, project from high
to low dimensional space and do the reverse to produce
a reconstruction

* Explain the connection between PCA, eigenvectors,
eigenvalues, and covariance matrix

- Use common methods in linear algebra to obtain the

principal components
52



