10-301/601: Introduction to Machine Learning Lecture 25: Dimensionality Reduction

Matt Gormley & Henry Chai

11/25/24

Front Matter

- Announcements
 - HW8 released 11/17, due 11/25 (today!) at 11:59 PM
 - Please be mindful of your grace day usage (see <u>the course syllabus</u> for the policy)
 - HW9 released 11/25 (today!), due 12/5 at 11:59 PM
 - You are not expected to work on HW9 over Thanksgiving break
 - Relatedly, there are no OH over break
 - You may only take at most 2 grace days on HW9
 - Recitation for HW9 on Monday, 12/2 (after break)

Recall: *K*-means Algorithm

- Input: $\mathcal{D} = \{ (\boldsymbol{x}^{(n)}) \}_{n=1}^{N}, K$
- 1. Initialize cluster centers μ_1, \dots, μ_K
- 2. While NOT CONVERGED
 - a. Assign each data point to the cluster with the nearest cluster center:

 $z^{(n)} = \underset{k}{\operatorname{argmin}} \left\| \boldsymbol{x}^{(n)} - \boldsymbol{\mu}_{k} \right\|_{2}$

b. Recompute the cluster centers:

$$\boldsymbol{\mu}_{k} = \frac{1}{N_{k}} \sum_{\substack{n:z^{(n)}=k}} \boldsymbol{x}^{(n)}$$

where N_k is the number of data points in cluster k

• Output: cluster centers $\mu_1, ..., \mu_K$ and cluster assignments $z^{(1)}, ..., z^{(N)}$

Setting K

• Idea: choose the value of *K* that minimizes the objective function

- Randomly choose *K* data points to be the initial cluster centers

- Randomly choose *K* data points to be the initial cluster centers
- Lloyd's method converges to a local minimum and that local minimum can be arbitrarily bad (relative to the optimal clusters)
- Intuition: want initial cluster centers to be far apart from one another

- 1. Choose the first cluster center randomly from the data points
- 2. For each other data point x, compute D(x), the distance between x and the closest cluster center to x
- 3. Select the data point with the largest D(x) as the next cluster center
- 4. Repeat 2 and 3 K 1 times

- 1. Choose the first cluster center randomly from the data points
- 2. For each other data point x, compute D(x), the distance between x and the closest cluster center to x
- 3. Select the data point with the largest D(x) as the next cluster center
- 4. Repeat 2 and 3 K 1 times

- 1. Choose the first cluster center randomly from the data points
- 2. For each other data point x, compute D(x), the distance between x and the closest cluster center to x
- 3. Select the data point with the largest D(x) as the next cluster center
- 4. Repeat 2 and 3 K 1 times

- 1. Choose the first cluster center randomly from the data points
- 2. For each other data point x, compute D(x), the distance between x and the closest cluster center to x
- 3. Select the data point with the largest D(x) as the next cluster center
- 4. Repeat 2 and 3 K 1 times

- 1. Choose the first cluster center randomly from the data points
- 2. For each other data point x, compute D(x), the distance between x and the closest cluster center to x
- 3. Select the data point with the largest D(x) as the next cluster center
- 4. Repeat 2 and 3 K 1 times

- 1. Choose the first cluster center randomly from the data points
- 2. For each other data point x, compute D(x), the distance between x and the closest cluster center to x
- 3. Select the data point with the largest D(x) as the next cluster center
- 4. Repeat 2 and 3 K 1 times
- Works great in the case of well-clustered data!
- Can struggle with outliers...

Initializing *K*-means: *K*-means++

- 1. Choose the first cluster center randomly from the data points
- 2. For each other data point x, compute D(x), the distance between x and the closest cluster center to x
- 3. Sample the next cluster center with probability proportional to $D(x)^2$
- 4. Repeat 2 and 3 K 1 times

i	$D(\mathbf{x}^{i})$	$D(\mathbf{x}^{(i)})^2$	Probability of Being Selected
1	4	16	16/123
2	7	49	49/123
:	÷	:	÷
Ν	1	1	1/123
Total		123	123/123 = 1

Initializing *K*-means: *K*-means++

- 1. Choose the first cluster center randomly from the data points
- 2. For each other data point x, compute D(x), the distance between x and the closest cluster center to x
- 3. Sample the next cluster center with probability proportional to $D(x)^2$
- 4. Repeat 2 and 3 K 1 times
- K-means++ achieves a O(log K) approximation to the optimal clustering in expectation!
- All initialization methods can benefit from multiple random restarts

K-means Learning Objectives You should be able to...

- Distinguish between coordinate descent and block coordinate descent
- Define an objective function that gives rise to a "good" clustering
- Apply block coordinate descent to an objective function preferring each point to be close to its nearest objective function to obtain the K-Means algorithm
- Implement the K-Means algorithm
- Connect the nonconvexity of the K-Means objective function with the (possibly) poor performance of random initialization

Dimensionality Reduction

- Goal: given some unlabeled data set, learn a latent (typically lower-dimensional) representation
- Use cases:
 - Reducing computational cost (runtime, storage, etc...)
 - Improving generalization
 - Visualizing data
- Applications:

- word embeddings - iMage/video/audio - vaturgs on social media pletforms

Recall: *L*1 (or *L*0) Regularization

Feature Elimination

Feature Reduction

Which projection do you prefer (Q1) and why (Q2)?

Background: Sample Variance and Covariance • Given a collection of *N* 1-dimensional samples $[x^{(1)}, x^{(2)}, ..., x^{(N)}]$ from some random variable, the **sample variance** is

$$\widehat{\sigma}^2 = \frac{1}{N} \sum_{i=1}^{N} \left(x^{(i)} - \widehat{\mu} \right)^2 = \frac{1}{N} \sum_{i=1}^{N} \left(x^{(i)} - \frac{1}{N} \sum_{n=1}^{N} x^{(n)} \right)^2$$

• Given a collection of *N D*-dimensional samples $\begin{bmatrix} \boldsymbol{x}^{(1)}, \boldsymbol{x}^{(2)}, \dots, \boldsymbol{x}^{(N)} \end{bmatrix} \text{ from some random variable,}$ the **sample covariance** between dimension *j* and *k* is $\underbrace{\boldsymbol{x}_{jk}}_{i=1} = \frac{1}{N} \sum_{k=1}^{N} \left(x_{j}^{(i)} - \hat{\mu}_{j} \right) \left(x_{k}^{(i)} - \hat{\mu}_{k} \right) \text{ where } \hat{\mu}_{d} = \frac{1}{N} \sum_{n=1}^{N} x_{d}^{(n)}$ Background: Sample Variance and Covariance • Given a collection of *N* 1-dimensional samples $[x^{(1)}, x^{(2)}, ..., x^{(N)}]$ from some random variable, the **sample variance** is

$$\implies \hat{\sigma}^2 = \frac{1}{N} \sum_{i=1}^{N} \left(x^{(i)} - \hat{\mu} \right)^2 = \frac{1}{N} \sum_{i=1}^{N} \left(x^{(i)} - \frac{1}{N} \sum_{n=1}^{N} x^{(n)} \right)^2$$

• Given a collection of *N D*-dimensional samples $[x^{(1)}, x^{(2)}, ..., x^{(N)}]$ from some random variable,
the sample covariance matrix is

$$\Sigma = \frac{1}{N} X^T X \text{ where } X = \begin{bmatrix} (\mathbf{x}^{(1)} - \boldsymbol{\mu})^T \\ (\mathbf{x}^{(2)} - \boldsymbol{\mu})^T \\ \vdots \\ (\mathbf{x}^{(N)} - \boldsymbol{\mu})^T \end{bmatrix}$$

Centering the Data

- To be consistent, we will constrain principal components to be *orthogonal unit vectors* that begin at the origin
- Preprocess data to be centered around the origin:

1.
$$\boldsymbol{\mu} = \frac{1}{N} \sum_{n=1}^{N} \boldsymbol{x}^{(n)}$$

2. $\widetilde{\boldsymbol{x}}^{(n)} = \boldsymbol{x}^{(n)} - \boldsymbol{\mu} \forall n$
3. $X = \begin{bmatrix} \widetilde{\boldsymbol{x}}^{(1)^{T}} \\ \widetilde{\boldsymbol{x}}^{(2)^{T}} \\ \vdots \\ \widetilde{\boldsymbol{x}}^{(N)^{T}} \end{bmatrix}$

Reconstruction Error

$$(a-b)^T = a^T - b^T$$

Reconstruction Error • The projection of $\widetilde{\mathbf{x}}^{(n)}$ onto a unit vector \mathbf{v} is $\mathbf{z}^{(n)} = (\mathbf{v}^T \widetilde{\mathbf{x}}^{(n)}) \mathbf{v}$

$$\hat{\boldsymbol{v}} = \underset{\left[\boldsymbol{v}: \| \boldsymbol{v} \|_{2}^{2} = 1 \right]}{\operatorname{argmin}} \sum_{n=1}^{N} \left\| \boldsymbol{\tilde{x}}^{(n)} - (\boldsymbol{v}^{T} \boldsymbol{\tilde{x}}^{(n)}) \boldsymbol{v} \right\|_{2}^{2}$$

$$\left(\boldsymbol{\tilde{x}}^{(n)} - (\boldsymbol{v}^{T} \boldsymbol{\tilde{x}}^{(n)}) \boldsymbol{v} \right)^{T} \left(\boldsymbol{\tilde{x}}^{(n)} - (\boldsymbol{v}^{T} \boldsymbol{\tilde{x}}^{(n)}) \boldsymbol{v} \right)$$

$$= \boldsymbol{\tilde{x}}^{(n)T} \boldsymbol{\tilde{x}}^{(n)} - 2(\boldsymbol{v}^{T} \boldsymbol{\tilde{x}}^{(n)}) \boldsymbol{v}^{T} \boldsymbol{\tilde{x}}^{(n)} + (\boldsymbol{v}^{T} \boldsymbol{\tilde{x}}^{(n)})^{2} \boldsymbol{v}^{T} \boldsymbol{v}$$

$$= \boldsymbol{\tilde{x}}^{(n)T} \boldsymbol{\tilde{x}}^{(n)} - (\boldsymbol{v}^{T} \boldsymbol{\tilde{x}}^{(n)})^{2}$$

Minimizing the Reconstruction Error

$$\hat{v} = \underset{\substack{v: \|v\|_{2}^{2}=1}{\operatorname{argmin}} \sum_{n=1}^{N} \|\tilde{x}^{(n)} - (v^{T}\tilde{x}^{(n)})v\|_{2}^{2}$$

$$= \underset{\substack{v: \|v\|_{2}^{2}=1}{\operatorname{crs}} \sum_{n=1}^{N} \widetilde{x}^{(n)} \widetilde{x}^{(n)} - (v^{T}\tilde{x}^{(n)})^{2}$$

$$= \underset{\substack{v: \|v\|_{2}^{2}=1}{\operatorname{crs}} \sum_{n=1}^{N} (v^{T}\tilde{x}^{(n)})^{2} \qquad \text{is equivalent} \\ \underset{\substack{v: \|v\|_{2}^{2}=1}{\operatorname{crs}} \sqrt{\tau} \left(\sum_{n=1}^{N} \tilde{x}^{(n)} \tilde{x}^{(n)T}\right) \sqrt{\tau} \\ \underset{\substack{v: \|v\|_{2}^{2}=1}{\operatorname{crs}} \sqrt{\tau} \left(\sum_{n=1}^{N} \tilde{x}^{(n)} \tilde{x}^{(n)T}\right) \sqrt{\tau} \\ \underset{\substack{v: \|v\|_{2}^{2}=1}{\operatorname{crs}} \sqrt{\tau} \left(\sum_{n=1}^{N} \tilde{x}^{(n)} \tilde{x}^{(n)} \right) \\ \underset{\substack{v: \|v\|_{2}^{2}=1}{\operatorname{crs}} \sqrt{\tau} \left(\sum_{n=1}^{N} \tilde{x}^{(n)} \tilde{x}^{(n)T}\right) \sqrt{\tau} \\ \underset{\substack{v: \|v\|_{2}^{2}=1}{\operatorname{crs}} \sqrt{\tau} \left(\sum_{n=1}^{N} \tilde{x}^{(n)} \tilde{x}^{(n)} \right) \\ \underset{\substack{v: \|v\|_{2}^{2}=1}{\operatorname{crs}} \sqrt{\tau} \left(\sum_{n=1}^{N} \tilde{x}^{(n)} \right) } \\ \underset{\substack{v: \|v\|_{2}^{2}=1}{\operatorname{crs$$

Maximizing the Variance

Background: Eigenvectors & Eigenvalues • Given a square matrix $A \in \mathbb{R}^{N \times N}$, a vector $v \in \mathbb{R}^{N \times 1}$ is an **eigenvector** of A iff there exists some scalar λ such that

 $A\boldsymbol{v} = \lambda\boldsymbol{v}$

Intuition: *A* scales or stretches *v* but does not rotate it

• Key property: the eigenvectors of <u>symmetric</u> matrices (e.g., the covariance matrix of a data set) are orthogonal!

Maximizing the Variance

$$\widehat{\boldsymbol{v}} = \operatorname*{argmax}_{\boldsymbol{v}: \|\boldsymbol{v}\|_{2}^{2}=1} \boldsymbol{v}^{T} (X^{T} X) \boldsymbol{v}$$

$$\mathcal{L}(\boldsymbol{v},\lambda) = \boldsymbol{v}^T(X^T X)\boldsymbol{v} - \lambda(\|\boldsymbol{v}\|_2^2 - 1)$$
$$= \boldsymbol{v}^T(X^T X)\boldsymbol{v} - \lambda(\boldsymbol{v}^T \boldsymbol{v} - 1)$$

$$\frac{\partial \mathcal{L}}{\partial \boldsymbol{v}} = \boldsymbol{\chi}(\boldsymbol{X}^T \boldsymbol{X}) \boldsymbol{v} - \boldsymbol{\chi} \boldsymbol{\lambda} \boldsymbol{v}$$

 $\rightarrow (X^T X)\widehat{\boldsymbol{v}} - \lambda\widehat{\boldsymbol{v}} = 0 \rightarrow (X^T X)\widehat{\boldsymbol{v}} = \lambda\widehat{\boldsymbol{v}}$

- $\hat{\boldsymbol{v}}$ is an eigenvector of $X^T X$ and λ is the corresponding eigenvalue!
- But which one?

Maximizing the Variance

- The first principal component is the eigenvector \widehat{v}_1 that corresponds to the largest eigenvalue λ_1
- The second principal component is the eigenvector \hat{v}_2 that corresponds to the second largest eigenvalue λ_2
 - $\widehat{\boldsymbol{v}}_1$ and $\widehat{\boldsymbol{v}}_2$ are orthogonal
- Etc ...
- λ_i is a measure of how much variance falls along \hat{v}_i

Principal Components: Example

How can we efficiently find principal components (eigenvectors)?

Singular Value Decomposition (SVD) for PCA • Every real-valued matrix $X \in \mathbb{R}^{N \times D}$ can be expressed as

 $X = USV^T$

where:

- 1. $U \in \mathbb{R}^{N \times N}$ columns of U are eigenvectors of XX^T
- 2. $V \in \mathbb{R}^{D \times D}$ columns of V are eigenvectors of $X^T X$
- 3. $S \in \mathbb{R}^{N \times D}$ diagonal matrix whose entries are the eigenvalues of $X \rightarrow$ squared entries are the eigenvalues of XX^T and X^TX

PCA Algorithm

- Input: $\mathcal{D} = \{(\mathbf{x}^{(n)})\}_{n=1}^{N} (\rho)$
- 1. Center the data
- 2. Use SVD to compute the eigenvalues and eigenvectors of $X^T X$
- 3. Collect the top ρ eigenvectors (corresponding to the ρ largest eigenvalues), $V_{\rho} \in \mathbb{R}^{D \times \rho}$
- 4. Project the data into the space defined by V_{ρ} , $Z = XV_{\rho}$
- Output: *Z*, the transformed (potentially lower-dimensional) data

How many PCs should we use?

- Input: $\mathcal{D} = \{ (\mathbf{x}^{(n)}) \}_{n=1}^{N}, \rho$
- 1. Center the data
- 2. Use SVD to compute the eigenvalues and eigenvectors of $X^T X$
- 3. Collect the top ρ eigenvectors (corresponding to the ρ largest eigenvalues), $V_{\rho} \in \mathbb{R}^{D \times \rho}$
- 4. Project the data into the space defined by V_{ρ} , $Z = XV_{\rho}$
- Output: *Z*, the transformed (potentially lowerdimensional) data

Choosing the number of PCs

• Define a percentage of explained variance for the i^{th} PC:

 $\frac{\lambda_i}{\sum \lambda_j}$

- Select all PCs above some threshold of explained variance, e.g., 5%
- Keep selecting PCs until the total explained variance exceeds some threshold, e.g., 90%
- Evaluate on some downstream metric

PCA Example: MNIST Digits

PCA Example: MNIST Digits

PCA Example: MNIST Digits

Shortcomings of PCA

Autoencoders

Insight: neural networks implicitly learn low-dimensional representations of inputs in hidden layers

Autoencoders

• Learn the weights by minimizing the reconstruction loss:

$$e(\boldsymbol{x}) = \left\|\boldsymbol{x} - \boldsymbol{o}^{(L)}\right\|_{2}^{2}$$

Autoencoders

Deep Autoencoders

PCA (A) vs. Autoencoders (B) (Hinton and Salakhutdinov, 2006)

PCA Learning Objectives You should be able to...

- Define the sample mean, sample variance, and sample covariance of a vector-valued dataset
- Identify examples of high dimensional data and common use cases for dimensionality reduction
- Draw the principal components of a given toy dataset
- Establish the equivalence of minimization of reconstruction error with maximization of variance
- Given a set of principal components, project from high to low dimensional space and do the reverse to produce a reconstruction
- Explain the connection between PCA, eigenvectors, eigenvalues, and covariance matrix
- Use common methods in linear algebra to obtain the principal components