
10-301/601: Introduction 
to Machine Learning
Lecture 25: 
Dimensionality Reduction
Matt Gormley & Henry Chai

11/25/24



Front Matter

 Announcements

 HW8 released 11/17, due 11/25 (today!) at 11:59 PM 

 Please be mindful of your grace day usage 

(see the course syllabus for the policy)

 HW9 released 11/25 (today!), due 12/5 at 11:59 PM 

 You are not expected to work on HW9 over 

Thanksgiving break

 Relatedly, there are no OH over break

 You may only take at most 2 grace days on HW9

 Recitation for HW9 on Monday, 12/2 (after break)
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https://www.cs.cmu.edu/~hchai2/courses/10601/#Syllabus


Recall: 
𝐾-means 
Algorithm
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 Input: 𝒟 = 𝒙 𝑛
𝑛=1

𝑁
, 𝐾

1. Initialize cluster centers 𝝁1, … , 𝝁𝐾

2. While NOT CONVERGED

a. Assign each data point to the cluster with the 
nearest cluster center:

𝑧(𝑛) = argmin
𝑘

𝒙 𝑛 − 𝝁𝑘 2

b. Recompute the cluster centers:

𝝁𝑘 =
1

𝑁𝑘
෍

𝑛 ∶𝑧 𝑛 =𝑘

𝒙 𝑛

where 𝑁𝑘 is the number of data points in cluster 𝑘

 Output: cluster centers 𝝁1, … , 𝝁𝐾 and cluster 

assignments 𝑧 1 , … , 𝑧 𝑁

How do we set these 
hyperparameters?



Setting 𝐾

 Idea: choose the value of 𝐾 that minimizes the 

objective function 

 Better Idea: look for the characteristic “elbow” or 

largest decrease when going from 𝐾 − 1 to 𝐾
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 Randomly choose 𝐾 data points to be the initial 
cluster centers 

Initializing 
𝐾-means: 
Lloyd’s Method
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Initializing 
𝐾-means: 
Lloyd’s Method
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 Randomly choose 𝐾 data points to be the initial 
cluster centers 

 Lloyd’s method converges to a local minimum and that 
local minimum can be arbitrarily bad (relative to the 
optimal clusters)

 Intuition: want initial cluster centers to be far apart 
from one another



Initializing 
𝐾-means: 
Furthest Point
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1. Choose the first cluster center randomly from the 

data points

2. For each other data point 𝒙, compute 𝐷 𝒙 , the 

distance between 𝒙 and the closest cluster center to 𝒙

3. Select the data point with the largest 𝐷 𝒙 as the next 

cluster center 

4. Repeat 2 and 3 𝐾 − 1 times
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1. Choose the first cluster center randomly from the 

data points

2. For each other data point 𝒙, compute 𝐷 𝒙 , the 

distance between 𝒙 and the closest cluster center to 𝒙

3. Select the data point with the largest 𝐷 𝒙 as the next 

cluster center 

4. Repeat 2 and 3 𝐾 − 1 times

 Works great in the case of well-clustered data!

 Can struggle with outliers... 



Initializing 
𝐾-means:
𝐾-means++
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1. Choose the first cluster center randomly from the 

data points

2. For each other data point 𝒙, compute 𝐷 𝒙 , the 

distance between 𝒙 and the closest cluster center to 𝒙

3. Sample the next cluster center with probability  

proportional to 𝐷 𝒙 2

4. Repeat 2 and 3 𝐾 − 1 times

𝑖 𝐷 𝒙(𝑖) 𝐷 𝒙(𝑖)
2

Probability of Being Selected

1 4 16 16/123

2 7 49 49/123

⋮ ⋮ ⋮ ⋮

𝑁 1 1 1/123

Total 123 123/123 = 1



Initializing 
𝐾-means:
𝐾-means++
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1. Choose the first cluster center randomly from the 

data points

2. For each other data point 𝒙, compute 𝐷 𝒙 , the 

distance between 𝒙 and the closest cluster center to 𝒙

3. Sample the next cluster center with probability  

proportional to 𝐷 𝒙 2

4. Repeat 2 and 3 𝐾 − 1 times

 𝐾-means++ achieves a 𝑂 log𝐾 approximation to the 

optimal clustering in expectation! 

 All initialization methods can benefit from multiple 

random restarts



𝐾-means 
Learning 
Objectives

You should be able to…

 Distinguish between coordinate descent and block 
coordinate descent

 Define an objective function that gives rise to a "good" 
clustering

 Apply block coordinate descent to an objective function 
preferring each point to be close to its nearest objective 
function to obtain the K-Means algorithm

 Implement the K-Means algorithm 

 Connect the nonconvexity of the K-Means objective 
function with the (possibly) poor performance of 
random initialization
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Dimensionality 
Reduction

11/25/24

 Goal: given some unlabeled data set, learn a latent 

(typically lower-dimensional) representation

 Use cases:

 Reducing computational cost (runtime, storage, etc…)

 Improving generalization

 Visualizing data

 Applications:

 High-resolution images/videos

 Text data

 Financial or transaction data

22



Recall: 𝐿1 (or 𝐿0) Regularization
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Ridge or 𝐿2 Lasso or 𝐿1 𝐿0
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𝑥1

𝑥2

𝑥1

𝑥2

Feature Elimination ∈Dimensionality Reduction
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𝑥1

𝑥2

Feature Reduction

𝑥1

𝑥2
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𝑥1

𝑥2

Which projection do you prefer (Q1) and why (Q2)?

𝑥1

𝑥2

Option A Option C

26

Option B (TOXIC)



Background: 
Sample 
Variance and 
Covariance
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 Given a collection of 𝑁 1-dimensional samples 

𝑥 1 , 𝑥 2 , … , 𝑥 𝑁 from some random variable, 

the sample variance is

ො𝜎2 =
1

𝑁
෍

𝑖=1

𝑁

𝑥 𝑖 − Ƹ𝜇
2
=
1

𝑁
෍

𝑖=1

𝑁

𝑥 𝑖 −
1

𝑁
෍

𝑛=1

𝑁

𝑥 𝑛

2

 Given a collection of 𝑁 𝐷-dimensional samples 

𝒙 1 , 𝒙 2 , … , 𝒙 𝑁 from some random variable, 

the sample covariance between dimension 𝑗 and 𝑘 is

Σ𝑗𝑘 =
1

𝑁
෍

𝑖=1

𝑁

𝑥𝑗
𝑖
− Ƹ𝜇𝑗 𝑥𝑘

𝑖
− Ƹ𝜇𝑘 where Ƹ𝜇𝑑 =

1

𝑁
෍

𝑛=1

𝑁

𝑥𝑑
𝑛
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ො𝜎2 =
1

𝑁
෍

𝑖=1

𝑁

𝑥 𝑖 − Ƹ𝜇
2
=
1

𝑁
෍

𝑖=1

𝑁

𝑥 𝑖 −
1

𝑁
෍

𝑛=1

𝑁

𝑥 𝑛

2

 Given a collection of 𝑁 𝐷-dimensional samples 

𝒙 1 , 𝒙 2 , … , 𝒙 𝑁 from some random variable, 

the sample covariance matrix is

Σ =
1

𝑁
𝑋𝑇𝑋 where 𝑋 =

(𝒙 1 − 𝝁)𝑇

(𝒙 2 − 𝝁)𝑇

⋮
(𝒙 𝑁 − 𝝁)𝑇
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Centering the 
Data

 To be consistent, we will constrain principal components 

to be orthogonal unit vectors that begin at the origin

 Preprocess data to be centered around the origin:

1. 𝝁 =
1

𝑁
෍

𝑛=1

𝑁

𝒙 𝑛

2. ෥𝒙 𝑛 = 𝒙 𝑛 − 𝝁 ∀ 𝑛

3. 𝑋 =

෥𝒙 1 𝑇

෥𝒙 2 𝑇

⋮

෥𝒙 𝑁 𝑇
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Reconstruction 
Error

 The projection of ෥𝒙 𝑛 onto a unit vector 𝒗 is

𝒛 𝑛 =
𝒗𝑇෥𝒙 𝑛

𝒗 2

𝒗

𝒗 2

11/25/24

Length of projection Direction of projection
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 The projection of ෥𝒙 𝑛 onto a unit vector 𝒗 is

𝒛 𝑛 = 𝒗𝑇෥𝒙 𝑛 𝒗

෥𝒙 𝑛 − 𝒗𝑇෥𝒙 𝑛 𝒗
2

2

= ෥𝒙 𝑛 𝑇
෥𝒙 𝑛 − 2 𝒗𝑇෥𝒙 𝑛 𝒗𝑇෥𝒙 𝑛 + 𝒗𝑇෥𝒙 𝑛 𝒗𝑇෥𝒙 𝑛 𝒗𝑇𝒗

= ෥𝒙 𝑛 𝑇
෥𝒙 𝑛 − 𝒗𝑇෥𝒙 𝑛 𝒗𝑇෥𝒙 𝑛

= ෥𝒙 𝑛
2

2
− 𝒗𝑇෥𝒙 𝑛 2

Reconstruction 
Error

11/25/24

ෝ𝒗 = argmin
𝒗: 𝒗 2

2=1

෍

𝑛=1

𝑁

෥𝒙 𝑛 − 𝒗𝑇෥𝒙 𝑛 𝒗
2

2
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Minimizing the
Reconstruction 
Error 

⇕
Maximizing the
Variance
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ෝ𝒗 = argmin
𝒗: 𝒗 2

2=1

෍

𝑛=1

𝑁

෥𝒙 𝑛 − 𝒗𝑇෥𝒙 𝑛 𝒗
2

2

ෝ𝒗 = argmin
𝒗: 𝒗 2

2=1

෍

𝑛=1

𝑁

෥𝒙 𝑛
2

2
− 𝒗𝑇෥𝒙 𝑛 2

ෝ𝒗 = argmax
𝒗: 𝒗 2

2=1

෍

𝑛=1

𝑁

𝒗𝑇෥𝒙 𝑛 2 Variance of projections 

(෥𝒙 𝑛 are centered)

ෝ𝒗 = argmax
𝒗: 𝒗 2

2=1

𝒗𝑇 ෍

𝑛=1

𝑁

෥𝒙 𝑛 ෥𝒙 𝑛 𝑇
𝒗

ෝ𝒗 = argmax
𝒗: 𝒗 2

2=1

𝒗𝑇 𝑋𝑇𝑋 𝒗

32



• ෝ𝒗 is an eigenvector of 𝑋𝑇𝑋 and 𝜆 is the 

corresponding eigenvalue! 

Maximizing the
Variance
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ෝ𝒗 = argmax
𝒗: 𝒗 2

2=1

𝒗𝑇 𝑋𝑇𝑋 𝒗

ℒ 𝒗, 𝜆 = 𝒗𝑇 𝑋𝑇𝑋 𝒗 − 𝜆 𝒗 2
2 − 1

ℒ 𝒗, 𝜆 = 𝒗𝑇 𝑋𝑇𝑋 𝒗 − 𝜆 𝒗𝑇𝒗 − 1

𝜕ℒ

𝜕𝒗
= 2 𝑋𝑇𝑋 𝒗 − 2𝜆𝒗

𝜕ℒ

𝜕𝒗
→ 2 𝑋𝑇𝑋 ෝ𝒗 − 2𝜆ෝ𝒗 = 0 → 𝑋𝑇𝑋 ෝ𝒗 = 𝜆ෝ𝒗

𝜕ℒ

𝜕𝒗

33



Background: 
Eigenvectors & 
Eigenvalues

 Given a square matrix 𝐴 ∈ ℝ𝑁×𝑁, a vector 𝒗 ∈ ℝ𝑁×1 is an 

eigenvector of 𝐴 iff there exists some scalar 𝜆 such that

𝐴𝒗 = 𝜆𝒗

 Key property: the eigenvectors of symmetric matrices 

(e.g., the covariance matrix of a data set) are orthogonal! 
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𝒗
𝐴𝒗 = 𝜆𝒗

Intuition: 𝐴 scales or stretches 
𝒗 but does not rotate it  



Maximizing the
Variance
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ෝ𝒗 = argmax
𝒗: 𝒗 2

2=1

𝒗𝑇 𝑋𝑇𝑋 𝒗

ℒ 𝒗, 𝜆 = 𝒗𝑇 𝑋𝑇𝑋 𝒗 − 𝜆 𝒗 2
2 − 1

ℒ 𝒗, 𝜆 = 𝒗𝑇 𝑋𝑇𝑋 𝒗 − 𝜆 𝒗𝑇𝒗 − 1

𝜕ℒ

𝜕𝒗
= 2 𝑋𝑇𝑋 𝒗 − 2𝜆𝒗

𝜕ℒ

𝜕𝒗
→ 2 𝑋𝑇𝑋 ෝ𝒗 − 2𝜆ෝ𝒗 = 0 → 𝑋𝑇𝑋 ෝ𝒗 = 𝜆ෝ𝒗

𝜕ℒ

𝜕𝒗
• ෝ𝒗 is an eigenvector of 𝑋𝑇𝑋 and 𝜆 is the 

corresponding eigenvalue! 

• But which one?
35



Maximizing the
Variance
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ෝ𝒗 = argmax
𝒗: 𝒗 2

2=1

𝒗𝑇 𝑋𝑇𝑋 𝒗

𝑋𝑇𝑋 ෝ𝒗 = 𝜆ෝ𝒗 → ෝ𝒗𝑇 𝑋𝑇𝑋 ෝ𝒗 = 𝜆ෝ𝒗𝑇ෝ𝒗 = 𝜆

• The first principal component is the eigenvector ෝ𝒗1 that 

corresponds to the largest eigenvalue 𝜆1

• The second principal component is the eigenvector ෝ𝒗2

that corresponds to the second largest eigenvalue 𝜆2

• ෝ𝒗1 and ෝ𝒗2 are orthogonal 

• Etc … 

• 𝜆𝑖 is a measure of how much variance falls along ෝ𝒗𝑖

36



Principal 
Components: 
Example

11/25/24 Source: https://en.wikipedia.org/wiki/Principal_component_analysis#/media/File:GaussianScatterPCA.svg 37
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11/25/24 Source: https://en.wikipedia.org/wiki/Principal_component_analysis#/media/File:GaussianScatterPCA.svg

How can we 
efficiently find 
principal 
components 
(eigenvectors)?

38
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Singular Value 
Decomposition 
(SVD) for PCA

 Every real-valued matrix 𝑋 ∈ ℝ𝑁×𝐷 can be expressed as

𝑋 = 𝑈𝑆𝑉𝑇

where:

1. 𝑈 ∈ ℝ𝑁×𝑁 - columns of 𝑈 are eigenvectors of 𝑋𝑋𝑇

2. 𝑉 ∈ ℝ𝐷×𝐷 - columns of 𝑉 are eigenvectors of 𝑋𝑇𝑋

3. 𝑆 ∈ ℝ𝑁×𝐷 - diagonal matrix whose entries are the   

eigenvalues of 𝑋 → squared entries are the 

eigenvalues of 𝑋𝑋𝑇 and 𝑋𝑇𝑋
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PCA Algorithm

11/25/24

 Input: 𝒟 = 𝒙 𝑛
𝑛=1

𝑁
, 𝜌

1. Center the data 

2. Use SVD to compute the eigenvalues and eigenvectors 

of 𝑋𝑇𝑋

3. Collect the top 𝜌 eigenvectors (corresponding to the 𝜌

largest eigenvalues), 𝑉𝜌 ∈ ℝ
𝐷×𝜌

4. Project the data into the space defined by 𝑉𝜌, 𝑍 = 𝑋𝑉𝜌

 Output: 𝑍, the transformed (potentially lower-

dimensional) data

40



How many PCs 
should we use?
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 Input: 𝒟 = 𝒙 𝑛
𝑛=1

𝑁
, 𝜌

1. Center the data 

2. Use SVD to compute the eigenvalues and eigenvectors 

of 𝑋𝑇𝑋

3. Collect the top 𝜌 eigenvectors (corresponding to the 𝜌

largest eigenvalues), 𝑉𝜌 ∈ ℝ
𝐷×𝜌

4. Project the data into the space defined by 𝑉𝜌, 𝑍 = 𝑋𝑉𝜌

 Output: 𝑍, the transformed (potentially lower-

dimensional) data

41



Choosing the 
number of PCs

 Define a percentage of explained variance for the 𝑖th PC: 

൘
𝜆𝑖

σ𝜆𝑗

 Select all PCs above some threshold of explained 

variance, e.g., 5%

 Keep selecting PCs until the total explained variance 

exceeds some threshold, e.g., 90%

 Evaluate on some downstream metric
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PCA Example: 
MNIST Digits

11/25/24 Figures courtesy of Matt Gormley 43
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PCA Example: 
MNIST Digits
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Shortcomings 
of PCA

 Principal components are 

orthogonal (unit) vectors

 Principal components can 

be expressed as linear 

combinations of the data
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Insight: neural 

networks implicitly 

learn low-dimensional 

representations of 

inputs in hidden layersAutoencoders

11/25/24

1

𝜃

𝜃

1

𝑥1

𝑥𝐷

1

𝑥2

⋮
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 Learn the weights by minimizing the reconstruction loss: 

Autoencoders

11/25/24

𝑜1
(𝐿)

𝑜𝐷
(𝐿)

𝑜2
(𝐿)

⋮

1

𝜃

𝜃

1

𝑥1

𝑥𝐷

1

𝑥2

⋮

𝑒 𝒙 = 𝒙 − 𝒐 𝐿
2

2
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Autoencoders

11/25/24

𝑜1
(𝐿)

𝑜𝐷
(𝐿)

𝑜2
(𝐿)

⋮

1

𝜃

𝜃

1

𝑥1

𝑥𝐷

1

𝑥2

⋮

Encoder
Decoder
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11/25/24 Source: https://en.wikipedia.org/wiki/Autoencoder#/media/File:Autoencoder_structure.png

Deep
Autoencoders

50
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PCA (A) vs. Autoencoders (B)
(Hinton and Salakhutdinov, 2006)

11/25/24 Source: https://www.science.org/doi/10.1126/science.1127647 51

https://www.science.org/doi/10.1126/science.1127647


PCA 
Learning 
Objectives

You should be able to…

 Define the sample mean, sample variance, and sample 
covariance of a vector-valued dataset

 Identify examples of high dimensional data and 
common use cases for dimensionality reduction 

 Draw the principal components of a given toy dataset

 Establish the equivalence of minimization of 
reconstruction error with maximization of variance

 Given a set of principal components, project from high 
to low dimensional space and do the reverse to produce 
a reconstruction

 Explain the connection between PCA, eigenvectors, 
eigenvalues, and covariance matrix

 Use common methods in linear algebra to obtain the 
principal components
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