10-301/601: Introduction to Machine Learning Lecture 25: Dimensionality Reduction

Matt Gormley & Henry Chai 11/25/24

Front Matter

- Announcements
 - HW8 released 11/17, due 11/25 (today!) at 11:59 PM
 - Please be mindful of your grace day usage (see <u>the course syllabus</u> for the policy)
 - HW9 released 11/25 (today!), due 12/5 at 11:59 PM
 - You are not expected to work on HW9 over Thanksgiving break
 - Relatedly, there are no OH over break
 - You may only take at most 2 grace days on HW9
 - Recitation for HW9 on Monday, 12/2 (after break)

Recall: *K*-means Algorithm

How do we set these hyperparameters?

• Input:
$$\mathcal{D} = \{(x^{(n)})\}_{n=1}^{N}, K$$

- 1. Initialize cluster centers μ_1, \dots, μ_K
- While NOT CONVERGED
 - Assign each data point to the cluster with the nearest cluster center:

$$z^{(n)} = \underset{k}{\operatorname{argmin}} \| \boldsymbol{x}^{(n)} - \boldsymbol{\mu}_k \|_2$$

b. Recompute the cluster centers:

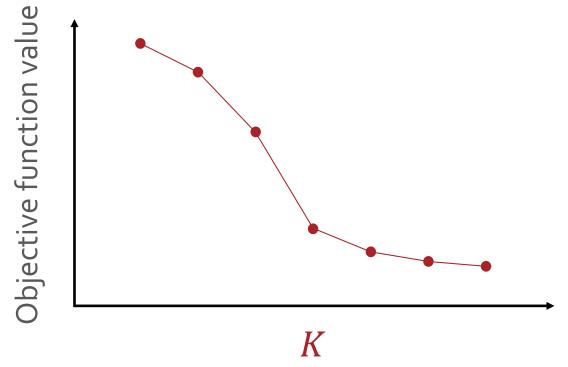
$$\boldsymbol{\mu}_k = \frac{1}{N_k} \sum_{n: z^{(n)} = k} \boldsymbol{x}^{(n)}$$

where N_k is the number of data points in cluster k

• Output: cluster centers $\mu_1, ..., \mu_K$ and cluster assignments $z^{(1)}, ..., z^{(N)}$

Setting *K*

• Idea: choose the value of *K* that minimizes the objective function



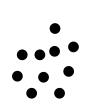
• Better Idea: look for the characteristic "elbow" or largest decrease when going from K-1 to K

 Randomly choose K data points to be the initial cluster centers

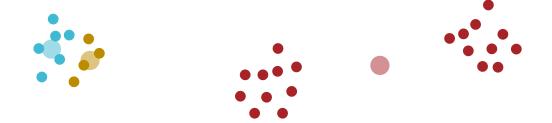
 Randomly choose K data points to be the initial cluster centers

 Randomly choose K data points to be the initial cluster centers

 Randomly choose K data points to be the initial cluster centers



 Randomly choose K data points to be the initial cluster centers



 Randomly choose K data points to be the initial cluster centers

•

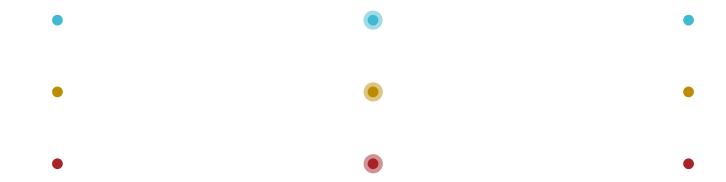
•

• •

 Randomly choose K data points to be the initial cluster centers

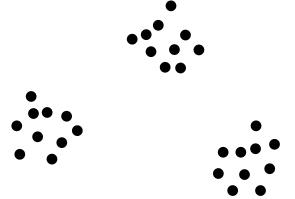
•			
•			(
•			

 Randomly choose K data points to be the initial cluster centers

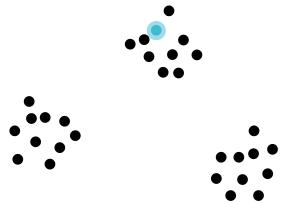


- Lloyd's method converges to a local minimum and that local minimum can be arbitrarily bad (relative to the optimal clusters)
- Intuition: want initial cluster centers to be far apart from one another

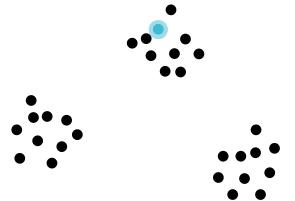
- Choose the first cluster center randomly from the data points
- 2. For each other data point x, compute D(x), the distance between x and the closest cluster center to x
- 3. Select the data point with the largest D(x) as the next cluster center
- 4. Repeat 2 and 3 K 1 times



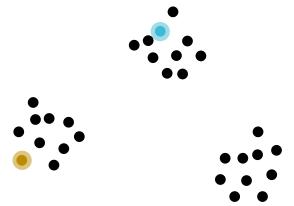
- Choose the first cluster center randomly from the data points
- 2. For each other data point x, compute D(x), the distance between x and the closest cluster center to x
- 3. Select the data point with the largest D(x) as the next cluster center
- 4. Repeat 2 and 3 K 1 times



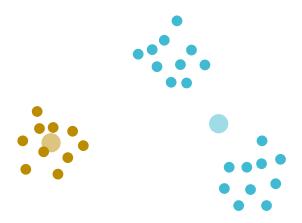
- Choose the first cluster center randomly from the data points
- 2. For each other data point x, compute D(x), the distance between x and the closest cluster center to x
- 3. Select the data point with the largest D(x) as the next cluster center
- 4. Repeat 2 and 3 K 1 times



- Choose the first cluster center randomly from the data points
- 2. For each other data point x, compute D(x), the distance between x and the closest cluster center to x
- 3. Select the data point with the largest D(x) as the next cluster center
- 4. Repeat 2 and 3 K 1 times



- Choose the first cluster center randomly from the data points
- 2. For each other data point x, compute D(x), the distance between x and the closest cluster center to x
- 3. Select the data point with the largest D(x) as the next cluster center
- 4. Repeat 2 and 3 K 1 times



- Choose the first cluster center randomly from the data points
- 2. For each other data point x, compute D(x), the distance between x and the closest cluster center to x
- 3. Select the data point with the largest D(x) as the next cluster center
- 4. Repeat 2 and 3 K-1 times
- Works great in the case of well-clustered data!
- Can struggle with outliers...

Initializing K-means: K-means++

- Choose the first cluster center randomly from the data points
- 2. For each other data point x, compute D(x), the distance between x and the closest cluster center to x
- 3. Sample the next cluster center with probability proportional to $D(x)^2$
- 4. Repeat 2 and 3 K 1 times

i	$D(x^{(i)})$	$D(x^{(i)})^2$	Probability of Being Selected
1	4	16	16/123
2	7	49	49/123
:	:	:	:
N	1	1	1/123
Total		123	123/123 = 1

Initializing *K*-means: *K*-means++

- Choose the first cluster center randomly from the data points
- 2. For each other data point x, compute D(x), the distance between x and the closest cluster center to x
- 3. Sample the next cluster center with probability proportional to $D(x)^2$
- 4. Repeat 2 and 3 K-1 times
- K-means++ achieves a $O(\log K)$ approximation to the optimal clustering in expectation!
- All initialization methods can benefit from multiple random restarts

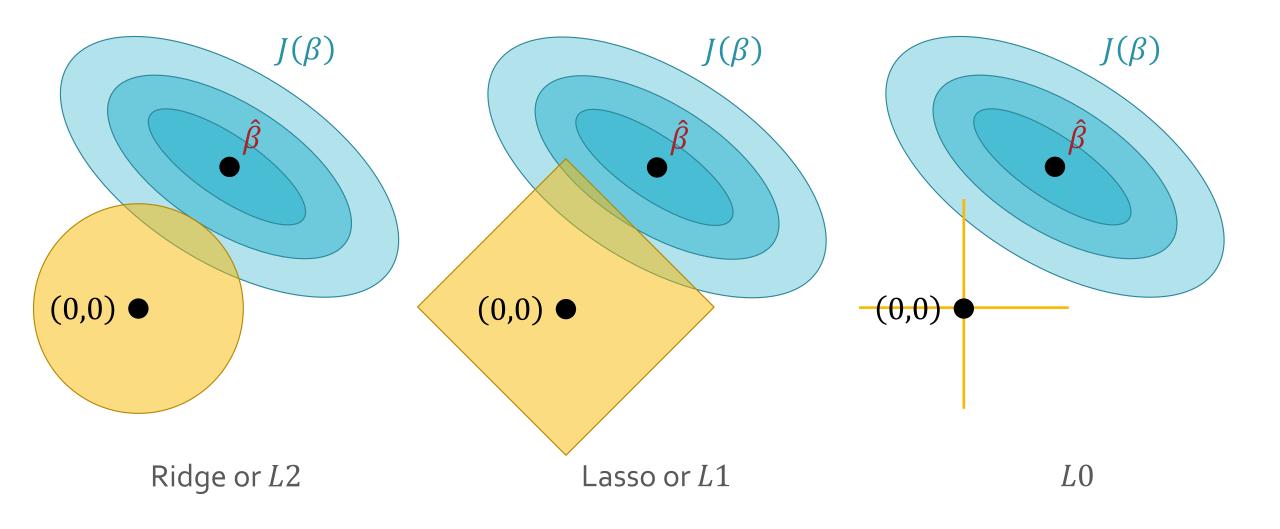
K-meansLearningObjectives

You should be able to...

- Distinguish between coordinate descent and block coordinate descent
- Define an objective function that gives rise to a "good" clustering
- Apply block coordinate descent to an objective function preferring each point to be close to its nearest objective function to obtain the K-Means algorithm
- Implement the K-Means algorithm
- Connect the nonconvexity of the K-Means objective function with the (possibly) poor performance of random initialization

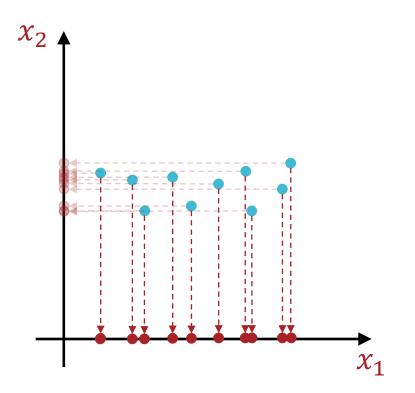
Dimensionality Reduction

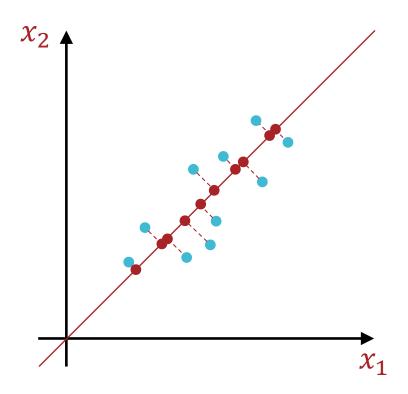
- Goal: given some unlabeled data set, learn a latent (typically lower-dimensional) representation
- Use cases:
 - Reducing computational cost (runtime, storage, etc...)
 - Improving generalization
 - Visualizing data
- Applications:
 - High-resolution images/videos
 - Text data
 - Financial or transaction data



Recall: L1 (or L0) Regularization

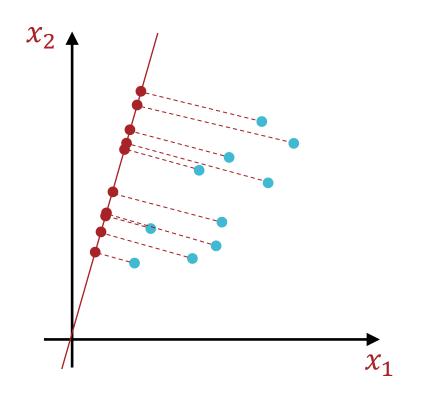
11/25/24

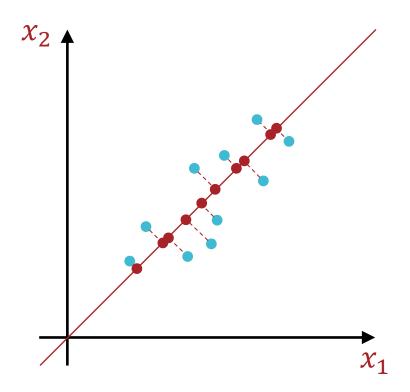




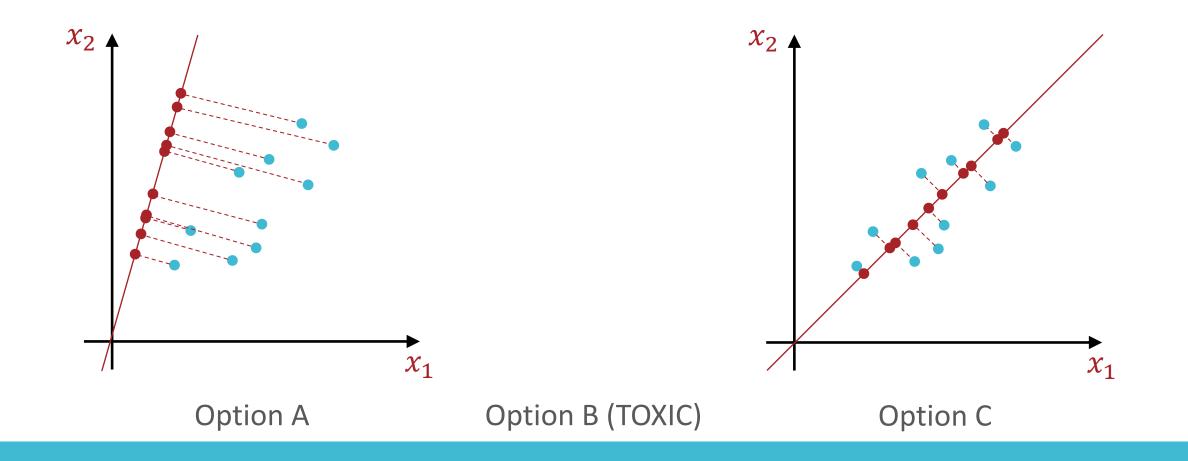
24

Feature Elimination





Feature Reduction



Which projection do you prefer (Q1) and why (Q2)?

11/25/24

Background: Sample Variance and Covariance

• Given a collection of N 1-dimensional samples $[x^{(1)}, x^{(2)}, ..., x^{(N)}]$ from some random variable, the **sample variance** is

$$\hat{\sigma}^2 = \frac{1}{N} \sum_{i=1}^{N} (x^{(i)} - \hat{\mu})^2 = \frac{1}{N} \sum_{i=1}^{N} \left(x^{(i)} - \frac{1}{N} \sum_{n=1}^{N} x^{(n)} \right)^2$$

• Given a collection of N D-dimensional samples $\begin{bmatrix} x^{(1)}, x^{(2)}, \dots, x^{(N)} \end{bmatrix}$ from some random variable, the **sample covariance** between dimension j and k is

$$\Sigma_{jk} = \frac{1}{N} \sum_{i=1}^{N} \left(x_j^{(i)} - \hat{\mu}_j \right) \left(x_k^{(i)} - \hat{\mu}_k \right) \text{ where } \hat{\mu}_d = \frac{1}{N} \sum_{n=1}^{N} x_d^{(n)}$$

Background: Sample Variance and Covariance

• Given a collection of N 1-dimensional samples $\begin{bmatrix} x^{(1)}, x^{(2)}, \dots, x^{(N)} \end{bmatrix}$ from some random variable, the **sample variance** is

$$\hat{\sigma}^2 = \frac{1}{N} \sum_{i=1}^{N} (x^{(i)} - \hat{\mu})^2 = \frac{1}{N} \sum_{i=1}^{N} \left(x^{(i)} - \frac{1}{N} \sum_{n=1}^{N} x^{(n)} \right)^2$$

• Given a collection of N D-dimensional samples $\begin{bmatrix} x^{(1)}, x^{(2)}, \dots, x^{(N)} \end{bmatrix}$ from some random variable, the **sample covariance matrix** is

$$\Sigma = \frac{1}{N} X^T X \text{ where } X = \begin{bmatrix} (\boldsymbol{x}^{(1)} - \boldsymbol{\mu})^T \\ (\boldsymbol{x}^{(2)} - \boldsymbol{\mu})^T \\ \vdots \\ (\boldsymbol{x}^{(N)} - \boldsymbol{\mu})^T \end{bmatrix}$$

Centering the Data

- To be consistent, we will constrain principal components to be *orthogonal unit vectors* that begin at the origin
- Preprocess data to be centered around the origin:

1.
$$\mu = \frac{1}{N} \sum_{n=1}^{N} x^{(n)}$$

$$2. \ \widetilde{\boldsymbol{x}}^{(n)} = \boldsymbol{x}^{(n)} - \boldsymbol{\mu} \ \forall \ n$$

3.
$$X = \begin{bmatrix} \widetilde{\boldsymbol{x}}^{(1)^T} \\ \widetilde{\boldsymbol{x}}^{(2)^T} \\ \vdots \\ \widetilde{\boldsymbol{x}}^{(N)^T} \end{bmatrix}$$

Reconstruction Error

• The projection of $\widetilde{\pmb{x}}^{(n)}$ onto a vector \pmb{v} is

$$\mathbf{z}^{(n)} = \left(\frac{\mathbf{v}^T \widetilde{\mathbf{x}}^{(n)}}{\|\mathbf{v}\|_2}\right) \frac{\mathbf{v}}{\|\mathbf{v}\|_2}$$

Length of projection

Direction of projection

Reconstruction Error

• The projection of $\widetilde{\pmb{x}}^{(n)}$ onto a unit vector \pmb{v} is

$$\mathbf{z}^{(n)} = (\mathbf{v}^T \widetilde{\mathbf{x}}^{(n)}) \mathbf{v}$$

$$\widehat{\boldsymbol{v}} = \underset{\boldsymbol{v}: \|\boldsymbol{v}\|_2^2 = 1}{\operatorname{argmin}} \sum_{n=1}^N \left\| \widetilde{\boldsymbol{x}}^{(n)} - \left(\boldsymbol{v}^T \widetilde{\boldsymbol{x}}^{(n)} \right) \boldsymbol{v} \right\|_2^2$$

$$\begin{aligned} \left\|\widetilde{\boldsymbol{x}}^{(n)} - \left(\boldsymbol{v}^{T}\widetilde{\boldsymbol{x}}^{(n)}\right)\boldsymbol{v}\right\|_{2}^{2} \\ &= \widetilde{\boldsymbol{x}}^{(n)}^{T}\widetilde{\boldsymbol{x}}^{(n)} - 2\left(\boldsymbol{v}^{T}\widetilde{\boldsymbol{x}}^{(n)}\right)\boldsymbol{v}^{T}\widetilde{\boldsymbol{x}}^{(n)} + \left(\boldsymbol{v}^{T}\widetilde{\boldsymbol{x}}^{(n)}\right)\left(\boldsymbol{v}^{T}\widetilde{\boldsymbol{x}}^{(n)}\right)\boldsymbol{v}^{T}\boldsymbol{v} \\ &= \widetilde{\boldsymbol{x}}^{(n)}^{T}\widetilde{\boldsymbol{x}}^{(n)} - \left(\boldsymbol{v}^{T}\widetilde{\boldsymbol{x}}^{(n)}\right)\boldsymbol{v}^{T}\widetilde{\boldsymbol{x}}^{(n)} \\ &= \left\|\widetilde{\boldsymbol{x}}^{(n)}\right\|_{2}^{2} - \left(\boldsymbol{v}^{T}\widetilde{\boldsymbol{x}}^{(n)}\right)^{2} \end{aligned}$$

Minimizing the Reconstruction Error

1

Maximizing the Variance

$$\widehat{\boldsymbol{v}} = \underset{\boldsymbol{v}: \|\boldsymbol{v}\|_{2}^{2}=1}{\operatorname{argmin}} \sum_{n=1}^{N} \left\| \widetilde{\boldsymbol{x}}^{(n)} - \left(\boldsymbol{v}^{T} \widetilde{\boldsymbol{x}}^{(n)} \right) \boldsymbol{v} \right\|_{2}^{2}$$

$$= \underset{\boldsymbol{v}: \|\boldsymbol{v}\|_{2}^{2}=1}{\operatorname{argmin}} \sum_{n=1}^{N} \left\| \widetilde{\boldsymbol{x}}^{(n)} \right\|_{2}^{2} - \left(\boldsymbol{v}^{T} \widetilde{\boldsymbol{x}}^{(n)} \right)^{2}$$

$$= \underset{\boldsymbol{v}: \|\boldsymbol{v}\|_{2}^{2}=1}{\operatorname{argmax}} \sum_{n=1}^{N} \left(\boldsymbol{v}^{T} \widetilde{\boldsymbol{x}}^{(n)} \right)^{2} \longleftarrow \underset{\boldsymbol{v}: \|\boldsymbol{v}\|_{2}^{2}=1}{\text{Variance of projections}}$$

$$= \underset{\boldsymbol{v}: \|\boldsymbol{v}\|_{2}^{2}=1}{\operatorname{argmax}} \boldsymbol{v}^{T} \left(\sum_{n=1}^{N} \widetilde{\boldsymbol{x}}^{(n)} \widetilde{\boldsymbol{x}}^{(n)}^{T} \right) \boldsymbol{v}$$

$$= \underset{\boldsymbol{v}: \|\boldsymbol{v}\|_{2}^{2}=1}{\operatorname{argmax}} \boldsymbol{v}^{T} (X^{T} X) \boldsymbol{v}$$

$$= \underset{\boldsymbol{v}: \|\boldsymbol{v}\|_{2}^{2}=1}{\operatorname{argmax}} \boldsymbol{v}^{T} (X^{T} X) \boldsymbol{v}$$

Maximizing the Variance

$$\widehat{\boldsymbol{v}} = \underset{\boldsymbol{v}: \|\boldsymbol{v}\|_{2}^{2}=1}{\operatorname{argmax}} \boldsymbol{v}^{T}(X^{T}X)\boldsymbol{v}$$

$$\boldsymbol{v}: \|\boldsymbol{v}\|_{2}^{2}=1$$

$$\mathcal{L}(\boldsymbol{v}, \lambda) = \boldsymbol{v}^{T}(X^{T}X)\boldsymbol{v} - \lambda(\|\boldsymbol{v}\|_{2}^{2}-1)$$

$$= \boldsymbol{v}^{T}(X^{T}X)\boldsymbol{v} - \lambda(\boldsymbol{v}^{T}\boldsymbol{v}-1)$$

$$\frac{\partial \mathcal{L}}{\partial \boldsymbol{v}} = 2(X^{T}X)\boldsymbol{v} - 2\lambda\boldsymbol{v}$$

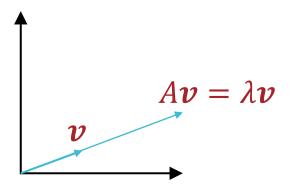
 $\rightarrow 2(X^TX)\widehat{\boldsymbol{v}} - 2\lambda\widehat{\boldsymbol{v}} = 0 \rightarrow (X^TX)\widehat{\boldsymbol{v}} = \lambda\widehat{\boldsymbol{v}}$

• $\widehat{\boldsymbol{v}}$ is an eigenvector of $\boldsymbol{X}^T\boldsymbol{X}$ and $\boldsymbol{\lambda}$ is the corresponding eigenvalue!

Background: Eigenvectors & Eigenvalues

• Given a square matrix $A \in \mathbb{R}^{N \times N}$, a vector $v \in \mathbb{R}^{N \times 1}$ is an eigenvector of A iff there exists some scalar λ such that

$$A\boldsymbol{v} = \lambda \boldsymbol{v}$$



Intuition: A scales or stretchesv but does not rotate it

Key property: the eigenvectors of <u>symmetric</u> matrices
 (e.g., the covariance matrix of a data set) are orthogonal!

Maximizing the Variance

$$\widehat{\boldsymbol{v}} = \underset{\boldsymbol{v}: \|\boldsymbol{v}\|_2^2 = 1}{\operatorname{argmax}} \, \boldsymbol{v}^T (X^T X) \boldsymbol{v}$$

$$\mathcal{L}(\boldsymbol{v}, \lambda) = \boldsymbol{v}^T (X^T X) \boldsymbol{v} - \lambda (\|\boldsymbol{v}\|_2^2 - 1)$$
$$= \boldsymbol{v}^T (X^T X) \boldsymbol{v} - \lambda (\boldsymbol{v}^T \boldsymbol{v} - 1)$$

$$\frac{\partial \mathcal{L}}{\partial \boldsymbol{v}} = 2(X^T X) \boldsymbol{v} - 2\lambda \boldsymbol{v}$$

$$\rightarrow 2(X^T X) \hat{\boldsymbol{v}} - 2\lambda \hat{\boldsymbol{v}} = 0 \rightarrow (X^T X) \hat{\boldsymbol{v}} = \lambda \hat{\boldsymbol{v}}$$

- \hat{v} is an eigenvector of X^TX and λ is the corresponding eigenvalue!
- But which one?

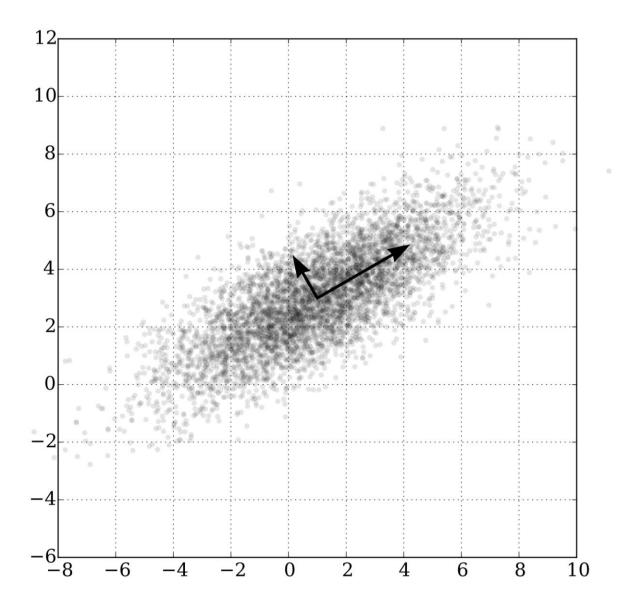
Maximizing the Variance

$$\widehat{\boldsymbol{v}} = \underset{\boldsymbol{v}: \|\boldsymbol{v}\|_{2}^{2}=1}{\operatorname{argmax}} \, \boldsymbol{v}^{T}(X^{T}X) \boldsymbol{v}$$

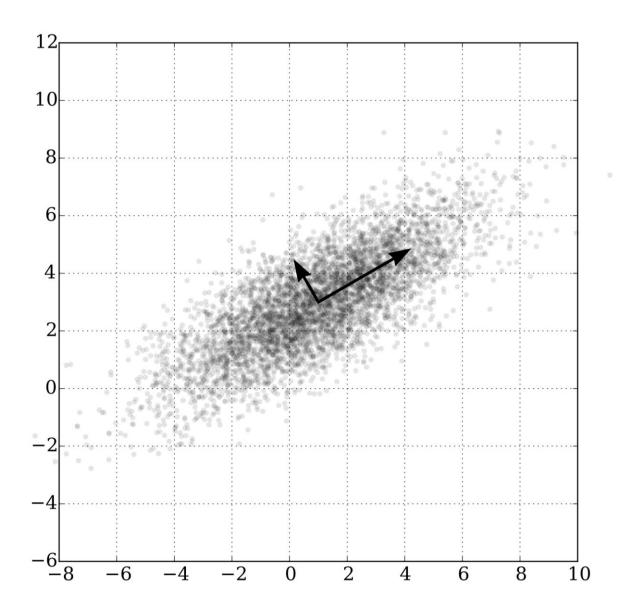
$$(X^{T}X) \widehat{\boldsymbol{v}} = \lambda \widehat{\boldsymbol{v}} \, \rightarrow \, \widehat{\boldsymbol{v}}^{T}(X^{T}X) \widehat{\boldsymbol{v}} = \lambda \widehat{\boldsymbol{v}}^{T} \widehat{\boldsymbol{v}} = \lambda$$

- The first principal component is the eigenvector $\widehat{m v}_1$ that corresponds to the largest eigenvalue λ_1
- The second principal component is the eigenvector $\widehat{m v}_2$ that corresponds to the second largest eigenvalue λ_2
 - $oldsymbol{\widehat{v}}_1$ and $oldsymbol{\widehat{v}}_2$ are orthogonal
- Etc ...
- λ_i is a measure of how much variance falls along $\widehat{m{v}}_i$

Principal Components: Example



How can we efficiently find principal components (eigenvectors)?



Singular Value Decomposition (SVD) for PCA

• Every real-valued matrix $X \in \mathbb{R}^{N \times D}$ can be expressed as

$$X = USV^T$$

where:

- 1. $U \in \mathbb{R}^{N \times N}$ columns of U are eigenvectors of XX^T
- 2. $V \in \mathbb{R}^{D \times D}$ columns of V are eigenvectors of $X^T X$
- 3. $S \in \mathbb{R}^{N \times D}$ diagonal matrix whose entries are the eigenvalues of $X \to \text{squared entries}$ are the eigenvalues of XX^T and X^TX

PCA Algorithm

• Input:
$$\mathcal{D} = \left\{ \left(\mathbf{x}^{(n)} \right) \right\}_{n=1}^{N}, \rho$$

- 1. Center the data
- 2. Use SVD to compute the eigenvalues and eigenvectors of X^TX
- 3. Collect the top ρ eigenvectors (corresponding to the ρ largest eigenvalues), $V_{\rho} \in \mathbb{R}^{D \times \rho}$
- 4. Project the data into the space defined by V_{ρ} , $Z=XV_{\rho}$
- Output: Z, the transformed (potentially lowerdimensional) data

How many PCs should we use?

• Input:
$$\mathcal{D} = \left\{ \left(\mathbf{x}^{(n)} \right) \right\}_{n=1}^{N}, \rho$$

- 1. Center the data
- 2. Use SVD to compute the eigenvalues and eigenvectors of X^TX
- 3. Collect the top ρ eigenvectors (corresponding to the ρ largest eigenvalues), $V_{\rho} \in \mathbb{R}^{D \times \rho}$
- 4. Project the data into the space defined by V_{ρ} , $Z = XV_{\rho}$
- Output: Z, the transformed (potentially lowerdimensional) data

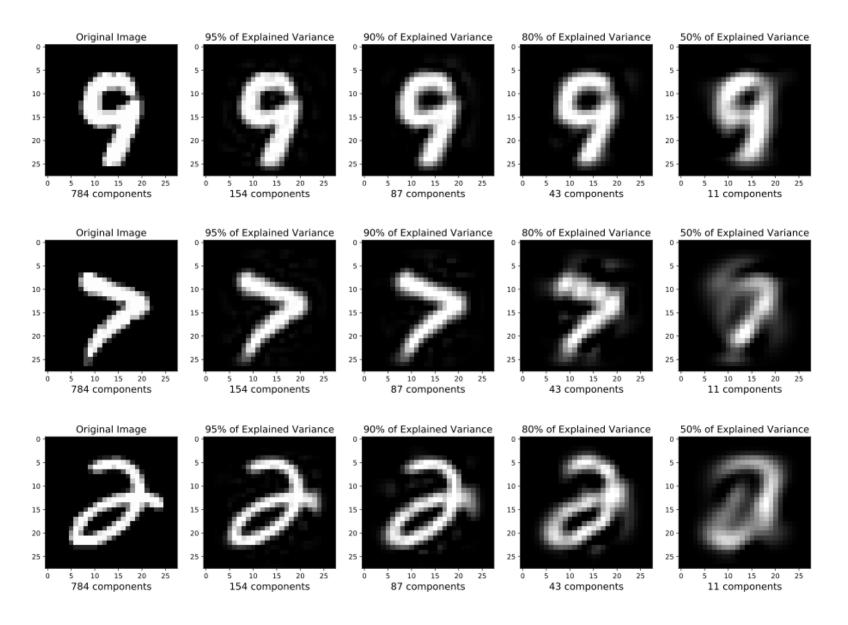
Choosing the number of PCs

• Define a percentage of explained variance for the i^{th} PC:

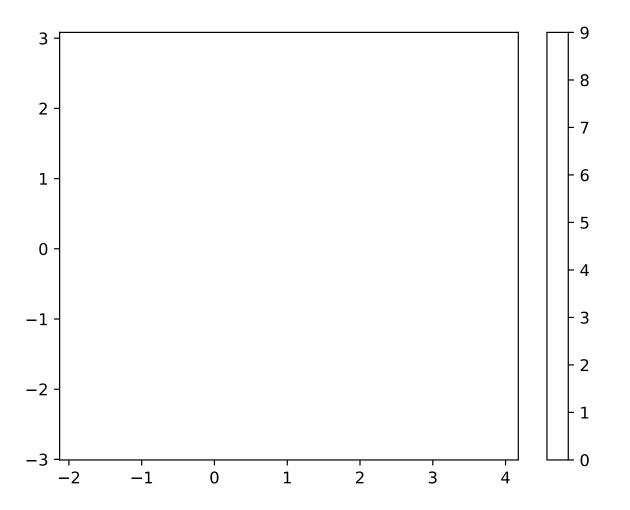
$$\frac{\lambda_i}{\sum \lambda_j}$$

- Select all PCs above some threshold of explained variance, e.g., 5%
- Keep selecting PCs until the total explained variance exceeds some threshold, e.g., 90%
- Evaluate on some downstream metric

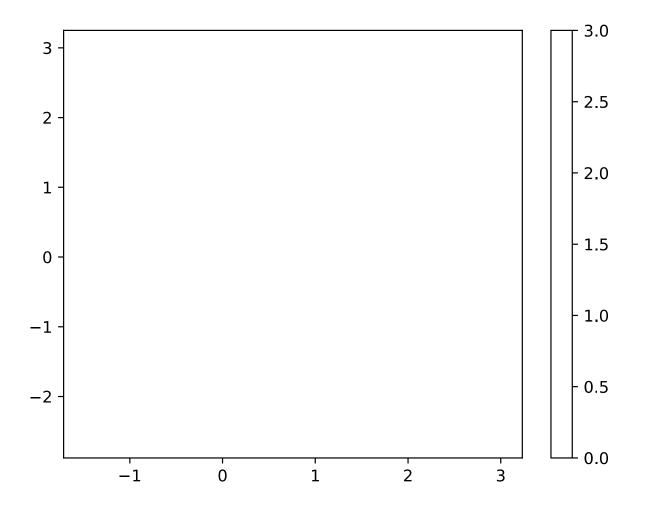
PCA Example: MNIST Digits



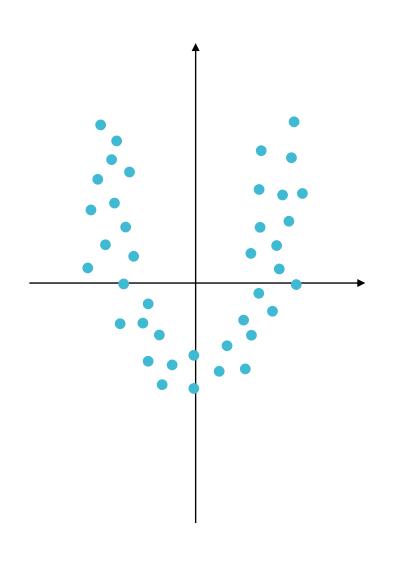
PCA Example: MNIST Digits



PCA Example: MNIST Digits



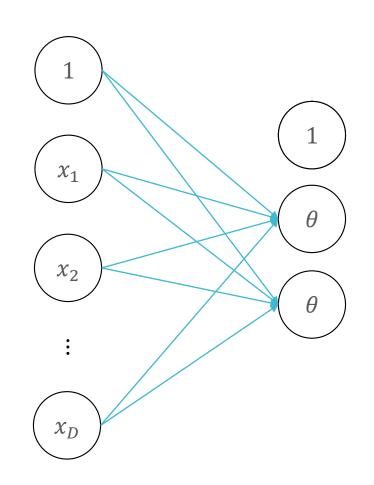
Shortcomings of PCA



- Principal components are orthogonal (unit) vectors
- Principal components can be expressed as linear combinations of the data

11/25/24

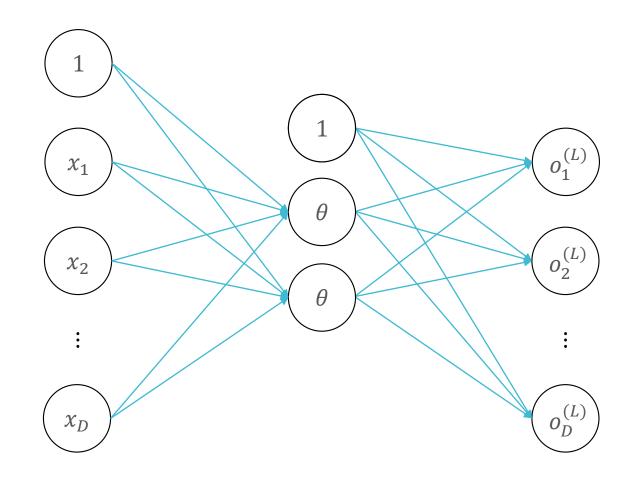
Autoencoders



Insight: neural networks implicitly learn low-dimensional representations of inputs in hidden layers

11/25/24 **47**

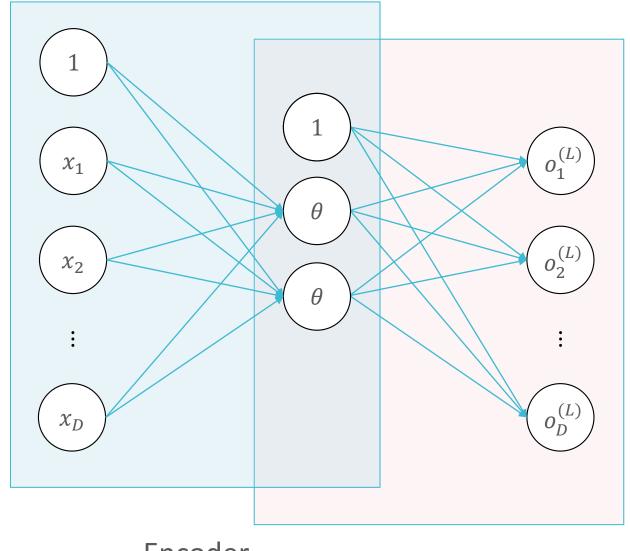
Autoencoders



• Learn the weights by minimizing the reconstruction loss:

$$e(\mathbf{x}) = \left\| \mathbf{x} - \mathbf{o}^{(L)} \right\|_2^2$$

Autoencoders



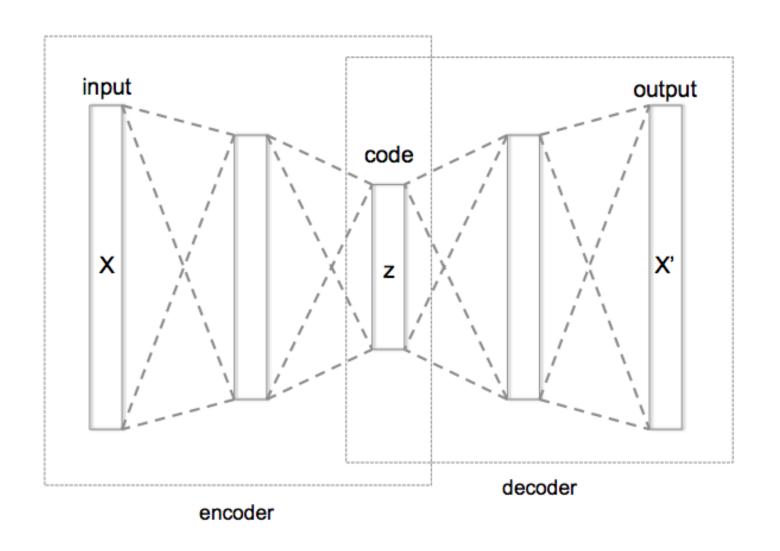
Encoder

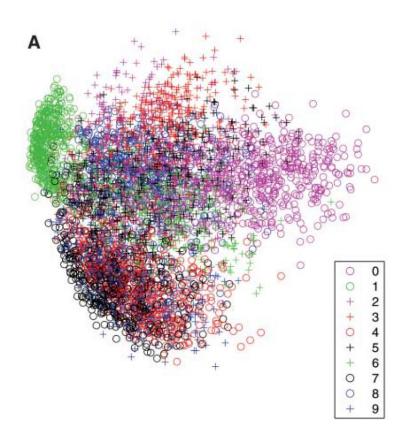
Decoder

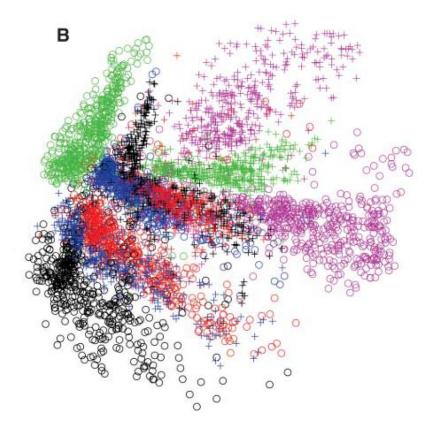
49

11/25/24

Deep Autoencoders







PCA (A) vs. Autoencoders (B) (Hinton and Salakhutdinov, 2006)

PCA Learning Objectives

You should be able to...

- Define the sample mean, sample variance, and sample covariance of a vector-valued dataset
- Identify examples of high dimensional data and common use cases for dimensionality reduction
- Draw the principal components of a given toy dataset
- Establish the equivalence of minimization of reconstruction error with maximization of variance
- Given a set of principal components, project from high to low dimensional space and do the reverse to produce a reconstruction
- Explain the connection between PCA, eigenvectors, eigenvalues, and covariance matrix
- Use common methods in linear algebra to obtain the principal components

11/25/24 52