10-301/601: Introduction to Machine Learning Lecture 25: Dimensionality Reduction

Matt Gormley & Henry Chai

11/25/24

Front Matter

- Announcements
	- HW8 released 11/17, due 11/25 (today!) at 11:59 PM
		- Please be mindful of your grace day usage (see [the course syllabus](https://www.cs.cmu.edu/~hchai2/courses/10601/#Syllabus) for the policy)
	- HW9 released 11/25 (today!), due 12/5 at 11:59 PM
		- You are not expected to work on HW9 over Thanksgiving break
			- Relatedly, there are no OH over break
		- **You may only take at most 2 grace days on HW9**
		- Recitation for HW9 on Monday, 12/2 (after break)

Recall: K-means Algorithm • Input: $\mathcal{D} = \big\{ \big(\boldsymbol{x}^{(n)} \big)$ $n=1$ \overline{N} , \overline{K} How do we set these

hyperparameters?

- Initialize cluster centers μ_1, \ldots, μ_K
- While NOT CONVERGED
	- a. Assign each data point to the cluster with the nearest cluster center:

 $z^{(n)} = \text{argmin}$ \boldsymbol{k} $\left\Vert \mathbf{x}^{\left(n\right)}-\boldsymbol{\mu}_{k}\right\Vert _{2}$

b. Recompute the cluster centers:

$$
\mu_k = \frac{1}{N_k} \sum_{n:z^{(n)}=k} x^{(n)}
$$

where N_k is the number of data points in cluster k

 \cdot Output: cluster centers $\mu_1, ..., \mu_K$ and cluster assignments $z^{(1)}$, ... , $z^{(N)}$

Setting K

 \cdot Idea: choose the value of K that minimizes the objective function

 Better Idea: look for the characteristic "elbow" or largest decrease when going from $K-1$ to K

Initializing \overline{K} -means: Lloyd's Method

Initializing K -means: Lloyd's Method

Initializing \overline{K} -means: Lloyd's Method

Initializing K -means: Lloyd's Method

Initializing \overline{K} -means: Lloyd's Method

Initializing K -means: Lloyd's Method

- \cdot Randomly choose K data points to be the initial cluster centers
	- \bullet
	- \bullet

Initializing \overline{K} -means: Lloyd's Method

- \cdot Randomly choose K data points to be the initial cluster centers
	-

Initializing K -means: Lloyd's Method

- \cdot Randomly choose K data points to be the initial cluster centers
	-
- Lloyd's method converges to a local minimum and that local minimum can be arbitrarily bad (relative to the optimal clusters)
- · Intuition: want initial cluster centers to be far apart from one another

- 1. Choose the first cluster center randomly from the data points
- 2. For each other data point x, compute $D(x)$, the distance between x and the closest cluster center to x
- 3. Select the data point with the largest $D(x)$ as the next cluster center
- 4. Repeat 2 and $3 K 1$ times

- 1. Choose the first cluster center randomly from the data points
- 2. For each other data point x, compute $D(x)$, the distance between x and the closest cluster center to x
- 3. Select the data point with the largest $D(x)$ as the next cluster center
- 4. Repeat 2 and $3 K 1$ times

- 1. Choose the first cluster center randomly from the data points
- 2. For each other data point x, compute $D(x)$, the distance between x and the closest cluster center to x
- 3. Select the data point with the largest $D(x)$ as the next cluster center
- 4. Repeat 2 and $3 K 1$ times

- 1. Choose the first cluster center randomly from the data points
- 2. For each other data point x, compute $D(x)$, the distance between x and the closest cluster center to x
- 3. Select the data point with the largest $D(x)$ as the next cluster center
- 4. Repeat 2 and $3 K 1$ times

- 1. Choose the first cluster center randomly from the data points
- 2. For each other data point x, compute $D(x)$, the distance between x and the closest cluster center to x
- 3. Select the data point with the largest $D(x)$ as the next cluster center
- 4. Repeat 2 and $3 K 1$ times

- 1. Choose the first cluster center randomly from the data points
- 2. For each other data point x, compute $D(x)$, the distance between x and the closest cluster center to x
- 3. Select the data point with the largest $D(x)$ as the next cluster center
- 4. Repeat 2 and $3 K 1$ times
- Works great in the case of well-clustered data!
- Can struggle with outliers...

Initializing K -means: K -means++

- 1. Choose the first cluster center randomly from the data points
- 2. For each other data point x, compute $D(x)$, the distance between x and the closest cluster center to x
- *3. Sample* the next cluster center with probability proportional to $D(x)^2$
- 4. Repeat 2 and $3 K 1$ times

Initializing K-means: K -means++

- 1. Choose the first cluster center randomly from the data points
- 2. For each other data point x, compute $D(x)$, the distance between x and the closest cluster center to x
- *3. Sample* the next cluster center with probability proportional to $D(x)^2$
- 4. Repeat 2 and $3 K 1$ times
- \cdot K-means++ achieves a $O(\log K)$ approximation to the optimal clustering in expectation!
- All initialization methods can benefit from multiple random restarts

K-means Learning **Objectives** You should be able to…

- Distinguish between coordinate descent and block coordinate descent
- Define an objective function that gives rise to a "good" clustering
- Apply block coordinate descent to an objective function preferring each point to be close to its nearest objective function to obtain the K-Means algorithm
- Implement the K-Means algorithm
- Connect the nonconvexity of the K-Means objective function with the (possibly) poor performance of random initialization

Dimensionality Reduction

- Goal: given some unlabeled data set, learn a latent (typically lower-dimensional) representation
- Use cases:
	- Reducing computational cost (runtime, storage, etc…)
	- **· Improving generalization**
	- Visualizing data
- Applications:
	- High-resolution images/videos
	- Text data
	- Financial or transaction data

Recall: L1 (or L0) Regularization

Feature Elimination

Feature Reduction

Which projection do you prefer (Q1) and why (Q2)?

Background: Sample Variance and **Covariance**

 \cdot Given a collection of N 1-dimensional samples $x^{(1)}, x^{(2)}, ..., x^{(N)}$ from some random variable, the **sample variance** is

$$
\hat{\sigma}^2 = \frac{1}{N} \sum_{i=1}^{N} (x^{(i)} - \hat{\mu})^2 = \frac{1}{N} \sum_{i=1}^{N} \left(x^{(i)} - \frac{1}{N} \sum_{n=1}^{N} x^{(n)} \right)^2
$$

 \cdot Given a collection of N D-dimensional samples $\mathbf{x}^{(1)}$, $\mathbf{x}^{(2)}$, ..., $\mathbf{x}^{(N)}$] from some random variable, the sample covariance between dimension j and k is $\Sigma_{jk} =$ 1 \overline{N} \sum $i=1$ \boldsymbol{N} $\left(x_j^{(i)} - \hat{\mu}_j\right)\left(x_k^{(i)} - \hat{\mu}_k\right)$ where $\hat{\mu}_d =$ 1 \boldsymbol{N} \sum $n=1$ \boldsymbol{N} $x_d^{(n)}$

Background: Sample Variance and **Covariance**

 \cdot Given a collection of N 1-dimensional samples $x^{(1)}, x^{(2)}, ..., x^{(N)}$ from some random variable, the **sample variance** is

$$
\hat{\sigma}^2 = \frac{1}{N} \sum_{i=1}^N (x^{(i)} - \hat{\mu})^2 = \frac{1}{N} \sum_{i=1}^N \left(x^{(i)} - \frac{1}{N} \sum_{n=1}^N x^{(n)} \right)^2
$$

 \cdot Given a collection of N D-dimensional samples $\mathbf{x}^{(1)}$, $\mathbf{x}^{(2)}$, ..., $\mathbf{x}^{(N)}$] from some random variable, the **sample covariance matrix** is

$$
\Sigma = \frac{1}{N} X^T X \text{ where } X = \begin{bmatrix} (\boldsymbol{x}^{(1)} - \boldsymbol{\mu})^T \\ (\boldsymbol{x}^{(2)} - \boldsymbol{\mu})^T \\ \vdots \\ (\boldsymbol{x}^{(N)} - \boldsymbol{\mu})^T \end{bmatrix}
$$

Centering the Data

- To be consistent, we will constrain principal components to be *orthogonal unit vectors* that begin at the origin
- Preprocess data to be centered around the origin:

1.
$$
\boldsymbol{\mu} = \frac{1}{N} \sum_{n=1}^{N} \boldsymbol{\chi}(n)
$$

2.
$$
\widetilde{\boldsymbol{\chi}}^{(n)} = \boldsymbol{\chi}(n) - \boldsymbol{\mu} \ \forall \ n
$$

3.
$$
X = \begin{bmatrix} \widetilde{\boldsymbol{\chi}}^{(1)}^{T} \\ \widetilde{\boldsymbol{\chi}}^{(2)}^{T} \\ \vdots \\ \widetilde{\boldsymbol{\chi}}^{(N)}^{T} \end{bmatrix}
$$

Reconstruction Error

Reconstruction Error

• The projection of $\widetilde{\bm{x}}^{(n)}$ onto a unit vector \bm{v} is $\boldsymbol{z}^{(n)}=\big(\boldsymbol{\nu}^T\widetilde{\boldsymbol{x}}^{(n)}\big)\boldsymbol{\nu}$

$$
\widehat{\boldsymbol{\nu}} = \underset{\boldsymbol{\nu}: \|\boldsymbol{\nu}\|_2^2 = 1}{\operatorname{argmin}} \sum_{n=1}^N \left\| \widetilde{\boldsymbol{x}}^{(n)} - \left(\boldsymbol{\nu}^T \widetilde{\boldsymbol{x}}^{(n)} \right) \boldsymbol{\nu} \right\|_2^2
$$

 $\widetilde{\pmb{\chi}}^{(n)} - \big(\pmb{\nu}^T\widetilde{\pmb{\chi}}^{(n)}\big)\pmb{\nu}$ 2 2 $=\widetilde{\boldsymbol{x}}^{(n)^{T}}$ $(\widetilde{\mathbf{x}}^{(n)}-2\big(\boldsymbol{v}^T\widetilde{\mathbf{x}}^{(n)}\big)\boldsymbol{v}^T\widetilde{\mathbf{x}}^{(n)}+\big(\boldsymbol{v}^T\widetilde{\mathbf{x}}^{(n)}\big)\big(\boldsymbol{v}^T\widetilde{\mathbf{x}}^{(n)}\big)\boldsymbol{v}^T\boldsymbol{v}$ $=\widetilde{\boldsymbol{x}}^{(n)^{T}}$ $\widetilde{\pmb{\chi}}^{(n)} - \big(\pmb{\nu}^T\widetilde{\pmb{\chi}}^{(n)}\big)\pmb{\nu}^T\widetilde{\pmb{\chi}}^{(n)}$ $=$ $\|\widetilde{\mathbf{x}}^{(n)}\|$ 2 2 $- \left(\boldsymbol{v}^T\widetilde{\boldsymbol{x}}^{(n)}\right)^2$

Minimizing the Reconstruction Error \mathbb{O} Maximizing the Variance

 $\widehat{\bm{\nu}}= \text{argmin}$ $v: ||\overline{v}||_2^2 = 1$ \sum $n=1$ \overline{N} $\widetilde{\pmb{\chi}}^{(n)} - \big(\pmb{\nu}^T\widetilde{\pmb{\chi}}^{(n)}\big)\pmb{\nu}$ 2 2 $=$ argmin $v: ||\overline{v}||_2^2 = 1$ \sum $n=1$ \overline{N} $\widetilde{\bm{\chi}}^{(n)}$ 2 2 $- \left(\boldsymbol{v}^T\widetilde{\boldsymbol{x}}^{(n)}\right)^2$ $=$ argmax $v: ||v||_2^2 = 1$ \sum $n=1$ \boldsymbol{N} $v^T \widetilde{\mathbf{x}}^{(n)}$ ² \longleftarrow Variance of projections $(\widetilde{\bm{x}}^{(n)}$ are centered) $=$ argmax $v: ||v||_2^2 = 1$ v^T \vert \vert $n=1$ \overline{N} $\widetilde{\bm{\chi}}^{(n)}\widetilde{\bm{\chi}}^{(n)^{T}}$ $\boldsymbol{\mathcal{V}}$ $=$ argmax $\boldsymbol{v}^T(\dot{X}^TX)\boldsymbol{v}$ $v: ||v||_2^2 = 1$

Maximizing the Variance

$$
\widehat{\boldsymbol{v}} = \operatorname*{argmax}_{\boldsymbol{v}: \|\boldsymbol{v}\|_2^2 = 1} \boldsymbol{v}^T (X^T X) \boldsymbol{v}
$$

$$
\mathcal{L}(\boldsymbol{v}, \lambda) = \boldsymbol{v}^T (X^T X) \boldsymbol{v} - \lambda (\|\boldsymbol{v}\|_2^2 - 1)
$$

=
$$
\boldsymbol{v}^T (X^T X) \boldsymbol{v} - \lambda (\boldsymbol{v}^T \boldsymbol{v} - 1)
$$

$$
\frac{\partial \mathcal{L}}{\partial \mathbf{v}} = 2(X^T X)\mathbf{v} - 2\lambda \mathbf{v}
$$

 $\rightarrow 2(X^TX)\hat{\mathbf{v}} - 2\lambda\hat{\mathbf{v}} = 0 \rightarrow (X^TX)\hat{\mathbf{v}} = \lambda\hat{\mathbf{v}}$

 \cdot $\widehat{\bm v}$ is an eigenvector of X^TX and λ is the corresponding eigenvalue! $rac{1}{2}$

Background: Eigenvectors & **Eigenvalues**

• Given a square matrix $A \in \mathbb{R}^{N \times N}$, a vector $\boldsymbol{\nu} \in \mathbb{R}^{N \times 1}$ is an **eigenvector** of A iff there exists some scalar λ such that $Av = \lambda v$

> $\boldsymbol{\eta}$ $A\mathbf{v}=\lambda\mathbf{v}$

Intuition: A scales or stretches v but does not rotate it

• Key property: the eigenvectors of symmetric matrices (e.g., the covariance matrix of a data set) are orthogonal!

Maximizing the Variance

$$
\widehat{\boldsymbol{v}} = \operatorname*{argmax}_{\boldsymbol{v}: \|\boldsymbol{v}\|_2^2 = 1} \boldsymbol{v}^T (X^T X) \boldsymbol{v}
$$

$$
\mathcal{L}(\boldsymbol{v}, \lambda) = \boldsymbol{v}^T (X^T X) \boldsymbol{v} - \lambda (\|\boldsymbol{v}\|_2^2 - 1)
$$

=
$$
\boldsymbol{v}^T (X^T X) \boldsymbol{v} - \lambda (\boldsymbol{v}^T \boldsymbol{v} - 1)
$$

$$
\frac{\partial \mathcal{L}}{\partial \mathbf{v}} = 2(X^T X)\mathbf{v} - 2\lambda \mathbf{v}
$$

 $\rightarrow 2(X^TX)\hat{\mathbf{v}} - 2\lambda\hat{\mathbf{v}} = 0 \rightarrow (X^TX)\hat{\mathbf{v}} = \lambda\hat{\mathbf{v}}$
is an eigenvector of X^TX and λ is the

- $rac{1}{2}$ \cdot $\widehat{\bm v}$ is an eigenvector of X^TX and λ is the corresponding eigenvalue!
- But which one?

Maximizing the Variance

- $\widehat{\bm{v}}= \operatorname{argmax} \bm{v}^T (X^T X) \bm{v}$ $v: ||v||_2^2 = 1$
	- $(X^T X) \widehat{\bm{\nu}} = \lambda \widehat{\bm{\nu}} \ \rightarrow \ \widehat{\bm{\nu}}^T (X^T X) \widehat{\bm{\nu}} = \lambda \widehat{\bm{\nu}}^T \widehat{\bm{\nu}} = \lambda$
- The first principal component is the eigenvector $\widehat{\bm{\nu}}_1$ that corresponds to the largest eigenvalue λ_1
- The second principal component is the eigenvector $\widehat{\bm{\nu}}_2$ that corresponds to the second largest eigenvalue λ_2
	- $\widehat{\bm{\nu}}_1$ and $\widehat{\bm{\nu}}_2$ are orthogonal
- Etc …
- \cdot λ_i is a measure of how much variance falls along $\widehat{\bm{\nu}}_i$

Principal Components: Example

How can we efficiently find principal components (eigenvectors)?

38

Singular Value **Decomposition** (SVD) for PCA

Every real-valued matrix $X \in \mathbb{R}^{N \times D}$ can be expressed as

 $X = USV^T$

where:

- 1. $U \in \mathbb{R}^{N \times N}$ columns of U are eigenvectors of XX^T
- 2. $V \in \mathbb{R}^{D \times D}$ columns of *V* are eigenvectors of $X^T X$
- 3. $S \in \mathbb{R}^{N \times D}$ diagonal matrix whose entries are the eigenvalues of $X \rightarrow$ squared entries are the eigenvalues of XX^T and X^TX

PCA Algorithm

- Input: $\mathcal{D} = \big\{ \big(\boldsymbol{x}^{(n)} \big)$ $n=1$ \overline{N} , ρ
- 1. Center the data
- 2. Use SVD to compute the eigenvalues and eigenvectors of X^TX
- 3. Collect the top ρ eigenvectors (corresponding to the ρ largest eigenvalues), $V_{\rho} \in \mathbb{R}^{D \times \rho}$
- 4. Project the data into the space defined by V_{ρ} , $Z = XV_{\rho}$
- \cdot Output: Z , the transformed (potentially lowerdimensional) data

How many PCs should we use?

- Input: $\mathcal{D} = \big\{ \big(\boldsymbol{x}^{(n)} \big)$ $n=1$ \overline{N} , ρ
- 1. Center the data
- 2. Use SVD to compute the eigenvalues and eigenvectors of X^TX
- 3. Collect the top ρ eigenvectors (corresponding to the ρ largest eigenvalues), $V_{\rho} \in \mathbb{R}^{D \times \rho}$
- 4. Project the data into the space defined by V_{ρ} , $Z = XV_{\rho}$
- \cdot Output: Z , the transformed (potentially lowerdimensional) data

Choosing the number of PCs

 \cdot Define a percentage of explained variance for the i^{th} PC:

 $\frac{1}{\sqrt{2}}$ λ_i $\sum \lambda_j$

- Select all PCs above some threshold of explained variance, e.g., 5%
- Keep selecting PCs until the total explained variance exceeds some threshold, e.g., 90%
- Evaluate on some downstream metric

PCA Example: MNIST Digits

PCA Example: MNIST Digits

PCA Example: MNIST Digits

Shortcomings of PCA

- Principal components are orthogonal (unit) vectors
- Principal components can be expressed as linear combinations of the data

Insight: neural networks implicitly learn low-dimensional representations of

Autoencoders

Learn the weights by minimizing the reconstruction loss:

$$
e(\pmb{x}) = \left\| \pmb{x} - \pmb{o}^{(L)} \right\|_2^2
$$

Autoencoders

Deep Autoencoders

PCA (A) vs. Autoencoders (B) (Hinton and Salakhutdinov, 2006)

PCA Learning **Objectives** You should be able to…

- Define the sample mean, sample variance, and sample covariance of a vector-valued dataset
- Identify examples of high dimensional data and common use cases for dimensionality reduction
- Draw the principal components of a given toy dataset
- Establish the equivalence of minimization of reconstruction error with maximization of variance
- Given a set of principal components, project from high to low dimensional space and do the reverse to produce a reconstruction
- Explain the connection between PCA, eigenvectors, eigenvalues, and covariance matrix
- Use common methods in linear algebra to obtain the principal components