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Reminders

* Homework 9: Learning Paradigms
— Out: Mon, Nov. 25

— Due: Thu, Dec. 5 at 11:59pm
(only two grace/late days permitted)

* Exam 3 Practice Problems
— Out: Mon, Dec. 2

* Exam 3
— Tue, Dec 10 (9:30am - 11:30am)




EXAM LOGISTICS



Exam 3

* Time/Location
— Time: Tue, Dec 10 (9:30am - 11:30am)
— Location & Seats: You have all been split across multiple rooms. Everyone has an assigned
seat in one of these room.
— Please watch Piazza carefully for announcements.
* Logistics
— Covered material: Lectures 17 - 25

— Format of questions:
* Multiple choice
* True [ False (with justification)
* Derivations
* Short answers
* Interpreting figures
* Implementing algorithms on paper

— No electronic devices
— You are allowed to bring one 8% x 11 sheet of notes (front and back)



Exam 3

* How to Prepare
— Attend (or watch) this exam review session
— Review practice problems
— Review homework problems
— Review the poll questions from each lecture

— Consider whether you have achieved the learning objectives for
each lecture [ section

— Write your cheat sheets



Topics for Exam 1

 Foundations e (lassification
— Probability, Linear Algebra, — Decision Tree
Geometry, Calculus — KNN
— Optimization — Perceptron
* Important Concepts * Regression
— Overfitting — KNN Regression
— Experimental Design — Decision Tree Regression

— Linear Regression



Topics for Exam 2

* (Classification
— Binary Logistic Regression
* Important Concepts
— Stochastic Gradient Descent
— Regularization
— Feature Engineering
* Feature Learning

— Neural Networks
— Basic NN Architectures
— Backpropagation

Learning Theory

— PAC Learning
— MLE [ MAP

Societal Impacts of ML

Regression
— Linear Regression



Topics for Exam 3

* Deep Learning * Other Learning Paradigms
— Convolutional Neural Networks — K-Means
(CNNs) — PCA
— Recurrent Neural Networks — Ensemble Methods
(RNNs)

— Recommender Systems
— Transformers

— Automatic differentiation
* Reinforcement Learning

— Value lteration

— Policy Iteration

— Q-Learning

— Deep Q-Learning



Classification and Regression: The Big Picture

Recipe for Machine Learning Decision Functions
1. Given data D = {x(® y(I}N e Perceptron: hg(x) = sign(6x)
2. (@) Choose a decision function hg(x) = - - - e Linear Regression: hg(x) = 87 x
(parameterized by 0)

e Discriminative Models: hg(x) = argmax X

(b) Choose an objective function Jp(0) = - - - o(x) gy Po(y | x)
(relies on data) T

o Logistic Regression: pg(y =1 | x) = 0(0" x)

3. Learnby choosing parameters that optimize the objective Jp(8) o Neural Net (classification):

R — — @NT (IN\T (1) (2)

0 ~ argmin Jp(0) po(y =1|x) = (W) To(W)Tx +bM) + b))

® e Generative Models: hg(x) = argmax pg(x,y)
Yy

4. Predict on new test example Xpew Using hg(-) M

§ = ho(Xnew) o Naive Bayes: pg(x,y) = pe(y) H po(Tm | y)
m=1
Optimization Method
Objective Functi
e Gradient Descent: 8 — 6 — vV J(0) Jassh RIS
. N
e SGD:0 — 6 — Vg JD(0) o« MLE: J(8) = — 3 logp(x,y®)
fori ~ Uniform(1,..., N) i—1
N
1 ‘
where J(0) = =Y J@(0) N : :
N ; e MCLE: J(0) = — Zlogp(y(’) | x(®)
i=1
e mini-batch SGD
e L2 Regularized: J'(0) = J(0) + \||0]|3
e closed form (same as Gaussian prior p(@) over parameters)
1. compute partial derivatives e L1Regularized: J'(0) = J(0) + \||0)||1

2. set equal to zero and solve (same as Laplace prior p(@) over parameters)



Learning Paradigms

Paradigm

Data

Supervised

— Regression

— Classification

— Binary classification
— Structured Prediction
Unsupervised
Semi-supervised

Online

Active Learning
Imitation Learning

Reinforcement Learning

D={x"yO}L, x~p*()andy=c*()
y(i) cR

y® e {1,...,K}

y® e {+1,-1}

y(®) is a vector

D= (x0),  x~ph()

D = {x(, y(z‘)}f;V:ll U {X(j)}j_szl

D — {(X(l)7 y(l)), (X(2)’ y(2))7 (X(3)’ y(3))’ .
D = {x}  and can query 5 = ¢*(-) at a cost
D — {(8(1), a(l)), (8(2), a(2))7 .

D = {(sW),a® r1) (52 q2 @) 1



ML Big Picture

Theoretical Foundations:
What principles guide learning?
probabilistic
information theoretic
evolutionary search
ML as optimization




Course Level Objectives

You should be able to...

1.

Implement and analyze existing learning algorithms, including well-studied methods for
classification, regression, structured prediction, clustering, and representation learning

Integrate multiple facets of practical machine learning in a single system: data preprocessing,
learning, regularization and model selection

Describe the the formal properties of models and algorithms for learning and explain the
practical implications of those results

Compare and contrast different paradigms for learning (supervised, unsupervised, etc.)

Design experiments to evaluate and compare different machine learning techniques on real-
world problems

Employ probability, statistics, calculus, linear algebra, and optimization in order to develop new
predictive models or learning methods

Given a description of a ML technique, analyze it to identify (1) the expressive power of the
formalism; (2) the inductive bias implicit in the algorithm; (3) the size and complexity of the
search space; (4) the computational properties of the algorithm: (5) any guarantees (or lack
thereof) regarding termination, convergence, correctness, accuracy or generalization power.



Course HW2 / HW6 | HW3 / HW7
Staff

Instructors

HW4 / HW8 HWS / HW9




SIGNIFICANCE TESTING



Which classifier is better?

A
Goal: Given two classifiers: hy(X)

and hg(x) which is better? 1

hg(x)

~

-

Common Approach: Evaluate each
classifier on a test set and report
which has higher accuracy.

>

accuracy




Two Sources of Variance

1. Randomness in training
2. Randomness in our test data



1. Randomness in training

Example: Assume we are training a deep neural network
with a nonconvex objective function via random restarts

We collect a sequence of classifiers for R random restarts:
< hg(x)" « train(D, seed = time in ms)
* hg(x)® « train(D, seed = time in ms)

o

* hg(x)®) «— train(D, seed = time in ms)

Solution: histogram

Solution: confidence interval

4 report variance of hy and hg

Ex:
* ha 45% +[- 5%
e hg 47% +[- 8%

count

\ — —>
00/ accurdeyt UL

28



2. Randomness in our test data

Recall: we assume x® ~ p*(-) and y{ = ¢*(x()
or (x, yO) ~ p*(, -)
Data: Assume the data is drawn from a generative

distribution p*(x|y)p*(y) where p*(y) is an even coin
flip and p*(x|y=red) is the red Gaussian and
p*(x|y=blue)is the blue Gaussian.

5 errrors

3 errrors

ha(x) + 1A(x) 5 errors
3 errors
4 + hg(x) 4 + ++ hg(x)
ml o+ F i @ "
+ -

~ 4 =® ®© N'ﬁ'//
/+ ( — }‘_ [

.‘I_.--‘-I- - - +-‘3 - -

e - . + - -

Gl —h—— bt

Solution:
significance testing
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Significance Testing in ML

“And because any medication or intervention usually has some real

effect, you can always get a statistically significant result by STATISTICS
collecting so much data that you detect extremely tiny but DONE WRONG
relatively unimportant differences. As Bruce Thompson wrote,
Statistical significance testing can involve a tautological logic in
which tired researchers, having collected data on hundreds of
subjects, then conduct a statistical test to evaluate whether there
were a lot of subjects, which the researchers already know,
because they collected the data and know they are tired. This
tautology has created considerable damage as regards the
cumulation of knowledge.”

— Alex Reinhart
Statistics Done Wrong: The Woefully Complete Guide

THE WOEFULLY COMPLETE GUIDE

For machine learning, significance testing is
usually still answering an important question:

Did we evaluate our model on enough test
data to conclude that our improvement over
the baseline is surprising?



Significance Testing in ML

Paired Bootstrap Test Remarks:

Key Idea: simulate the resampling of 1.

many test sets
Algorithm:

1. Draw B bootstrap samples

S(b) = {(x(1) y(1)) (x(z) y(z ) (x(”) y(n))}
with replacement from test data Diest

2. Letv=o0 737, _\f N ’773
3. Forb=1,. /{——4‘1//516 o
if' o S(b)) > 26(Dsest): 8(D’) = difference in
V=V+1 accuracy between

4. Return p-value as v/B H ,
17—3 aand hgonD

ed HL vl bhop 3 Paale is £ 005 3,
H = nulid W erformance

ypothesis = performance of hy
and hg is the same

v = (D6

Notice that E[§(S(®))] = 6(Dyeqt)-

We want to estimate how often
A obtains a §(D;..:)-sized
advantage over B (or greater) by
random chance.

So we check whether §(S®)
exceeds the expected value plus

5( Dtest) = 26( Dtest)'

We needn’t limit 6 to the
difference in accuracy, it can be
any metric we want!



COMPUTER VISION



Common Tasks in Computer Vision

Image Classification
Image Classification +

Localization \ o

Human Pose Estimation | . J LT
Semantic Segmentation - T oa A—
Object Detection g
Instance Segmentation o g L = 'uJ
Image Captioning eV S ———

© N oV AW

Image Generation

Figure from https://arxiv.org/pdf/1704.06857.pdf
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e Given an
image, predict
a single label -

bumper car
golfcart

A multi-class
classification
problem

\J
vertible agaric dalmatian monkey
grille mushroom grape spider monkey
pickup [ jelly fungus elderberry titi
beach wagon gill fungus rdshire bullterrier indri
fire engine || dead-man's-fingers currant howler monkey

dead-man's-fingers

Figure from https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436€924a68c45b-Paper.pdf



Image Classification + Localization

Car

Chair

* Given animage,
predict a single
abel and a
bounding box

for the object

* Bounding box is
represented as

(X’ y’ h) W)’
bosition (x,Y)

and
height/width
(h,w)

(c) Missed objects

Figure from https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=5459257
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Human Pose Estimation

* Given animage of a human,
predict the position of
several keypoints (left
hand, right hand, left
elbow, ..., right foot)

* This is a multiple regression
problem, where each
keypoint has a
corresponding position

(Xi)yi)

Initial stage
220 x 220

DNN-based refiner
DNN-based regressor

(6D, y 1))

send refined values
to next stage

Figure from
https://openaccess.thecvf.com/content _cvpr 2014/papers/Toshev_DeepPose Human Pose 2014 CVPR_paper.pdf
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Semantic Segmentation

Input image Ground-truth

* Given animage,
predict a [abel for
every pixel in the
image

* Notmerelya
classification
problem, because
there are strong
correlations between
pixel-specific labels

{ 224x224 224x224

B

Figure from https://openaccess.thecvf.com/content_iccv_2015/papers/Noh_Learning Deconvolution_Network ICCV 2015 paper.pdf
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Object Detection

* Given animage, for each object predict a bounding box
and a label (x,y,w,h,I)
* Example: R-CNN
— (x=110, y=13, w=50, h=72, I=person)
— (x=90, y=55, w=81, h=87, I=horse)
— (x=421, y=533, w=24, h=30, I=chair)
— (x=2, y=25, w=51, h=121, |=gate)

R-CNN: Regions with CNN features

N ", i
. i -
. ..
r‘ "( - S—
MIT TP \& i .

T T, L -~
y & i Nl

| 8 1Y %

Wz NS 9

b LS <)

/ |

warped region 5 aeroplane? no.

person? yes.

tvmonitor? no.

1. Input 2. Extract region 3. Compute 4. Classify
image  proposals (~2k) CNN features regions

Figure from
https://openaccess.thecvf.com/content_cvpr 2014/papers/Girshick_Rich Feature Hierarchies 2014 _CVPR_paper.pdf




* Predict per-pixel labels as
in semantic segmentation,
but differentiate between
different instances of the
same label

* Example: if there are two
people in the image, one
person should be labeled
person-1 and one should
be labeled person-2

Figure 1. The Mask R-CNN framework for instance segmentation.

Figure from https://openaccess.thecvf.com/content ICCV _2017/papers/He_Mask R-CNN_ICCV_2017_paper.pdf
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Image Captioning

=  Ground Truth Caption: A little boy runs away from the ° Ta ke an im a ge as
approaching waves of the ocean. .
input, and generate
Generated Caption: A young boy is running on the beach.
a sentence
describing it as
. output (i.e. the
Ground Truth Caption: A brunette girl wearing sunglasses Cd ptl O n)

and a yellow shirt.

* Typical methods
Ge.lllerated Caption: A woman in a black shirt and sunglasses in CI u d ea d ee p
CNN/transformer
and a RNN-like

¥
| g% B = language model
[Log 2151 | [ 5] Captions
| | | s * (The task of Dense

Crbrmtes P Captioning is to
generate one

cri caption per

bounding box)

Random Vector
Input Image (o> (Diversity)

Generator (G)

Fig. 3. A block diagram of other deep-learning-based captioning.

Figure from https://dl.acm.org/doi/pdf/10.1145/3295748



Image Captioning

Table 1. An Overview of the Deep-Learning-Based Approaches for Image Captioning

Reference Image Encoder | Language Model Category
Kiros et al. 2014 [69] AlexNet LBL MS, SL, WS, EDA
Kiros et al. 2014 [70] AlexNet, VGGNet | 1. LSTM MS, SL, WS, EDA

2. SC-NLM
Mao et al. 2014 [95] AlexNet RNN MS, SL, WS
Karpathy et al. 2014 [66] | AlexNet DTR MS, SL, WS, EDA
Mao et al. 2015 [94] AlexNet, VGGNet | RNN MS, SL, WS
Chen et al. 2015 [23] VGGNet RNN VS, SL, WS, EDA
Fang et al. 2015 [33] AlexNet, VGGNet | MELM VS, SL, WS, CA
Jia et al. 2015 [59] VGGNet LSTM VS, SL, WS, EDA
Karpathy et al. 2015 [65] | VGGNet RNN MS, SL, WS, EDA
Vinyals et al. 2015 [142] | GoogLeNet LSTM VS, SL, WS, EDA
Xu et al. 2015 [152] AlexNet LSTM VS, SL, WS, EDA, AB
Jin et al. 2015 [61] VGGNet LSTM VS, SL, WS, EDA, AB
Wu et al. 2016 [151] VGGNet LSTM VS, SL, WS, EDA, AB
Sugano et at. 2016 [129] [VGGNet LSTM VS, SL, WS, EDA, AB
Mathews et al. 2016 [97] |GoogLeNet LSTM VS, SL, WS, EDA, SC
Wang et al. 2016 [144] AlexNet, VGGNet | LSTM VS, SL, WS, EDA
Johnson et al. 2016 [62] | VGGNet LSTM VS, SL, DC, EDA
Mao et al. 2016 [92] VGGNet LSTM VS, SL, WS, EDA
Wang et al. 2016 [146] | VGGNet LSTM VS, SL, WS, CA
Tran et al. 2016 [135] ResNet MELM VS, SL, WS, CA
Ma et al. 2016 [90] AlexNet LSTM VS, SL, WS, CA
You et al. 2016 [156] GoogLeNet RNN VS, SL, WS, EDA, SCB
Yang et al. 2016 [153] VGGNet LSTM VS, SL, DC, EDA
Anne et al. 2016 [6] VGGNet LSTM VS, SL, WS, CA, NOB
Yao et al. 2017 [155] GoogLeNet LSTM VS, SL, WS, EDA, SCB
Lu et al. 2017 [83] ResNet LSTM VS, SL, WS, EDA, AB
Chen et al. 2017 [21] VGGNet, ResNet |LSTM VS, SL, WS, EDA, AB
Gan et al. 2017 [41] ResNet LSTM VS, SL, WS, CA, SCB
Pedersoli et al. 2017 [112] | VGGNet RNN VS, SL, WS, EDA, AB
Ren et al. 2017 [119] VGGNet LSTM VS, ODL, WS, EDA
Park et al. 2017 [111] ResNet LST™M VS, SL, WS, EDA, AB
Wang et al. 2017 [148] ResNet LSTM VS, SL, WS, EDA
Tavakoli et al. 2017 [134] | VGGNet LSTM VS, SL, WS, EDA, AB
Liu et al. 2017 [84] VGGNet LSTM VS, SL, WS, EDA, AB
Gan et al. 2017 [39] ResNet LSTM VS, SL, WS, EDA, SC
Dai et al. 2017 [26] VGGNet LSTM VS, ODL, WS, EDA
Shetty et al. 2017 [126] [ GoogLeNet LSTM VS, ODL, WS, EDA
Liu et al. 2017 [85) Inception-V3 LSTM VS, ODL, WS, EDA
Gu et al. 2017 [51] VGGNet 1. Language CNN VS, SL, WS, EDA

2. LSTM
Yao et al. 2017 [154] VGGNet LSTM VS, SL, WS, CA, NOB

(Continued)

Table from https://dl.acm.org/doi/pdf/10.1145/3295748

Take an image as
input, and generate
a sentence
describing it as
output (i.e. the
caption)

Typical methods
include a deep
CNN/transformer
and a RNN-like
language model

(The task of Dense
Captioning is to
generate one
caption per
bounding box)

42



Medical Image Analysis

Notice that most of
these tasks are
structured prediction
problems, not
merely classification

Figure 2 Deep learning application in medical image analysis. (A) Fundus detection; (B,C) hippocampus segmentation; (D) left ventricular

segmentation; (E) pulmonary nodule classification; (F,G,H,I) gastric cancer pathology segmentation. The staining method is H&E, and the

magnification is x40.

Figure from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7327346/
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TASK: IMAGE GENERATION



Image Generation

“A sunset behind
a mountain range”

* (lass-conditional generation
* Super resolution

* Image Editing '

* Style transfer \ l

* Text-to-image (TTI) generation [ Super J { RE { Style }
resolution transfer

Seéa anemone

brain coral

slug

goldfinch

Figure from Razavi et al. (2019) Figure from Bie et al. (2023) .



Class Conditional Generation

e Task: Given a class
label indicating the
image type, sample a
new image from the sea anemone
model with that type

* Image classification is brain coral
the problem of taking
in an image and
predicting its label slug

p(y|x)
 (Class conditional

generation is doin
this in reverse p(xﬁl)

goldfinch

Figure from Razavi et al. (2019)
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Figure from Li et al. (2021)

Super Resolution

»

SRDiff

e Given alow

resolution image,
generate a high
resolution
reconstruction of
the image

Compelling on low
resolution inputs
(see example to the
left) but also
effective on high
resolution inputs

47



Image Editing

A variety of tasks involve

automatic editing of an

image:

* Inpainting fills in the (pre-
specified) missing pixels

* Colorization restores
color to a greyscale image

* Uncropping creates a
photo-realistic
reconstruction of a
missing side of an image

Inpainting

Colorization

Uncropping

48

Figure from Saharia et al. (2022)



Style Transfer

* The goal of style transfer is to blend
two images

* Yet, the blend should retain the
semantic content of the source
image presented in the style of
another image

Figure 3. Images that combine the content of a photograph with the style of several well-known artworks. The images were created by
finding an image that simultaneously matches the content representation of the photograph and the style representation of the artwork.
The original photograph depicting the Neckarfront in Tiibingen, Germany, is shown in A (Photo: Andreas Praefcke). The painting that
provided the style for the respective generated image is shown in the bottom left corner of each panel. B The Shipwreck of the Minotaur
by J.M.W. Turner, 1805. C The Starry Night by Vincent van Gogh, 1889. D Der Schrei by Edvard Munch, 1893. E Femme nue assise by
Pablo Picasso, 1910. F Composition VII by Wassily Kandinsky, 1913.

T2

Figure from Gatys et al. (2016)



Text-to-Image Generation

* Given a text description, sample an
image that depicts the prompt

* The following images are samples from
SDXL with refinement

Prompt: A propaganda poster depicting a
cat dressed as french emperor napoleon
holding a piece of cheese.

Figure from Podell et al. (2023)




Text-to-Image Generation

* Given a text description, sample an
image that depicts the prompt

* The following images are samples from
SDXL with refinement

Prompt: Epic long distance cityscape
photo of New York City flooded by the
ocean and overgrown buildings and
jungle ruins in rainforest, at sunset,
cinematic shot, highly detailed, 8k,
golden light

Figure from Podell et al. (2023)




Text-to-Image Generation

* Given a text description, sample an
image that depicts the prompt

* The following images are samples from
SDXL with refinement

Prompt: close up headshot, futuristic
young woman, wild hair sly smile in front
of gigantic UFO, dslr, sharp focus,
dynamic composition

Figure from Podell et al. (2023)




Text-to-Image Generation

* Given a text description, sample an
image that depicts the prompt

* The following images are samples from
SDXL with refinement

Prompt: close up headshot, futuristic old
man, wild hair sly smile in front of
gigantic UFO, dslr, sharp focus, dynamic
composition, rule of thirds

https://stablediffusionweb.com

54
Figure from https://stablediffusionweb.com/



In-Class Poll

Question: ()1 Answer:
What are the potential - éee&b% J ee\>|a
societal impacts of ~ wistomnockin (gapl felok)

— Aec\(\,\q 3{ ‘/\u\/mov‘ O\A
= COQ\i n} Ry }V\Q\chwv\'\'

— eousler Cor‘tn*\ C reshon

— Creadive Nse‘m&mﬂ

Image generation?



Summary

Computer Vision

Task: Image Generation

Model: Generative Adversarial Network (GAN)
Learning for GANs

Scaling Up the Model Size

Societal Impacts of Image Generation



MODEL: GENERATIVE ADVERSARIAL
NETWORK (GAN)



Stable Diffusion still can’t explain GANs

Gans Geenttial Adiverssiaiattion Avark frirtiiverseniain
Gerrenattie Assbal CAGr|l Gucerb)

tntainlesnsaliatisl-

Prompt: slide explaining

Generative Adversarial | Pyt -
Networks (GANs) for Intro to
Machine Learning course,
carefully designed, easy to |
follow oSSy -

CARGSRIPMOINTE sy gpomp by
FEOIRAMS =

Gper ettrets shivs

Gonercro OWneNMeEREE

Negative Prompt: boring,
unclear, nontechnical

%826 svleasepird fahataiq)
& ’-5‘3\'"0175»30, 1o

Ararh/

)

Wt

(Mnetaarh

Figure from https://stablediffusionweb.com/ e DA ELSARR I SO MER COM



DALL-E isn’t much better

Prompt: a lemming from the

classic computer game
Lemmings explaining GANs

Figure from https://www.bing.com/images/create
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Generative Adversarial Networks (GANs)

A GAN consists of two deterministic neural network models:

1) the Generator 2) the Discriminator

takes a vector of random noise as input,  takes in an image classifies whether it is
and generates an image real (label 1) or fake (label 0)



Generator Model

Example Generator: DCGAN

— Aninverted CNN with four fractionally-

1) the Generator strided conyolutlon layers (not
deconvolution)
takes a vector of random noise as Input, — These fractional strides grow the size of

and generates an image the image from layer to layer

— The final layer has three channels for
red/green/blue

256
A

Stride 2

Stride 2 16

CONV 2

62
Figure from Radford et al. (2016)



Generative Adversarial Networks (GANs)

A GAN consists of two deterministic neural network models:

1) the Generator 2) the Discriminator

takes a vector of random noise as input,  takes in an image classifies whether it is
and generates an image real (label 1) or fake (label 0)



Discriminator Model

Example Discriminator: PatchGAN
— Convolutional neural network

— Looks at each patch of the image and
tries to predict whether it is real or fake

— Helps avoid producing blurry images

2) the Discriminator

takes in an image classifies whether it is
real (Iabel 1) or fake (label 0)

Figure from Demir & Unal (2018)
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Generative Adversarial Networks (GANs)

A GAN consists of two deterministic neural network models:

1) the Generator 2) the Discriminator

takes a vector of random noise as input,  takes in an image classifies whether it is
and generates an image real (label 1) or fake (label 0)

In training, the GAN plays a two player minimax game:

1. the Generator tries to create realistic images to
fool the Discriminator into thinking they are real

2. the Discriminator tries to identify the real images
from the fake



Generative Adversarial Networks (GANs)

Gg X = Gy(2)

Z~ poise(')

_-.;::'11_1 z
sl "4 -

Generator

/ fake image
0

66
Real/fake images from Huang et al. (2017) Gaussian noise from https://physbam.stanford.edu/cs448x/old/Noise _Review.html



Generative Adversarial Networks (GANs)

Dy

D(x)

>{ Discriminator p(real | image)

fake image /
¢

67
Real/fake images from Huang et al. (2017) Gaussian noise from https://physbam.stanford.edu/cs448x/old/Noise _Review.html



Generative Adversarial Networks (GANs)

¢ \
X’ ~ Pdata(") D¢
' Dd)(X,)
| % /{ Discriminator p(real | image)

real image

68
Real/fake images from Huang et al. (2017) Gaussian noise from https://physbam.stanford.edu/cs448x/old/Noise _Review.html



Generative Adversarial Networks (GANs)

Dy
( Dy(x)
>L Discriminator p(real | image)
fake image
¢
X’ ~ Pdata(") Dg
| ( qu(X’)
| % /L Discriminator p(real | image)
real image

69
Real/fake images from Huang et al. (2017) Gaussian noise from https://physbam.stanford.edu/cs448x/old/Noise _Review.html



LEARNING FOR GANS



Generative Adversarial Networks (GANs)

A GAN consists of two deterministic neural network models:

1) the Generator 2) the Discriminator

takes a vector of random noise as input,  takes in an image classifies whether it is
and generates an image real (label 1) or fake (label 0)

In training, the GAN plays a two player minimax game:

1. the Generator tries to create realistic images to
fool the Discriminator into thinking they are real

2. the Discriminator tries to identify the real images
from the fake



Generative Adversarial Networks (GANs)

Gg x = Gy(z) Dy
2 Procl) ( Dy(x)
Generator Discriminator p(real | image) \
L J = log(1- Dy(Gy(2)))
/ fake image /
6 ¢
X’ ~ pdata(') D loss = J+J)’
E qu(X’)
| % / D:scrtmmator —> p(real | Image) \
y’ )" =log(Dy(x"))

real image 1 /
¥
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Real/fake images from Huang et al. (2017) Gaussian noise from https://physbam.stanford.edu/cs448x/old/Noise_Review.html




Generative Adversarial Networks (GANs)

/ S The discriminator is trying to maximize
5 i the likelihood of a binary classifier with

r‘/_—'./—T [ , A labels {real = 1, fake = 0}, on the fixed
max log (D (X(Z))) + log (1 — D¢(G9(Z(Z)))) = Wex 345 output of the generator
d

p; ¢
minlog (1 — D, (Gy z(?) = Wiu 3 #JThe generator is trying to minimize the
9 ¢ g g
[ — —©  likelihood of its generated (fake) image
7 being classified as fake, according to a

fixed discriminator

In training, the GAN plays a two player minimax game:

1. the Generator tries to create realistic images to
fool the Discriminator into thinking they are real

2. the Discriminator tries to identify the real images
from the fake



Objective function is a simple
differentiable function

We chose G and D to be
differentiable neural networks

Learning a GAN

Training alternates between:
* Keep G, fixed and backprop through D
* Keep D, fixed and backprop through G,

1l



Learning a GAN

* Objective function is a simple Training alternates between:
differentiable function

e We chose G and D to be ,
differentiable neural networks * Keep D, fixed and backprop through G,

* Keep G, fixed and backprop through D,

Dy

( Dy(x)

Discriminator p(real | image)

J =log(1-Dg(Ge(2)))

fake image

loss = J+)’

y
o / \
X'~ pdata(')

Dy,
( D,(x") /
| % LDiscriminator p(real | image) \
/

y’ )’ =log(Dy(x’))

1 75

real image

Real/fake images from Huang et al. (2017)



* Obijective function is a simple
differentiable function

e We chose Gand D to be
differentiable neural networks

Gg X = Gy(2)

Generator

fake image

Real/fake images from Huang et al. (2017)

Learning a GAN

Training alternates between:
* Keep Gy fixed and backprop through D,
* Keep D, fixed and backprop through G,

D

Dy(x)

\( Discriminator p(real | image)
L J =log(1 - Dy(Ge(2)))
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Learning a GAN

* Objective function is a simple Training alternates between:
differentiable function

e  We chose G and D to be * Keep G, fixed and backprop through Dy

differentiable neural networks * Keep D, fixed and backprop through G,
Gg X = Gy(2) D
2~ Pooisel) ( Dy(x)
1 Generator > Discriminator p(real | image)
' L _ @\/L J =log(1-Dy(Ge(2)))
/ fake image Question: How do we backpropagate through G,

0 if there is a stochastic Gaussian distribution

involved?
‘ Usually p,oice(*) = Gaussian(o, a2 1)

Answer:

Real/fake images from Huang et al. (2017)



* Training data
consists of a
collection of m

unlabeled images
x(1) x(m)

) eees

* Optimizationis
similar to block
coordinate descent

* Butinstead of
exactly solving the
min/max problem,
we take a step of
mini-batch SGD

Figure from https://arxiv.org/pdf/1406.2661.pdf

Learning a GAN

Algorithm 1 Minibatch stochastic gradient descent training of generative adversarial nets. The number of
steps to apply to the discriminator, k. is a hyperparameter. We used & = 1, the least expensive option, in our
experiments.
for number of training iterations do
for k steps do

e Sample minibatch of m noise samples {z1), ... 2{™)} from noise prior p,(z).
e Sample minibatch of m examples {x'",... 2"} from data generating distribution

_——

")dutu(w)-
e Update the discriminator by ascending its stochastic gradient:

1y’

V(m% Z [logl_) (w(")> + log (1 - D ((} (z("))>)} .

1=

end for
e Sample minibatch of m noise samples {z'" ... 2™} from noise prior p,(z).
e Update the generator by descending its stochastic gradient:

e

%L s (1- (¢ (=0))).
=1

end for
The gradient-based updates can use any standard gradient-based learning rule. We used momen-
tum in our experiments.
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Class-conditional GANs

* Objective function is a simple Training alternates between:
differentiable function

e We chose Gand D to be
differentiable ety

* Keep Gy fixed and backprop through D
* Keep D, fixed and backprop through G,

)
S

Dy(x)

Discriminator p(real | image)

N

Generator

)

J =log(1-Dg(Ge(2)))

y
/ fake image 0 /
0 ¢

Add alabel as input | x~pau() Dy 055 = +)
to the generator, so ( Dy(x)
that it can learn to Discriminator p(real | image)
generate specific L | T~ o0
types of images real image y - ¢

Real/fake images from Huang et al. (2017)



SCALING UP THE MODEL SIZE



Scaling Up the Model Size

® DALLE
® GAN method o oDiff
® Imagen ® Muse3B
@ Transformer method ° .
Cogview2 g \1ys6900M
® Glide ® DALLE2
@ Diffusion method P TE— S —
e ® PARTI-3B
@ ControlNet
® LDM
® GigaGAN
® PARTI-750M
® DALLE-MINI
® VQ-Diffusion*
® PARTI-350M
® GALIP
® LAFITE
® XMC-GAN ® VQ-Diffusion-S*
® BridgeGAN
® StackGAN ® StackGAN++ ® ObjGAN
® GAN-CLS ® StyleGAN ® AttnGAN ® DMGAN
2016 2018 2020 2022

Fig. 5. Timeline of TTI model development, where green dots are GAN TTI models, blue dots are autoregressive Transformers and orange dots
are Diffusion TTI models. Models are separated by their parameter, which are in general counted for all their components. Models with asterisk are

calculated without the involvement of their text encoders.

Figure from Bie et al. (2023)
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Scaling Up the Model Size

The Pathways
Autoregressive Text-to-
Image (Parti) model:

* treatimage generation
as a sequence-to-
sequence problem

* text promptisinputto
encoder

* sequence of image

tokens is output of
decoder

* VIiT-VQGAN takes in the
image tokens and
generates a high-
quality image

’ ViT-VQGANT
Infergence

3
Image Detokenizer
(Transformer)

_,—> Transformer Decoder
Transformer Encoder

(R O A A

i)

=
T Image Tokenizer

Train (Transformer)

t to tn <s0S> 1

Two dogs running in a field
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Scaling Up the Model Size

Prompt: A portrait photo of a kangaroo wearing an orange hoodie and blue
sunglasses standing on the grass in front of the Sydney Opera House holding a sign
on the chest that says Welcome Friends!

Parti with different model sizes

750M

e
%

Figure from https://sites.research.google/parti/



Watermarking & Attribution

Watermarking

— Adigital watermark allows one to
identify when an image has been
created by a model

— Most methods for image generation
(GANSs, VAEs, stable ditfusion) can be
augmented with watermarking

Fake-image Detection

— Goal: identify fakes even without a
watermark

Model Attribution

— ldentify which generative model
created an image (e.g. Dalle-2 vs. SDXL)

— Very successful (natural watermarks)
Image Attribution

— Goal: identify the source images that
led to the generation of a new image

— Extremely challenging

Figure from Fei et al. (2022)

e
oMo
0 0
Watermark ] D [ S ——
P
—_— Encoder —— l’rt.dl(.tkd
—_— e Watermarked data Image processing Duodu Watermark

layer (optional)

Training Data v
@ @ Watermarking Network

L—— MSE —I

1 ]
1 I
—’DDDD‘---- . ----- : e II.
1 I
Random noise ; I

Generator

Zz= E(z) G

Generated Image  Imagé processing Decoder (trozm)
layer (optional)

Predicted

)
i
1 Watermark
1
|
1
1

lt‘

1 BCE

(00—
3 1 Owner

Watermark

Real Image Discriminator

X D GAN Watermarking Network
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SOCIETAL IMPACTS OF IMAGE GENERATION



Societal Impacts of Image Generation

Pros
e New tools for artists

Faster creation of memes

Cons

Copyright infringement [ loss of work for artists
Societal decrease in creativity

Potential to create dehumanizing content

Fake news [ false realities [ increased difficulty of fact checking
Not rooted in reality

Video generation is around the corner





https://www.bbcearth.com/flying-draco-lizard

