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Reminders

• Homework 9: Learning Paradigms
– Out: Mon, Nov. 25
– Due: Thu, Dec. 5 at 11:59pm

(only two grace/late days permitted)

• Exam 3 Practice Problems
– Out: Mon, Dec. 2

• Exam 3
– Tue, Dec 10 (9:30am – 11:30am)

• Final Exit Poll (after Exam 3)
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EXAM LOGISTICS
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Exam 3
• Time / Location

– Time: Tue, Dec 10 (9:30am – 11:30am)
– Location & Seats: You have all been split across multiple rooms. Everyone has an assigned 

seat in one of these room. 
– Please watch Piazza carefully for announcements.

• Logistics
– Covered material: Lectures 17 – 25 
– Format of questions:

• Multiple choice
• True / False (with justification)
• Derivations
• Short answers
• Interpreting figures
• Implementing algorithms on paper

– No electronic devices
– You are allowed to bring one 8½ x 11 sheet of notes (front and back)
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Exam 3

• How to Prepare
– Attend (or watch) this exam review session
– Review practice problems
– Review homework problems
– Review the poll questions from each lecture
– Consider whether you have achieved the learning objectives for 

each lecture / section
– Write your cheat sheets
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Topics for Exam 1
• Foundations
– Probability, Linear Algebra, 

Geometry, Calculus
– Optimization

• Important Concepts
– Overfitting
– Experimental Design

• Classification
– Decision Tree
– KNN
– Perceptron

• Regression
– KNN Regression
– Decision Tree Regression
– Linear Regression
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Topics for Exam 2
• Classification
– Binary Logistic Regression

• Important Concepts
– Stochastic Gradient Descent
– Regularization
– Feature Engineering

• Feature Learning
– Neural Networks
– Basic NN Architectures
– Backpropagation

• Learning Theory
– PAC Learning
– MLE / MAP

• Societal Impacts of ML

• Regression
– Linear Regression
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Topics for Exam 3
• Deep Learning
– Convolutional Neural Networks 

(CNNs)
– Recurrent Neural Networks 

(RNNs)
– Transformers
– Automatic differentiation

• Reinforcement Learning
– Value Iteration
– Policy Iteration
– Q-Learning
– Deep Q-Learning

• Other Learning Paradigms
– K-Means
– PCA
– Ensemble Methods
– Recommender Systems
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Classification and Regression: The Big Picture

18



Learning Paradigms
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ML Big Picture
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Learning Paradigms:
What data is available and 
when? What form of prediction?
• supervised learning
• unsupervised learning
• semi-supervised learning
• reinforcement learning
• active learning
• imitation learning
• domain adaptation
• online learning
• density estimation
• recommender systems
• feature learning
• manifold learning
• dimensionality reduction
• ensemble learning
• distant supervision
• hyperparameter optimization

Problem Formulation:
What is the structure of our output prediction?

 

boolean Binary Classification
categorical Multiclass Classification
ordinal Ordinal Classification
real Regression
ordering Ranking
multiple discrete Structured Prediction
multiple continuous (e.g. dynamical systems)
both discrete & 
cont.

(e.g. mixed graphical models)

Theoretical Foundations:
What principles guide learning?
q probabilistic
q information theoretic
q evolutionary search
q ML as optimization

Facets of Building ML 
Systems:
How to build systems that are 
robust, efficient, adaptive, 
effective?
1. Data prep 
2. Model selection
3. Training (optimization / 

search)
4. Hyperparameter tuning on 

validation data
5. (Blind) Assessment on test 

data

Big Ideas in ML:
Which are the ideas driving 
development of the field?
• inductive bias
• generalization / overfitting
• bias-variance decomposition
• generative vs. discriminative
• deep nets, graphical models
• PAC learning
• distant rewards
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Course Level Objectives
You should be able to…
1. Implement and analyze existing learning algorithms, including well-studied methods for 

classification, regression, structured prediction, clustering, and representation learning
2. Integrate multiple facets of practical machine learning in a single system: data preprocessing, 

learning, regularization and model selection
3. Describe the the formal properties of models and algorithms for learning and explain the 

practical implications of those results
4. Compare and contrast different paradigms for learning (supervised, unsupervised, etc.)
5. Design experiments to evaluate and compare different machine learning techniques on real-

world problems
6. Employ probability, statistics, calculus, linear algebra, and optimization in order to develop new 

predictive models or learning methods
7. Given a description of a ML technique, analyze it to identify (1) the expressive power of the 

formalism; (2) the inductive bias implicit in the algorithm; (3) the size and complexity of the 
search space; (4) the computational properties of the algorithm: (5) any guarantees (or lack 
thereof) regarding termination, convergence, correctness, accuracy or generalization power.
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SIGNIFICANCE TESTING
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Which classifier is better?
Goal: Given two classifiers: hA(x) 
and hB(x) which is better?

Common Approach: Evaluate each 
classifier on a test set and report 
which has higher accuracy.
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Two Sources of Variance

1. Randomness in training
2. Randomness in our test data
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1. Randomness in training
Example: Assume we are training a deep neural network 
with a nonconvex objective function via random restarts

We collect a sequence of classifiers for R random restarts:
vhB(x)(1) ⟵ train(D, seed = time in ms)
vhB(x)(2) ⟵ train(D, seed = time in ms)
v…
vhB(x)(R) ⟵ train(D, seed = time in ms)
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un
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Solution: histogram

hA hB

Solution: confidence interval

report variance of hA and hB

Ex: 
• hA     45%   +/-   5%
• hB     47%   +/-   8%



2. Randomness in our test data
Recall: we assume x(i) ~ p*(·) and y(i) = c*(x(i))
          or (x(i), y(i)) ~ p*(·, ·) 
Data: Assume the data is drawn from a generative 
distribution p*(x|y)p*(y) where p*(y) is an even coin 
flip and p*(x|y=red) is the red Gaussian and 
p*(x|y=blue) is the blue Gaussian.
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Significance Testing in ML
“And because any medication or intervention usually has some real 
effect, you can always get a statistically significant result by 
collecting so much data that you detect extremely tiny but 
relatively unimportant differences. As Bruce Thompson wrote, 
Statistical significance testing can involve a tautological logic in 
which tired researchers, having collected data on hundreds of 
subjects, then conduct a statistical test to evaluate whether there 
were a lot of subjects, which the researchers already know, 
because they collected the data and know they are tired. This 
tautology has created considerable damage as regards the 
cumulation of knowledge.”
 ― Alex Reinhart
      Statistics Done Wrong: The Woefully Complete Guide

30

For machine learning, significance testing is 
usually still answering an important question:
 
Did we evaluate our model on enough test 
data to conclude that our improvement over 
the baseline is surprising?



Significance Testing in ML
Paired Bootstrap Test
Key Idea: simulate the resampling of 
many test sets
Algorithm:

1. Draw B bootstrap samples 
S(b) = {(x(1), y(1)) (x(2), y(2)), …, (x(n), y(n))}
with replacement from test data Dtest

2. Let v = 0
3. For b = 1,…,B

 if 𝛿(S(b)) > 2𝛿(Dtest):
  v = v + 1

4. Return p-value as v/B

H0 = null hypothesis = performance of hA 
and hB is the same

Remarks:
1. Notice that E[𝛿(S(b))] = 𝛿(Dtest). 

We want to estimate how often 
A obtains a 𝛿(Dtest)-sized 
advantage over B (or greater) by 
random chance.

So we check whether 𝛿(S(b)) 
exceeds the expected value plus 
𝛿(Dtest) = 2𝛿(Dtest).

2. We needn’t limit 𝛿 to the 
difference in accuracy, it can be 
any metric we want!
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𝛿(D’) = difference in 
accuracy between 

hA and hB on D’



COMPUTER VISION
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Common Tasks in Computer Vision
1. Image Classification
2. Image Classification + 

Localization
3. Human Pose Estimation
4. Semantic Segmentation
5. Object Detection
6. Instance Segmentation
7. Image Captioning
8. Image Generation

34
Figure from https://arxiv.org/pdf/1704.06857.pdf



Image Classification

• Given an 
image, predict 
a single label

• A multi-class 
classification 
problem

35
Figure from https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdfFigure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities

between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts
at the bottom. The GPUs communicate only at certain layers. The network’s input is 150,528-dimensional, and
the number of neurons in the network’s remaining layers is given by 253,440–186,624–64,896–64,896–43,264–
4096–4096–1000.

neurons in a kernel map). The second convolutional layer takes as input the (response-normalized
and pooled) output of the first convolutional layer and filters it with 256 kernels of size 5⇥ 5⇥ 48.
The third, fourth, and fifth convolutional layers are connected to one another without any intervening
pooling or normalization layers. The third convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥
256 connected to the (normalized, pooled) outputs of the second convolutional layer. The fourth
convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥ 192 , and the fifth convolutional layer has 256
kernels of size 3⇥ 3⇥ 192. The fully-connected layers have 4096 neurons each.

4 Reducing Overfitting

Our neural network architecture has 60 million parameters. Although the 1000 classes of ILSVRC
make each training example impose 10 bits of constraint on the mapping from image to label, this
turns out to be insufficient to learn so many parameters without considerable overfitting. Below, we
describe the two primary ways in which we combat overfitting.

4.1 Data Augmentation

The easiest and most common method to reduce overfitting on image data is to artificially enlarge
the dataset using label-preserving transformations (e.g., [25, 4, 5]). We employ two distinct forms
of data augmentation, both of which allow transformed images to be produced from the original
images with very little computation, so the transformed images do not need to be stored on disk.
In our implementation, the transformed images are generated in Python code on the CPU while the
GPU is training on the previous batch of images. So these data augmentation schemes are, in effect,
computationally free.

The first form of data augmentation consists of generating image translations and horizontal reflec-
tions. We do this by extracting random 224⇥ 224 patches (and their horizontal reflections) from the
256⇥256 images and training our network on these extracted patches4. This increases the size of our
training set by a factor of 2048, though the resulting training examples are, of course, highly inter-
dependent. Without this scheme, our network suffers from substantial overfitting, which would have
forced us to use much smaller networks. At test time, the network makes a prediction by extracting
five 224 ⇥ 224 patches (the four corner patches and the center patch) as well as their horizontal
reflections (hence ten patches in all), and averaging the predictions made by the network’s softmax
layer on the ten patches.

The second form of data augmentation consists of altering the intensities of the RGB channels in
training images. Specifically, we perform PCA on the set of RGB pixel values throughout the
ImageNet training set. To each training image, we add multiples of the found principal components,

4This is the reason why the input images in Figure 2 are 224⇥ 224⇥ 3-dimensional.
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Image Classification + Localization
• Given an image, 

predict a single 
label and a 
bounding box 
for the object

• Bounding box is 
represented as 
(x, y, h, w), 
position (x,y) 
and 
height/width 
(h,w)

36
Figure from https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=5459257



Human Pose Estimation
• Given an image of a human, 

predict the position of 
several keypoints (left 
hand, right hand, left 
elbow, …, right foot)

• This is a multiple regression 
problem, where each 
keypoint has a 
corresponding position 
(xi,yi)

37Figure from 
https://openaccess.thecvf.com/content_cvpr_2014/papers/Toshev_DeepPose_Human_Pose_2014_CVPR_paper.pdf



Semantic Segmentation
• Given an image, 

predict a label for 
every pixel in the 
image

• Not merely a 
classification 
problem, because 
there are strong 
correlations between 
pixel-specific labels

38Figure from https://openaccess.thecvf.com/content_iccv_2015/papers/Noh_Learning_Deconvolution_Network_ICCV_2015_paper.pdf



Object Detection
• Given an image, for each object predict a bounding box 

and a label (x,y,w,h,l)
• Example: R-CNN

– (x=110, y=13, w=50, h=72, l=person)
– (x=90, y=55, w=81, h=87, l=horse)
– (x=421, y=533, w=24, h=30, l=chair)
– (x=2, y=25, w=51, h=121, l=gate)

39Figure from 
https://openaccess.thecvf.com/content_cvpr_2014/papers/Girshick_Rich_Feature_Hierarchies_2014_CVPR_paper.pdf



Instance Segmentation
• Predict per-pixel labels as 

in semantic segmentation, 
but differentiate between 
different instances of the 
same label

• Example: if there are two 
people in the image, one 
person should be labeled 
person-1 and one should 
be labeled person-2

40
Figure from https://openaccess.thecvf.com/content_ICCV_2017/papers/He_Mask_R-CNN_ICCV_2017_paper.pdf 



Image Captioning
• Take an image as 

input, and generate 
a sentence 
describing it as 
output (i.e. the 
caption)

• Typical methods 
include a deep 
CNN/transformer 
and a RNN-like 
language model

• (The task of Dense 
Captioning is to 
generate one 
caption per 
bounding box) 

41
Figure from https://dl.acm.org/doi/pdf/10.1145/3295748



Image Captioning
• Take an image as 

input, and generate 
a sentence 
describing it as 
output (i.e. the 
caption)

• Typical methods 
include a deep 
CNN/transformer 
and a RNN-like 
language model

• (The task of Dense 
Captioning is to 
generate one 
caption per 
bounding box) 

42
Table from https://dl.acm.org/doi/pdf/10.1145/3295748 



Medical Image Analysis

Notice that most of 
these tasks are 
structured prediction 
problems, not 
merely classification

43
Figure from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7327346/ 



TASK: IMAGE GENERATION
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Image Generation
• Class-conditional generation
• Super resolution
• Image Editing
• Style transfer
• Text-to-image (TTI) generation

45

sea anemone

brain coral

slug

goldfinch

Figure from Razavi et al. (2019) Figure from Bie et al. (2023)



Class Conditional Generation

46

• Task: Given a class 
label indicating the 
image type, sample a 
new image from the 
model with that type

• Image classification is 
the problem of taking 
in an image and 
predicting its label 
p(y|x)

• Class conditional 
generation is doing 
this in reverse p(x|y)

sea anemone

brain coral

slug

goldfinch

Figure from Razavi et al. (2019)



Super Resolution

47
Figure from Li et al. (2021)

• Given a low 
resolution image, 
generate a high 
resolution 
reconstruction of 
the image

• Compelling on low 
resolution inputs 
(see example to the 
left) but also 
effective on high 
resolution inputs



Image Editing

48
Figure from Saharia et al. (2022)

A variety of tasks involve 
automatic editing of an 
image:
• Inpainting fills in the (pre-

specified) missing pixels
• Colorization restores 

color to a greyscale image
• Uncropping creates a 

photo-realistic 
reconstruction of a 
missing side of an image



Style Transfer
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• The goal of style transfer is to blend 
two images

• Yet, the blend should retain the 
semantic content of the source 
image presented in the style of 
another image

Figure from Gatys et al. (2016)



Text-to-Image Generation

50

• Given a text description, sample an 
image that depicts the prompt

• The following images are samples from 
SDXL with refinement

Prompt: A propaganda poster depicting a 
cat dressed as french emperor napoleon 
holding a piece of cheese.

Figure from Podell et al. (2023)



Text-to-Image Generation

51

• Given a text description, sample an 
image that depicts the prompt

• The following images are samples from 
SDXL with refinement

Prompt: Epic long distance cityscape 
photo of New York City flooded by the 
ocean and overgrown buildings and 
jungle ruins in rainforest, at sunset, 
cinematic shot, highly detailed, 8k, 
golden light

Figure from Podell et al. (2023)



Text-to-Image Generation

52

• Given a text description, sample an 
image that depicts the prompt

• The following images are samples from 
SDXL with refinement

Prompt: close up headshot, futuristic 
young woman, wild hair sly smile in front 
of gigantic UFO, dslr, sharp focus, 
dynamic composition

Figure from Podell et al. (2023)



Text-to-Image Generation
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• Given a text description, sample an 
image that depicts the prompt

• The following images are samples from 
SDXL with refinement

Prompt: close up headshot, futuristic old 
man, wild hair sly smile in front of 
gigantic UFO, dslr, sharp focus, dynamic 
composition, rule of thirds

Figure from https://stablediffusionweb.com/



In-Class Poll

Question:
What are the potential 
societal impacts of 
image generation?

55

Answer:



Summary

• Computer Vision
• Task: Image Generation
• Model: Generative Adversarial Network (GAN)
• Learning for GANs
• Scaling Up the Model Size
• Societal Impacts of Image Generation

56



MODEL: GENERATIVE ADVERSARIAL 
NETWORK (GAN)
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Stable Diffusion still can’t explain GANs

59

Prompt: slide explaining 
Generative Adversarial 
Networks (GANs) for Intro to 
Machine Learning course, 
carefully designed, easy to 
follow

Negative Prompt: boring, 
unclear, nontechnical

Figure from https://stablediffusionweb.com/



DALL-E isn’t much better

60

Prompt: a lemming from the 
classic computer game 
Lemmings explaining GANs

Figure from https://www.bing.com/images/create



Generative Adversarial Networks (GANs)

1) the Generator
takes a vector of random noise as input, 
and generates an image

2) the Discriminator
takes in an image classifies whether it is 
real (label 1) or fake (label 0)

61

A GAN consists of two deterministic neural network models:



Generator Model

1) the Generator
takes a vector of random noise as input, 
and generates an image

62

Example Generator: DCGAN
– An inverted CNN with four fractionally-

strided convolution layers (not 
deconvolution)

– These fractional strides grow the size of 
the image from layer to layer

– The final layer has three channels for 
red/green/blue

Figure from Radford et al. (2016) 



Generative Adversarial Networks (GANs)

1) the Generator
takes a vector of random noise as input, 
and generates an image

2) the Discriminator
takes in an image classifies whether it is 
real (label 1) or fake (label 0)

63

A GAN consists of two deterministic neural network models:



Example Discriminator: PatchGAN
– Convolutional neural network
– Looks at each patch of the image and 

tries to predict whether it is real or fake
– Helps avoid producing blurry images

Discriminator Model

2) the Discriminator
takes in an image classifies whether it is 
real (label 1) or fake (label 0)

64Figure from Demir et al. (2018)
Figure from Demir & Unal (2018)



Generative Adversarial Networks (GANs)

1) the Generator
takes a vector of random noise as input, 
and generates an image

2) the Discriminator
takes in an image classifies whether it is 
real (label 1) or fake (label 0)

65

A GAN consists of two deterministic neural network models:

In training, the GAN plays a two player minimax game:
1. the Generator tries to create realistic images to 

fool the Discriminator into thinking they are real
2. the Discriminator tries to identify the real images 

from the fake



Generative Adversarial Networks (GANs)

66

z ~ pnoise(·)

Generator

Real/fake images from Huang et al. (2017)

fake image

x = G𝜃(z)G𝜃

𝜃

Gaussian noise from https://physbam.stanford.edu/cs448x/old/Noise_Review.html



Generative Adversarial Networks (GANs)

67
Real/fake images from Huang et al. (2017)

fake image

Discriminator p(real | image)

D𝜙(x)
x = G𝜃(z) D𝜙

𝜙

Gaussian noise from https://physbam.stanford.edu/cs448x/old/Noise_Review.html



Generative Adversarial Networks (GANs)

68
Real/fake images from Huang et al. (2017)

real image

Discriminator p(real | image)

D𝜙(x’)
x’ ~ pdata(·) D𝜙

𝜙

Gaussian noise from https://physbam.stanford.edu/cs448x/old/Noise_Review.html



Generative Adversarial Networks (GANs)

69
Real/fake images from Huang et al. (2017)

fake image

real image

Discriminator

Discriminator

p(real | image)

D𝜙(x)
x = G𝜃(z)

p(real | image)

D𝜙

D𝜙(x’)
x’ ~ pdata(·) D𝜙

𝜙

Gaussian noise from https://physbam.stanford.edu/cs448x/old/Noise_Review.html



LEARNING FOR GANS
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Generative Adversarial Networks (GANs)

1) the Generator
takes a vector of random noise as input, 
and generates an image

2) the Discriminator
takes in an image classifies whether it is 
real (label 1) or fake (label 0)

71

A GAN consists of two deterministic neural network models:

In training, the GAN plays a two player minimax game:
1. the Generator tries to create realistic images to 

fool the Discriminator into thinking they are real
2. the Discriminator tries to identify the real images 

from the fake



Generative Adversarial Networks (GANs)

72

z ~ pnoise(·)

Generator

Real/fake images from Huang et al. (2017)

fake image

real image

Discriminator

Discriminator

p(real | image)

y’

D𝜙(x)
x = G𝜃(z)G𝜃

p(real | image)

D𝜙

D𝜙(x’)
x’ ~ pdata(·) D𝜙

1

y

0

J = log(1 – D𝜙(G𝜃(z)))

J’ = log(D𝜙(x’))

loss = J+J’

𝜃 𝜙

Gaussian noise from https://physbam.stanford.edu/cs448x/old/Noise_Review.html



Generative Adversarial Networks (GANs)

73

max
φ

log
(

Dφ(x(i))
)

+ log
(

1−Dφ(Gθ(z(i)))
)

min
θ

log
(

1−Dφ(Gθ(z(i)))
)

The discriminator is trying to maximize 
the likelihood of a binary classifier with 
labels {real = 1, fake = 0}, on the fixed 

output of the generator

The generator is trying to minimize the 
likelihood of its generated (fake) image 
being classified as fake, according to a 

fixed discriminator

In training, the GAN plays a two player minimax game:
1. the Generator tries to create realistic images to 

fool the Discriminator into thinking they are real
2. the Discriminator tries to identify the real images 

from the fake



Learning a GAN
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z ~ pnoise(·)

Generator

fake image

real image

Discriminator

Discriminator

p(real | image)

y’

D𝜙(x)
x = G𝜃(z)G𝜃

p(real | image)

D𝜙

D𝜙(x’)
x’ ~ pdata(·) D𝜙

1

y

0

J = log(1 – D𝜙(G𝜃(z)))

J’ = log(D𝜙(x’))

loss = J+J’

𝜃 𝜙

• Objective function is a simple 
differentiable function 

• We chose G and D to be 
differentiable neural networks 

Training alternates between:
• Keep G𝜃 fixed and backprop through D𝜙

• Keep D𝜙 fixed and backprop through G𝜃 

Real/fake images from Huang et al. (2017) Gaussian noise from https://physbam.stanford.edu/cs448x/old/Noise_Review.html



Learning a GAN
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z ~ pnoise(·)

Generator

Real/fake images from Huang et al. (2017)

fake image

real image

Discriminator

Discriminator

p(real | image)

y’

D𝜙(x)
x = G𝜃(z)G𝜃

p(real | image)

D𝜙

D𝜙(x’)
x’ ~ pdata(·) D𝜙

1

y

0

J = log(1 – D𝜙(G𝜃(z)))

J’ = log(D𝜙(x’))

loss = J+J’

𝜃 𝜙

• Objective function is a simple 
differentiable function 

• We chose G and D to be 
differentiable neural networks 

Training alternates between:
• Keep G𝜃 fixed and backprop through D𝜙

• Keep D𝜙 fixed and backprop through G𝜃 



Learning a GAN
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z ~ pnoise(·)

Generator

fake image

real image

Discriminator

Discriminator

p(real | image)

y’

D𝜙(x)
x = G𝜃(z)G𝜃

p(real | image)

D𝜙

D𝜙(x’)
x’ ~ pdata(·) D𝜙

1

y

0

J = log(1 – D𝜙(G𝜃(z)))

J’ = log(D𝜙(x’))

loss = J+J’

𝜃 𝜙

• Objective function is a simple 
differentiable function 

• We chose G and D to be 
differentiable neural networks 

Training alternates between:
• Keep G𝜃 fixed and backprop through D𝜙

• Keep D𝜙 fixed and backprop through G𝜃 

Real/fake images from Huang et al. (2017)



Learning a GAN
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z ~ pnoise(·)

Generator

fake image

real image

Discriminator

Discriminator

p(real | image)

y’

D𝜙(x)
x = G𝜃(z)G𝜃

p(real | image)

D𝜙

D𝜙(x’)
x’ ~ pdata(·) D𝜙

1

y

0

J = log(1 – D𝜙(G𝜃(z)))

J’ = log(D𝜙(x’))

loss = J+J’

𝜃 𝜙

• Objective function is a simple 
differentiable function 

• We chose G and D to be 
differentiable neural networks 

Training alternates between:
• Keep G𝜃 fixed and backprop through D𝜙

• Keep D𝜙 fixed and backprop through G𝜃 

Real/fake images from Huang et al. (2017)

Usually pnoise(·) = Gaussian(0, 𝜎2 I)
Answer:

Question: How do we backpropagate through G𝜃

 if there is a stochastic Gaussian distribution 
involved?



Learning a GAN
• Training data 

consists of a 
collection of m 
unlabeled images 
x(1), …, x(m)

• Optimization is 
similar to block 
coordinate descent

• But instead of 
exactly solving the 
min/max problem, 
we take a step of 
mini-batch SGD
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Figure from https://arxiv.org/pdf/1406.2661.pdf



Class-conditional GANs
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z ~ pnoise(·)

Generator

fake image

real image

Discriminator

Discriminator

p(real | image)

y’

D𝜙(x)
x = G𝜃(z)G𝜃

p(real | image)

D𝜙

D𝜙(x’)
x’ ~ pdata(·) D𝜙

1

y

0

J = log(1 – D𝜙(G𝜃(z)))

J’ = log(D𝜙(x’))

loss = J+J’

𝜃 𝜙

• Objective function is a simple 
differentiable function 

• We chose G and D to be 
differentiable neural networks 

Training alternates between:
• Keep G𝜃 fixed and backprop through D𝜙

• Keep D𝜙 fixed and backprop through G𝜃 

Real/fake images from Huang et al. (2017)

label

Add a label as input 
to the generator, so 
that it can learn to 
generate specific 
types of images 



SCALING UP THE MODEL SIZE
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Scaling Up the Model Size

81
Figure from Bie et al. (2023)



Scaling Up the Model Size
The Pathways 
Autoregressive Text-to-
Image (Parti) model:
• treat image generation 

as a sequence-to-
sequence problem

• text prompt is input to 
encoder

• sequence of image 
tokens is output of 
decoder

• ViT-VQGAN takes in the 
image tokens and 
generates a high-
quality image
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Scaling Up the Model Size
Prompt: A portrait photo of a kangaroo wearing an orange hoodie and blue 
sunglasses standing on the grass in front of the Sydney Opera House holding a sign 
on the chest that says Welcome Friends!
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Figure from https://sites.research.google/parti/

Parti with different model sizes



Watermarking & Attribution
• Watermarking

– A digital watermark allows one to 
identify when an image has been 
created by a model

– Most methods for image generation 
(GANs, VAEs, stable diffusion) can be 
augmented with watermarking

• Fake-image Detection
– Goal: identify fakes even without a 

watermark
• Model Attribution

– Identify which generative model 
created an image (e.g. Dalle-2 vs. SDXL)

– Very successful (natural watermarks)
• Image Attribution

– Goal: identify the source images that 
led to the generation of a new image

– Extremely challenging
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Figure from Fei et al. (2022)



SOCIETAL IMPACTS OF IMAGE GENERATION
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Societal Impacts of Image Generation
Pros
• New tools for artists
• Faster creation of memes
Cons
• Copyright infringement / loss of work for artists
• Societal decrease in creativity
• Potential to create dehumanizing content
• Fake news / false realities / increased difficulty of fact checking
• Not rooted in reality
• Video generation is around the corner

87



88https://www.bbcearth.com/flying-draco-lizard 
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