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1 Learning Theory

1.1 PAC Learning

Some Important Definitions

1. Basic notation:

• Probability distribution (unknown): X ∼ p∗

• True function (unknown): c∗ : X → Y

• Hypothesis space H and hypothesis h ∈ H : X → Y

• Training dataset D = {x(1), . . . , x(N)}

2. True Error (expected risk)

R(h) = Px∼p∗(x)(c
∗(x) ̸= h(x))

3. Train Error (empirical risk)

R̂(h) = Px∼D(c
∗(x) ̸= h(x))

=
1

N

N∑
i=1

1(c∗(x(i)) ̸= h(x(i)))

=
1

N

N∑
i=1

1(y(i) ̸= h(x(i)))

The PAC criterion is that we produce a high accuracy hypothesis with high probability.
More formally,

P (∀h ∈ H, ≤ ) ≥

P (∀h ∈ H, |R(h)− R̂(h)| ≤ ϵ) ≥ 1− δ
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Sample Complexity is the minimum number of training examples N such that the PAC
criterion is satisfied for a given ϵ and δ

Sample Complexity for 4 Cases: See Figure 1. Note that

• Realizable means c∗ ∈ H

• Agnostic means c∗ may or may not be in H
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Figure 1: Sample Complexity for 4 Cases

The VC dimension of a hypothesis space H, denoted VC(H) or dV C(H), is the maximum
number of points such that there exists at least one arrangement of these points and a
hypothesis h ∈ H that is consistent with any labelling of this arrangement of points.

To show that VC(H) = n:

• Show there exists a set of points of size n that H can shatter

• Show H cannot shatter any set of points of size n+ 1

Questions

1. For the following examples, write whether or not there exists a dataset with the given
properties that can be shattered by a linear classifier.

• 2 points in 1D

• 3 points in 1D

• 3 points in 2D

• 4 points in 2D

How many points can a linear boundary (with bias) classify exactly for d-Dimensions?

• Yes

• No

• Yes

• No

d+ 1
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2. Consider a rectangle classifier (i.e. the classifier is uniquely defined 3 points x1, x2, x3 ∈
R2 that specify 3 out of the four corners), where all points within the rectangle must
equal 1 and all points outside must equal -1

(a) Which of the configurations of 4 points in figure 2 can a rectangle shatter?

Figure 2

(a), (b), since the rectangle can be scaled and rotated it can always perfectly classify
the points. (c) is not perfectly classifiable in the case that all the exterior points
are positive and the interior point is negative.

(b) What about the configurations of 5 points in figure 3?

Figure 3

None of the above. For (d), consider (from left to right) the labeling 1, 1 -1, -1, 1.
For (e), same issue as (c).



10-301/10-601: Recitation 6 Page 5 of 13 10/25/24

3. In the below table, state in which case the sample complexity of the hypothesis falls
under.

Problem Hypothesis Space Realizable/
Agnostic

Finite/ Infi-
nite

A binary classification
problem, where the data
points are linearly separa-
ble

Set of all linear classifiers

Predict whether it will
rain or not based on
the following dataset:

A decision tree with max
depth 2, where each node
can only split on one fea-
ture, and the features can-
not be repeated along a
branch

Classifying a set of real-
valued points where the un-
derlying data distribution is
unknown

Set of all linear classifiers

A binary classification
problem on a given set of
data points, where the data
is not linearly separable

K-nearest neighbour classi-
fier with Euclidean distance
as distance metric

Realizable/ Agnostic Finite/ Infinite

1 Realizable Infinite (All possible linear classifiers)
2 Realizable (We can split the

given data using a depth 2 de-
cision tree)

Finite (There are only a finite set of decision
trees that can be formed with the given con-
straints)

3 Agnostic (The data may or may
not be linearly separable)

Infinite

4 Agnostic (The KNN classifier
may or not be able to perfectly
classify each point)

Finite (The hypothesis space is the set of all
possible partitions of the input space into k-
nearest regions - which is finite for all possible
values of k )
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4. Let x1, x2, ..., xn be n random variables that represent binary literals (x ∈ {0, 1}n). Let
the hypothesis class Hn denote the conjunctions of no more than n literals in which each
variable occurs at most once. Assume that c∗ ∈ Hn.

Example: For n = 4, (x1 ∧ x2 ∧ x4), (x1 ∧ ¬x3) ∈ H4

Find the minimum number of examples required to learn h ∈ H10 which guarantees at
least 99% accuracy with at least 98% confidence.

|Hn| = 3n

|H10| = 310, ϵ = 0.01, δ = 0.02

N(H10, ϵ, δ) ≥ ⌈1
ϵ
[ln |H10|+ ln 1

δ
]⌉ = ⌈1489.81⌉ = 1490
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2 Probabilistic Learning

In probabilistic learning, we are trying to learn a target probability distribution as opposed
to a target function. We’ll review two ways of estimating the parameters of a probability
distribution, as well as one family of probabilistic models: Naive Bayes classifiers.

2.1 MLE/MAP

As a reminder, in MLE, we have

θ̂MLE = argmax
θ

p(D|θ)

= argmin
θ

− log (p(D|θ))

For MAP, we have

θ̂MAP = argmax
θ

p(θ|D)

= argmax
θ

p(D|θ)p(θ)
Normalizing Constant

= argmax
θ

p(D|θ)p(θ)

= argmin
θ

− log (p(D|θ)p(θ))

1. Imagine you are a data scientist working for an advertising company. The advertising
company has recently run an ad and wants you to estimate its performance.

The ad was shown to N people. Let Y (i) = 1 if person i clicked on the ad and 0
otherwise. Thus

∑N
i y(i) = k people decided to click on the ad. Assume that the

probability that the i-th person clicks on the ad is θ and the probability that the i-th
person does not click on the ad is 1− θ.
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(a) Note that
p(D|θ) = p((Y (1), Y (2), ..., Y (N)|θ) = θk(1− θ)N−k

Calculate θ̂MLE.

θ̂MLE = argmin
θ

− log (p(D|θ))

= argmin
θ

− log
(
θk(1− θ)N−k)

)
= argmin

θ
−k ∗ log(θ)− (N − k) log(1− θ)

Setting the derivative equal to zero yields

0 =
−k

θ
+

(N −K)

1− θ

=⇒ θ̂MLE =
k

N

(b) Suppose N = 100 and k = 10. Calculate θ̂MLE.

θ̂MLE = k
N

= 0.10

(c) Your coworker tells you that θ ∼ Beta(α, β). That is:

p(θ) =
θα−1(1− θ)β−1

B(α, β)

Recall from lecture that θ̂MAP for a Bernoulli random variable with a Beta prior
is given by:

θ̂MAP =
k + α− 1

N + α + β − 2

Suppose N = 100 and k = 10. Furthermore, you believe that in general people
click on ads about 6 percent of the time, so you, somewhat naively, decide to set
α = 6 + 1 = 7, and β = 100− 6 + 1 = 95. Calculate θ̂MAP .

θ̂MAP = k+α−1
N+α+β−2

= 10+7−1
100+102−2

= 16
200

= 0.08

(d) How do θ̂MLE and θ̂MAP differ in this scenario? Argue which estimate you think
is better.

Both estimates are reasonable given the available information. Note that θ̂MAP

has lower variance than θ̂MLE, but θ̂MAP is more biased. If you believe that this
advertisement is similar to advertisements with a 6 percent click rate, then θ̂MAP

may be a superior estimate, but if the circumstances under which the adver-
tisement was shown were different from the usual, then θ̂MLE might be a better
choice.
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2. Suppose you are an avid Neural and Markov fan who monitors the @neuralthenarwhal
Instagram account each day. Suppose you wish to find the probability that Neural or
Markov will post at any time of day. Over three days you look on Instagram and find
the following number of new posts: x = [3, 4, 1]

A fellow fan tells you that this comes from a Poisson distribution:

p(x|θ) = e−θθx

x!

Also, you are told that θ ∼ Gamma(2, 2) — that is, its pdf is:

p(θ) =
1

4
θe−

θ
2 , θ > 0

Calculate θ̂MAP .

(See also https://en.wikipedia.org/wiki/Conjugate_prior)

Note:

p(D|θ) = e−θθ3

3!

e−θθ4

4!

e−θθ1

1!

θ̂MAP = argmin
θ

− log (p(D|θ)p(θ))

= argmin
θ

− log

(
e−θθ3

3!

e−θθ4

4!

e−θθ1

1!
× 1

4
θe−

θ
2

)
= argmin

θ
− log

(
e−3θ− θ

2 θ9

3!× 4!

)

= argmin
θ

−
((

−3θ − θ

2

)
log e+ 9 log θ − log (3!× 4!)

)
= argmin

θ

(
3θ +

θ

2

)
− 9 log θ + log (3!× 4!)

Taking the derivative gives us

d

dθ

(
3θ +

θ

2

)
− 9 log θ + log (3!× 4!) =

(
3 +

1

2

)
− 9

θ

Setting the derivative equal to zero yields

0 =

(
3 +

1

2

)
− 9

θ

=⇒ θMAP =
9

3 + 1
2

= 2.57142857143

https://en.wikipedia.org/wiki/Conjugate_prior
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3 Precision and Recall

relevant elements

retrieved elements

false positivestrue positives

false negatives true negatives

Precision = Recall =

How many retrieved
items are relevant?

How many relevant
items are retrieved?
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The following chart is known as a confusion matrix and helps formalize the concepts displayed
above. There are 4 categories in the chart:

• True positives : items that are predicted positive and have actual label positive

• False positives : items that are predicted positive but have actual label negative

• True negatives : items that are predicted negative and have actual label negative

• False negatives : items that are predicted negative but have actual label positive

• Type I error: occurs when we predict a false positive (erroneously predict a positive
label when the true label is negative)

• Type II error: occurs when we predict a false negative (erroneously predict a negative
label when the true label is positive)

1. What is the formula for precision in terms of the values in the confusion matrix? What
about recall? Precision = TP/(TP + FP), Recall = TP/(TP + FN)

2. The base rate is the proportion of items that have true label positive. What is the
formula for the base rate in terms of the confusion matrix? base rate = (TP + FN) /
(TP + FP + FN + TN)

3. Suppose we predict every item to be positive. What is the precision? What is the
recall? precision = base rate, recall = 1
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4. The F1 score is defined as the harmonic mean of the precision and recall: F1 =
2

1/P+1/R
.

The following image shows an example curve of precision and recall for a classifier when
varying the threshold between the positive and negative classes. The point on the curve
with highest F1 score is marked.

Draw an example precision-recall curve for a “better” classifier than the one shown.
Mark the point with the optimal F1 score.

Draw an example precision-recall curve for a “worse” classifier than the one shown.
Mark the point with the optimal F1 score.
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