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1 Introduction to Reinforcement Learning

1.1 Markov Decision Process

A Markov decision process is a tuple (S,A, T, R, γ, s0), where:

• S is the set of states

• A is the set of actions

• T : S ×A× S → [0, 1] is the transition function

• R : S ×A× S → R is the reward function

• γ ∈ [0, 1) is the discount factor

• s0 is the start state

When we play a game, we can model the game using a Markov decision process as follows:

1. We start in some state s0.

2. Choose some action a0 ∈ A.

3. As a result of our choice, the state of the game transitions to some successor state s1.
For non-deterministic transition, we draw the next state according to our transition
function. That is to say,

T (st, at, st+1) = P (St+1 = st+1|St = st, At = at)

4. Then we pick another action a1, and so on.

We can represent it as

s0
a0−→ s1

a1−→ s2
a2−→ s3

a3−→ . . .

Let rt = R(st, at, st+1). Upon visiting a sequence of states s0, s1, s2, s3 . . . with respective
actions a0, a1, a2, . . . the total discounted payoff is given by

r0 + γr1 + γ2r2 + . . .

Note that different sequences of states may have a different payoff value, and the reward is
discounted if attained later.
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1.2 Policy and Value Function

A policy is any function π : S → A mapping from the states to the actions. We say that
we are executing some policy π if, whenever we are in state s, we take action a = π(s).

For the optimal policy function π∗ we can compute its value function at state s as:

V π∗
(s) = V ∗(s)

= E
[
R(s0, π

∗(s0), s1) + γR(s1, π
∗(s1), s2) + γ2R(s2, π

∗(s2), s3) · · · | s0 = s, π∗] .
In other words, this is the best possible expected total payoff that can be attained using any
policy π.

This optimal value function can be represented using Bellman’s equations (named Bell-
man optimality equation for state value function), i.e.,

V ∗(s) = max
a∈A

∑
s′∈S

p(s′|s, a)(R(s, a, s′) + γV ∗(s′)).

If R(s, a, s′) = R(s, a) (deterministic transition), then we have the form we saw in class:

V ∗(s) = max
a∈A

{
R(s, a) + γ

∑
s′∈S

p(s′|s, a)V ∗(s′)

}
.

The interpretation of Bellman equation is also very intuitive: “how valuable is the current
state under a policy?” Then it naturally follows that the optimal policy π∗ : S → A can be
found as

π∗(s) = argmax
a∈A

∑
s′∈S

p(s′|s, a)(R(s, a, s′) + γV ∗(s′)).

1.3 Q-Value

We can also define a Q function Q(s, a) that returns the expected discounted future value
of taking action a at state s.

Question: When would we want to use Q(s, a) instead of V (s)?

Answer: When the reward function and/or transition probabilities are unknown

We can take a part of V ∗(s) as Q∗(s, a) so that we have

Q∗(s, a) =
∑
s′∈S

p(s′|s, a)(R(s, a, s′) + γV ∗(s′))

V ∗(s) = max
a∈A

∑
s′∈S

p(s′|s, a)(R(s, a, s′) + γV ∗(s′))︸ ︷︷ ︸
Q∗(s,a)

= max
a∈A

Q∗(s, a).

Then it follows that the optimal policy can be obtained as

π∗(s) = argmax
a∈A

Q∗(s, a).
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2 Value Iteration

•

Figure 1: The cliff-walking environment

Here, we assume a 4 × 4 grid environment. The reward is 1 for reaching the cell with the
red dot, −1 for reaching the shaded cells, and 0 for all other cells. The episode ends if the
agent lands in either the shaded cells or the red-dot cell. The state space (S) is all the cells.
The action space (A) is up, down, left or right. If the agent tries to move out of the grid, it
simply goes back to its previous state. The discount factor, γ, is 0.9.

Bellman optimality equation for state value function:

V ∗(s) = max
a∈A

∑
s′∈S

p(s′|s, a)(R(s, a, s′) + γV ∗(s′))

We can numerically approximate V ∗ using synchronous value iteration and asynchronous
value iteration. The recurrence relation is defined as follows for synchronous value iteration
for all s ∈ S:

V (t+1)(s) = max
a∈A

∑
s′∈S

p(s′|s, a)(R(s, a, s′) + γV (t)(s′)).

Notice the time term (t), hence the name synchronous. For asynchronous value iteration,
we use for all s ∈ S:

V (s) = max
a∈A

∑
s′∈S

p(s′|s, a)(R(s, a, s′) + γV (s′)).

1. Find the updated value of each cell after the first round and after the second round of
synchronous value iteration. Assume deterministic transition function.

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

Initial

0 0 0 0

0 0 0 1

0 0 0 0

0 0 0 0

After 1st round

0 0 0 0

0 0 0.9 1

0 0 0 0.9

0 0 0 0

After 2nd round



10-301/601: Recitation 8 Page 4 of 10 11/15/2024

2. Starting over, find the update value of each cell after one round of asynchronous value
iteration. Visit each cell in two different orders: (1) bottom right to top left, and (2)
top left to bottom right.

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

Initial

0 0 0 0

0.93 0.92 0.9 1

0.94 0.93 0.92 0.9

0.95 0.94 0.93 0.92

BR to TL

0 0 0 0

0 0 0 1

0 0 0 0

0 0 0 0

TL to BR

3. What is the policy learned after the one round of asynchronous value iteration when the
cells were visited from bottom right to top left? If there is a tie, pick the action that
comes first alphabetically (i.e., priority: ↓ >← >→ > ↑).

↓ ⟲ ⟲ ⟲

→ → → ↓

↓ ↓ ↓ ↓

↓ ↓ ↓ ↓

4. Now suppose that the environment is sloped downward towards the cliff, with all the
other settings unchanged. For every action taken, there is a 0.5 probability that the
agent will move as intended and a 0.5 probability that the agent will slip and move 1
cell down instead. Report the values after two rounds of synchronous value iteration.

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

Initial

0 0 0 0

0 −.5 −.5 1

0 0 0 0

0 0 0 0

After 1st round

0 0 0 0

0 −.5 −.05 1

0 −.225 −.225 .9

0 0 0 0

After 2nd round
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3 Q-Learning

Let’s play some football (the real American kind). We will divide the field into eight states
(labeled slightly differently from an official football field for clarity):

FG

S 90 70 50 30 10 TD

Here are some basic rules (slightly different than official football rules, but let’s work with
it for the sake of this example):

• There are two teams. For simplicity, let’s call them Offense and Defense.

• The length of the field is 100 yards; we will set each 20-yard interval on this field as
its own state, in addition to the end zones (S, TD, and FG).

• The drive (or, in reinforcement learning terms, episode) terminates if the ball is moved
into the end zone.

• At each state, the Offense may either run the ball or pass it (always in the direction
of TD).

The head coach argues that it is not a good idea to assume a value for the transition
probability from one state to the next. She also argues that since it is not the case that
the Offense will always score seven points when going into the TD state (they can also score
six points or eight) it is better to not assume a reward function. It is also possible to start
the drive from anywhere in the field. For all these reasons, she encourages the offensive
coordinators to try Q-learning.

1. The offensive coordinators, now convinced, decide to build a Q-value table that matches
the state and action space. What is the size of this table?

8 states× 2 actions = 16 entries
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2. The offensive coordinators initialize Q(s, a) = 0 ∀s, a. They decide to update it by
sampling random drives from games previously played by the Offense this season (note
that this approach uses experience replay and not a standard MDP since individual
plays in a football game are not independent unlike moves in a grid world). They give
you the empty Q-value table for ease:

Q(·, run):

FG

S 90 70 50 30 10 TD

Q(·, pass):

FG

S 90 70 50 30 10 TD

Time to watch some football :) Assume the learning rate α = 0.1 and the discount
factor γ = 0.5. Update the Q-table above for each of the following episodes using the
Temporal Difference error update:

(a) Episode 1, iteration 1: Beginning at the 30 state, Offense runs the ball to 10.
Offense collects zero reward.
Q(30, run) = 0

(b) Episode 1, iteration 2: Offense passes the ball from the 10 but stays at the
10. Offense collects zero reward.
Q(10, pass) = 0

(c) Episode 1, iteration 3: From the 10, Offense passes the ball again and reaches
the TD state. The drive terminates. Offense collects a reward of 7.
Q(10, pass) = 0.7

(d) After updating the Q-function for the first episode, the head coach decides to quiz
the offensive coordinators. If the Offense is in state 10, what is the best action?
π(10) = pass
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(e) Episode 2, iteration 1: Beginning at the 90 state, the Offense runs the ball,
causing a safety (they enter the S state). The drive terminates. Offense collects
-2 reward.
Q(90, run) = −0.2

(f) After updating the Q-function for the second episode, the head coach decides to
quiz the offensive coordinators again. If the Offense is in state 90, what is the
best action to take?
π(90) = pass

(g) Episode 3, iteration 1: Beginning at 50, the Offense passes the ball but stays
at the 50. Offense collects zero reward.
Q(50, pass) = 0

(h) Episode 3, iteration 2: Beginning at the 50, the Offense passes the ball to the
30. Offense collects zero reward.
Q(50, pass) = 0

(i) Episode 3, iteration 3: Beginning at the 30, the Offense runs the ball to the
10. Offense collects zero reward.
Q(30, run) = 0.035

(j) Episode 3, iteration 4: Beginning at the 10, the Offense runs the ball and ends
the drive after entering the FG state. Offense collects a reward of 3 points.
Q(10, run) = 0.3

(k) After updating the Q-function for the third episode, the head coach decides to
quiz the offensive coordinators for the last time. If the Offense is in state 10, what
is the best action to take?
π(10) = pass
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4 Deep Q-Learning

In Mountain Car, you control a car that starts at the bottom of a valley. Your goal is to
reach the flag at the top right, as seen in Figure 2. However, your car is under-powered and
can not climb up the hill by itself. Instead you must learn to leverage gravity and momentum
to make your way to the flag. It would also be good to get to this flag as fast as possible.

Figure 2: Mountain Car environment. The car starts at some point in the valley. The goal
is to get to the top right flag.

The state of the environment is represented by two variables, position and velocity.
position can be between −1.2 and 0.6 inclusive and velocity can be between −0.07 and
0.07 inclusive. These are just measurements along the horizontal axis.

The actions that you may take at any state are {0, 1, 2} which respectively correspond to
(0) pushing the car left, (1) doing nothing, and (2) pushing the car right. Note that we need
Q-learning since we do not have the transition function.

1. Approximate Q-learning involves using a function that estimates Q values given state
and action pairs. Consider using the following linear approximation:

Q(s, a;w0,w1,w2) = wT
a s+ ba =


wT

0 s+ b0 if a = 0

wT
1 s+ b1 if a = 1

wT
2 s+ b2 if a = 2

Let s = [0.5, 0.5]T , w0 = [−1,−10]T , w1 = [0, 1]T , w2 = [2, 10]T , b0 = b1 = b2 = 0.5.
What are the Q values for all actions performed at state s?

q(s, 0) = −5, q(s, 1) = 1, q(s, 2) = 6.5

2. We try a näıve state representation for Q-learning. What are the disadvantages with
the following state representation when using Q-learning with linear approximation?

s =

[
position

velocity

]
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Position

Velocity

−1.2−0.84−0.48−0.12 0.24 0.6
−0.07

−0.04

−0.01

0.01

0.04

0.07

•
•

(a) A discretization of the state space of Mountain Car

Position

Velocity

−1.2−0.84−0.48−0.12 0.24 0.6
−0.07

−0.04

−0.01

0.01

0.04

0.07

•
•

(b) A tiling of the state space of Mountain Car

Figure 3: State representations for the states of Mountain Car

The linear approximation can only learn linear relationships between the position and
velocity of a state and its value. In the Mountain Car environment, this would mean
values of states would decrease gradually from right to left (values are highest near the
flag and decrease as the car moves away from it). However, this is not representative of
the true values since we would want to penalize the states at the bottom of the valley
as opposed to the leftmost states. This relationship would not be learned well with this
”raw” state representation.

3. For the Mountain Car environment, we know that position and velocity are both
bounded. What we can do is draw a grid over the possible position-velocity combi-
nations as seen in Figure 3a. We then enumerate the grid from bottom left to top right,
row by row. Then we map all states that fall into a grid square with the corresponding
one-hot encoding of the grid number. For efficiency reasons we will just use the index
that is non-zero. For example the green point would be mapped to {6}. This is called
a discretization of the state space. Is there any downside to this approach? If the
discretization is not fine enough i.e. grids are large, nearby states with different true
values would be incorrectly considered the same. For example, in the grid world envi-
ronment with the cliff near the goal, the edge of the cliff and the goal may be grouped
into the same state and inaccurately assigned the same reward. If the discretization is
too fine, the dimensionality of the state representation becomes too large, slowing down
training.

4. In addition to 2D discretization, we can draw two grids over the state space, each offset
slightly from each other as in Figure 3b. The grids are indexed in row major order left to
right and then bottom to top, then blue grid to red grid. For example, the top right blue
grid is 24 while the bottom left red grid is 25. The new state is a “two-hot” encoding
marking which blue and red grid the point falls within. What are the two indices,
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one for each grid that map the green point?

{6, 39}

Note the implementation for tiling in the homework doesn’t give these exact indices. Do
not need to worry about the tile implementation, but it’s doing something along these
lines.1

5. Suppose we decrease the size of the grid squares in Figure 3a to match the precision of
the tiling in Figure 3b. Compare the dimensionality of states under this new grid scheme
versus the tiling scheme in Figure 3b. That is, what are the sizes of the vectors of each
state representation? What is the advantage of tiling over this single grid discretization?

Single grid: 100
Tiling: 25 + 36 = 61
Tiling reduces the dimensionality of states for the same level of precision. More tiles
lends more precision for the same number of dimensions.

1What’s really happening is that it allocates 2048 indices and assigns them first-come-first serve to the
tilings the environment encounters
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