

© Eric Xing @ CMU, 2006-2016 1

Recap of Basic Prob. Concepts

 Representation: what is the joint probability dist. on multiple \bullet variables? λ , and the set of t

$$
P(X_1, X_2, X_3, X_4, X_5, X_6, X_7, X_8)
$$

- \bullet How many state configurations in total? --- 28
- \bullet Are they all needed to be represented?
- \bullet **Do we get any scientific/medical insight?**
- \bullet Learning: where do we get all this probabilities?
	- 0 Maximal-likelihood estimation? but how many data do we need?
	- \bullet Are there other est. principles?
	- \bullet Where do we put domain knowledge in terms of plausible relationships between variables, and plausible values of the probabilities?
- \bullet Inference: If not all variables are observable, how to compute the conditional distribution of latent variables given evidence?
	- \bullet Computing *p*(*H*|*A*) would require summing over all 26 configurations of the unobserved variables

A

C

 $rac{c}{\sqrt{F}}$

F

B

D

D

E

G H

GM: Structure Simplifies Representation

Dependencies among variables

Probabilistic Graphical Models $\frac{y'(x_i) \pi_i}{\mu(x_i)}$

 \Box If *Xi*'s are **conditionally independent** (as described by a **PGM**), the joint can be factored to a product of simpler terms, e.g.,

- \Box Why we may favor a PGM?
	- Incorporation of domain knowledge and causal (logical) structures $1+1+2+2+2+4+2+4=18$, a 16-fold reduction from $2⁸$ in representation cost !

GM: Data Integration

....

More Data Integration

● Text + Image + Network → Holistic Social Media

• Genome + Proteome + Transcritome + Phenome + \dots → PanOmic Biology

Probabilistic Graphical Models

 \Box If *Xi*'s are **conditionally independent** (as described by a **PGM**), the joint can be factored to a product of simpler terms, e.g.,

 $P(X_1, X_2, X_3, X_4, X_5, X_6, X_7, X_8)$ $= P(X_2) P(X_4 | X_2) P(X_5 | X_2) P(X_1) P(X_3 | X_1)$ $P(X_6|X_3, X_4) P(X_7|X_6) P(X_8|X_5, X_6)$

- \Box Why we may favor a PGM?
	- Incorporation of domain knowledge and causal (logical) structures 2+2+4+4+4+8+4+8=36, an 8-fold reduction from 28 in representation cost !
	- Modular combination of heterogeneous parts data fusion

Rational Statistical Inference

The Bayes Theorem:

- 0 This allows us to capture uncertainty about the model in a principled way
- \bullet But how can we specify and represent a complicated model?
	- \bullet **Typically the number of genes need to be modeled are in the order of thousands!**

GM: MLE and Bayesian Learning

 \bullet • Probabilistic statements of Θ is conditioned on the values of the observed variables $\mathsf{A}_{\mathsf{obs}}$ and prior $p(\ | \chi)$

Probabilistic Graphical Models

 \Box If *Xi*'s are **conditionally independent** (as described by a **PGM**), the joint can be factored to a product of simpler terms, e.g.,

 $P(X_1, X_2, X_3, X_4, X_5, X_6, X_7, X_8)$ $= P(X_1) P(X_2) P(X_3 | X_1) P(X_4 | X_2) P(X_5 | X_2)$ $P(X_6|X_3, X_4) P(X_7|X_6) P(X_8|X_5, X_6)$

- \Box Why we may favor a PGM?
	- Incorporation of domain knowledge and causal (logical) structures 2+2+4+4+4+8+4+8=36, an 8-fold reduction from 28 in representation cost !
	- Modular combination of heterogeneous parts data fusion
	- Bayesian Philosophy
		- Knowledge meets data

$$
\left(\begin{array}{c}\n\bullet \\
\bullet \\
\bullet\n\end{array}\right) \Rightarrow \quad \left(\begin{array}{c}\n\bullet \\
\bullet \\
\bullet\n\end{array}\right) \Rightarrow
$$

© Eric Xing @ CMU, 2006-2016

So What Is a PGM After All?

In a nutshell:

PGM = Multivariate Statistics + Structure

GM = Multivariate Obj. Func. + Structure

So What Is a PGM After All?

- \bullet The informal blurb:
	- \bullet It is a smart way to write/specify/compose/design exponentially-large probability distributions without paying an exponential cost, and at the same time endow the distributions with *structured semantics*

- A more formal description:
	- \bullet It refers to a family of distributions on a set of random variables that are compatible with all the probabilistic independence propositions encoded by a graph that connects these variables

Two types of GMs

 Directed edges give causality relationships (**Bayesian Network** or **Directed Graphical Model**):

 $\leq P(X_1) P(X_2) P(X_3 | X_1) P(X_4 | X_2) P(X_5 | X_2)$ *P***(***X6| X3, X4***)** *P***(***X7| X6***)** *P***(***X8| X5, X6***)**

 Undirected edges simply give correlations between variables (**Markov Random Field** or **Undirected Graphical model**): $P(X_1, X_2, X_3, X_4, X_5, X_6, X_7, X_8)$
 $P(X_1) P(X_2) P(X_3|X_1) P(X_4|X_2) P(X_5|X_2)$
 $P(X_6|X_3, X_4) P(X_7|X_6) P(X_8|X_5, X_6)$

directed edges simply give correlations between
 arkov Random Field or **Undirected Graphical Replaceme**

 $P(X_1, X_2, X_3, X_4, X_5, X_6, X_7, X_8)$

 $=$ **1/Z** $exp{E(X_1) + E(X_2) + E(X_3, X_1) + E(X_4, X_2) + E(X_5, X_2)}$ $+ E(X_{\alpha}, X_{\alpha}, X_{\beta}) + E(X_{\alpha}, X_{\beta}) + E(X_{\alpha}, X_{\alpha}, X_{\beta})$

Towards structural specification of $P(K)$ **probability distribution**

- \bullet Separation properties in the graph imply independence properties about the associated variables
- For the graph to be useful, any conditional independence properties we can derive from the graph should hold for the probability distribution that the graph represents $A \perp B$
- \bullet **The Equivalence Theorem**

For a graph G,

Le<u>t \mathcal{D}_1 de</u>note the f<u>amily</u> of all d<u>istribut</u>ions that satisfy(I(G),

Let \mathcal{D}_2 denot<u>e t</u>he family of all distributions that factor according to G, $\mathsf{Then} \ \mathcal{D}_1 \mathsf{\Xi} \mathcal{D}_2.$

 $J(h)$

Bayesian Networks

Structure: *DAG*

- Meaning: a node is **conditionally independent** of every other node in the network outside its **Markov blanket**
- Local conditional distributions (**CPD**) and the **DAG** completely determine the **joint** dist.
- Give **causality** relationships, and facilitate a **generative** process

Markov Random Fields

- Meaning: a node is **conditionally independent** of every other node in the network given its **Directed neighbors**
- Local contingency functions (**potentials**) and the **cliques** in the graph completely determine the **joint** dist.
- Give **correlations** between variables, but no explicit way to generate samples

GMs are your old friends

Density estimation

Parametric and nonparametric methods

Regression

Linear, conditional mixture, nonparametric

Classification

Generative and discriminative approach

Clustering

An (incomplete) genealogy of graphical models

(Picture by Zoubin Ghahramani and Sam Roweis)

Fancier GMs: machine translation

The HM-BiTAM model (B. Zhao and E.P Xing, ACL 2006)

[©] Eric Xing @ CMU, 2006-2016

Fancier GMs: solid state physics

Ising/Potts model

Bayesian Network: Factorization Theorem

$P(X_1, X_2, X_3, X_4, X_5, X_6, X_7, X_8)$

 $= P(X_1) P(X_2) P(X_3 | X_1) P(X_4 | X_2) P(X_5 | X_2)$ $P(X_6|X_3, X_4) P(X_7|X_6) P(X_8|X_5, X_6)$

$$
\overline{\text{local } \text{cond.} \text{ d.7f}}
$$

\bullet **Theorem:**

Given a DAG, The most general form of the probability distribution that is consistent with the (probabilistic independence properties encoded in the) graph factors according to "node given its parents":

$$
P(\mathbf{X}) = \prod_i P(X_i \mid \mathbf{X}_{\pi_i}) \qquad \qquad \mathbf{V}
$$

where \mathbf{X}_{π_i} is the set of parents of xi. d is the number of nodes (variables) in the graph.

Specification of a BN

- There are two components to any GM:
	- \bullet the *qualitative* specification
	- \bullet the *quantitative* specification

Qualitative Specification

- Where does the qualitative specification come from?
	- \bullet Prior knowledge of causal relationships
	- \bullet Prior knowledge of modular relationships
	- \bullet Assessment from experts
	- \bullet Learning from data
	- \bullet We simply link a certain architecture (e.g. a layered graph)
	- \bullet …

Local Structures & Independencies

- \bullet Common parent
	- \bullet Fixing B decouples A and C "given the level of gene B, the levels of A and C are independent"
- \bullet **Cascade**
	- \bullet Knowing B decouples A and C "given the level of gene B, the level gene A provides no extra prediction value for the level of gene C"

V-structure

- *A* \bullet Knowing C couples A and B because A can "explain away" B w.r.t. C "If A correlates to C, then chance for B to also correlate to B will decrease"
- \bullet The language is compact, the concepts are rich!

A

 $A \rightarrow$ $B' \rightarrow C$

 $A B C$

 ALC B

A

C

B

B

C

Graph separation criterion

 \bullet D-separation criterion for Bayesian networks (D for Directed edges):

Definition: variables x and y are *D-separated* (conditionally independent) given z if they are separated in the *moralized* ancestral graph

Local Markov properties of DAGs

Structure: *DAG*

- **Meaning: a node is conditionally independent of every other node in the network outside its Markov blanket**
- **Local conditional distributions (CPD) and the DAG completely determine the joint dist.**
- **Give causality relationships, and facilitate a generative process**

Global Markov properties of DAGs

 X is **d-separated** (directed-separated) from Z given Y if we can't send a ball from any node in X to any node in Z using the "*Bayesball*" algorithm illustrated bellow (and plus some boundary conditions):

 \bullet **Defn:** *I***(** *G* **) all independence properties that correspond to dseparation:**

$$
I(G) = \{X \perp Z | Y : \widehat{\text{dsep}_G(X; Z | Y)}\}
$$

• **D-separation is sound and complete**

Essentially: A BN is a database of Pr. Independence statements among variables.

© Eric Xing @ CMU, 2006-2016 31

Towards quantitative specification of probability distribution

- Separation properties in the graph imply independence properties about the associated variables.
- For the graph to be useful, any conditional independence properties we can derive from the graph should hold for the probability distribution that the graph represents

The Equivalence Theorem

For a graph G,

Let \mathfrak{D}_4 denote the family of all distributions that satisf<u>y I(G)</u>,

Let \mathcal{D}_2 denote the family of all distributions that factor according to G, Then \mathcal{D}_1 ≣ $\mathcal{D}_2.$

 $12C_{11} - - 24$

Conditional probability tables (CPTs)

Conditional probability density func. (CPDs)

Conditional Independencies

What is this model

- **1. When Y is observed?**
- **2. When Y is unobserved?**

Conditionally Independent Observations

"Plate" Notation

Plate = rectangle in graphical model

variables within a plate are replicated in a conditionally independent manner

Example: Gaussian Model

Fig. 7 Generative model:

 $p(x_1,...x_n | \mu, \sigma)$ = **P** $p(x_i | \mu, \sigma)$ **= p(data | parameters)**

 $=$ **p(D** $|\theta$)

 $\mathsf{where} \ \theta = \{\mu,\,\sigma\}$

- $\mathcal{L}^{\mathcal{L}}$ **Likelihood = p(data | parameters)** $= p(D | \theta)$ $= L(\theta)$
- $\mathcal{L}_{\mathcal{A}}$ **Likelihood tells us how likely the observed data are conditioned on a particular setting of the parameters**
	- **Often easier to work with log L** (θ)

Bayesian models

. . .

A Generative Scheme for model design

P(1) = P(2) = P(3) = P(5) = P(6) = 1/6

A casino has two dice:

Fair die

Loaded die

The Dishonest Casino !!!

Suppose you were told about the following story before heading to Vegas …

An HMM is a Stochastic Generative Model

 \bullet Observed sequence:

A Generative Scheme for model design

Definition (of HMM)

 \bullet Observation space

> **Alphabetic set: Euclidean space:**

- 0 Index set of hidden states *d* R
	- $\mathbb{I} = \{1,2,\cdots,M\}$
- 0 Transition probabilities between any two states

$$
p(\gamma_t^j = 1 | \gamma_{t-1}^i = 1) = a_{i,j},
$$

or
$$
p(\gamma_t | \gamma_{t-1}^i = 1) \sim \text{Multinomial}(a_{i,1}, a_{i,2},..., a_{i,M}) \ \forall \ i \in \mathbb{I}.
$$

 $C = \{c_1, c_2, \cdots, c_k\}$

0 Start probabilities

> $p(\mathsf{y}_1)$ \sim $(\pi_1, \pi_2, \ldots, \pi_M)$.

0 Emission probabilities associated with each state

$$
p(\mathbf{X}_t | \mathbf{y}_t^i = 1) \sim \text{Multinomial}(b_{i,1}, b_{i,2}, \dots, b_{i,K}), \forall i \in \mathbb{I}.
$$

or in general:

$$
p(x_t | y_t^i = 1) \sim f(\cdot | \theta_i), \forall i \in \mathbb{I}.
$$

Graphical model

*x***A***1*

y 1

*x***A***2*

y2

Why graphical models

- \bullet A language for computation
- \bullet A language for development

\bullet Origins:

- \bullet Wright 1920's
- \bullet Independently developed by Spiegelhalter and Lauritzen in statistics and Pearl in computer science in the late 1980's

Why graphical models

- 0 **Probability theory** provides the **glue** whereby the parts are combined, ensuring that the system as a whole is consistent, and providing ways to interface models to data.
- 0 The **graph theoretic** side of graphical models provides both an intuitively appealing interface by which humans can model highly-interacting sets of variables as well as a data structure that lends itself naturally to the design of efficient general-purpose algorithms.
- 0 **Many of the classical multivariate probabilistic systems** studied in fields such as statistics, systems engineering, information theory, pattern recognition and statistical mechanics **are special cases of the general graphical model formalism**
- 0 The graphical model framework provides a way to view all of these systems as instances of a **common underlying formalism**.

--- M. Jordan

The factorization theorem of the joint probability

- \bullet Local specification \rightarrow globally consistent distribution
- \bullet Local representation for exponentially complex state-space
- \bullet It is a smart way to write/specify/compose/design exponentially-large probability distributions without paying an exponential cost, and at the same time endow the distributions with structured semantics
- Support efficient inference and learning

Summary

\bullet Represent dependency structure with a directed acyclic graph

- \bullet Node <-> random variable
- \bullet Edges encode dependencies
	- \bullet Absence of edge -> conditional independence
- \bullet Plate representation
- \bullet A GM is a database of prob. Independence statement on variables

