Machine Learning

10-701, Fall 2016

Graphical Models
and
Exact Inference

Reading: Chap. 8, C.B book

© Eric Xing @ CMU, 2006-2016



?‘\ v s“w:..:..‘
Recap of Basic Prob. Concepts, .. | /"%

e Representation: what is the joint probability dist. on multiple

variables? CCCe oo T

- =
P(X,, X, X5, X, X, X, X0 Xy)
e How many state configurations in total? --- 28
Are they all needed to be represented? T ¢ g

[ J H

e Do we get any scientific/medical insight?
L& ] CH]

e Learning: where do we get all this probabilities?
e Maximal-likelihood estimation? but how many data do we need?
e Are there other est. principles?

e Where do we put domain knowledge in terms of plausible relationships between variables, and
plausible values of the probabilities?

e Inference: If not all variables are observable, how to compute the
conditional distribution of latent variables given evidence?

e Computing p(H|A) would require summing over all 26 configurations of the

unobserved variables o
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What is a Graphical Model? 13
--- Multivariate Distribution in High-D Space °
e A possible world for cellular signal transduction:
[ReceptorA ] X [ReceptorB ] X,
[ Kinase C ] X; [ Kinase D ] X, [ Kinase E ] X5
[ TF F } X,
[ Gene G ] X, [ Gene H ] X,
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000
GM: Structure Simplifies 3
Representation oo
e Dependencies among variables
[ Receptor A ] X, [ Receptor B ] X,
S l _____________________________________________________________________ M e_lzlP_r?zl_e_i
[ Kinase C ] X, [ Kinase D ] X, [ Kinase E X5
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Yot [T eees

Probabilistic Graphical Models ()| ::

a If Xi's are conditionally independent (as described by a PGM;, the

joint can be factored to a product of simpler terms, e.g.,

P(Xy, Xor Xgr XXX o)

= P(%p) PEX,) P(X5X)) PE| X,) P(Xg| X5)
P(Xsl X3 X4) P(Xe| Xg) P(Xg| X5, Xg) ]

A

Stay tune for what are these independencies!

a Why we may favor a PGM?

a Incorporation of domain knowledge and causal (logical) structures
1+1+2+2+2+4+2+4=18, a 16-fold reduction from 28 in representation cost !
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GM: Data Integration

Kinase D

Mgt

Receptor B
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More Data Integration -

e Text + Image + Network =>» Holistic Social Media

e (Genome + Proteome + Transcritome + Phenome + ... =
PanOmic Biology
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Probabilistic Graphical Models -

a If Xi's are conditionally independent (as described by a PGM;, the

joint can be factored to a product of simpler terms, e.g.,

P(X1, X5, X3, X4y Xg, Xg, X7, Xg)
= P(X;) P(X4| X)) P(Xs5| X5)

a Why we may favor a PGM?

0 Incorporation of domain knowledge and causal (logical) structures
2+2+4+4+4+8+4+8=36, an 8-fold reduction from 28 in representation cost !

0 Modular combination of heterogeneous parts — data fusion
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Rational Statistical Inference ot

The Bayes Theorem:

, Likelithood Prior
Posterior .
l probability

probability
pcd | h) p(h)

PO =S o p()

< tdilhy

Sum over space
of hypotheses

e This allows us to capture uncertainty about the model in a principled way

e But how can we specify and represent a complicated model?

e Typically the number of genes need to be modeled are in the order of thousands!
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GM: MLE and Bayesian Learning

e Probabilistic statements of ® is conditioned on the values of the

observed variables A, . and prior p( |y)

¢l [Db [ E]

e [ H]

(ABCDE,..)=(T,EETE,...) llll.lll‘.” '<

A= (ABCDE,...)=(T.ET/TFE...

(A,BCDE,..)=(ETT,TE...)

@Bayes i j@ p(@ l A:Z) d@
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Probabilistic Graphical Models -

a If Xi's are conditionally independent (as described by a PGM;, the

joint can be factored to a product of simpler terms, e.g.,

P(X1, X5, X3, X4y Xg, Xg, X7, Xg)

= P(Xp) P(Xp) POX3 Xp) POX,[ X)) POXg| X,)
P(Xgl X3, Xg) P(X7| Xg) P(Xg| X5, Xg)

a Why we may favor a PGM?

0 Incorporation of domain knowledge and causal (logical) structures
2+2+4+4+4+8+4+8=36, an 8-fold reduction from 28 in representation cost !

0 Modular combination of heterogeneous parts — data fusion

o Bayesian Philosophy -

e Knowledge meets data =
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So What Is a PGM After All? ot

In a nutshell:

@M = Mtivariate Statistics + Structure

ultivariate Obj./Func. + Structure
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So What Is a PGM After All? -
o The informal blurb:

e Itis a smart way to write/specify/compose/design exponentially-large probability
distributions without paying an exponential cost, and at the same time endow the
distributions with structured semantics

P(X,X5,X35,X4,X5,X¢,X7,Xg) < P(X.5) = P(X)P(X,)P(X; | X, X,)P(X,4 | X,)P(X5| X,)
e A more formal description: P(X4[Xs5: Xa)P(X7[X()P(Xg|X5, X)
o It refers to afamily of distributions on a set of random variables that are

sampatible with all the probabilistic independence propositions encoded by a
graph that connects these variables
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Two types of GMs oo

e Directed edges give causality relationships (Bayesian
Network or Directed Graphical Model):

P(Xl’ X')’ X3 Xq' Y‘b’ >(‘b’ >(‘/’ Yo\
_—
= P(X PX3) P(X5| Xp) P(Xy[ Xp) P(Xg| Xy)
P(Xgl X3, X,) P(X7| Xg) P(Xg| X5, X

e Undirected edges simply give correlations between variables
(Markov Random Field or Undirected Graphical model):

—_—

P(Xy, X0 Xay Xy Xes X, Xy Xo)
G x|
= 1/Z exp{E(X)+E(CX,)+E(X;, X)+E(X,, X)+E(X;, X)) s
+ E(Xg: X3, X)TE(X7, X)+E(Xg, X5, Xe)} . e
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Towards structural specification of 3
probability distribution PLA) o

e (Separation properties in the graph imply independence ‘[f ; _
properties about the associated variables (tf ([ “{
e For the graph to be useful, any conditional independence 0 T
properties we can derive from the graph should hold he
probability distribution that the graph represents A l
¥ Oy A=t
e The Equivalence Theorem A D
For a graph G, LLM = t)__,./’“ p(yﬁ

/

Let 9, denote the family of all distributions that satisfy(T(G)) \
Let D, denote the family of all distributions that factor according to G,

Therf D,=9,.
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Bayesian Networks 1 %onde) .
Structure: DAG ‘{k\t\ : ;I

Ancestor

 Meaning: a node is
conditionally independent
of every other node in the
network outside its Markov

blanket

» Local conditional distributions
(CPD) and the DAG
completely determine the
joint dist.

« Give causality relationships,
and facilitate a generative
process

Descendent
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Markov Random Fields

Structure: undirected graph

 Meaning: a node is conditionally
independent of every other node
in the network given its Directed
neighbors

» Local contingency functions
(potentials) and the cliques in
the graph completely determine
the joint dist.

* Give correlations between
variables, but no explicit way to
generate samples

© Eric Xing @ CMU, 2006-2016
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GMs are your old friends

Density estimation

Parametric and nonparametric methods

Regression

Linear, conditional mixture, nonparametric

Classification

Generative and discriminative approach

Clustering

© Eric Xing @ CMU, 2006-2016
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An
(incomplete)
genealogy -
of graphical
models

SBEM,
EBoltzmann
Machines

Weotor
Suantization

S

/ dyn
Cooperatiwe

(/ Mixture of
\L Gaussians

(Ve

y

Giaussian

V) /

red-dim

(Picture by Zoubin
Ghahramani and
Sam Rowels)

)

Factor Analysis

(P GA)

nanlin

1CA

Maonlinear
Saussian

BEA NEH

2006-2016

N

mix - mixiure
red-dim : reduced

Factarizl HRWIM

dimension
dyn Jdynamics

"\ i

t)r"ujr"llir"l Tnaonlinear
e tbh<zgtchi
HMW A ( ffs}ﬂf shing
0 6 0
malh
(ed-dim Mixture of
HMMs

hAixture of
Factor Analyzers

—

N

Switching

State-space
Models

Linear
Cynamical
Systems (SSMMs)

Aﬁ'

&
/ \ nonlin

Monlinear
Cynamical
Dystems

Mixture of
LDSs
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Fancier GMs:
machine translation

usreatricted submarise warfars. We shall sadesvos
tn aplte of thin 1o kesp the United Btstes of
amsrics neutrsl. In the eveni of ihls mot esccesd-
ing, ve maxe Mexlec & propossl of sliisnce on tBe
folleving basis: mnke war together, SKe peate
nogether, gemerous finazelsl SEpEOrt An AN under=
sianding en sur pari that Mexzfco 8 o reconguer
the et territery in Tex Mexico, and
arizens. The sstilsssnt la detail Lo laft o you.
—_——e fou will 1n the Preaident of the sbove mest
wecrelly £8 #oos 68 the outbresk of war with the
Btales of Americs 18 certain and add the
nte own Imitdstive,
nee and at the ssas

i
auggeatien 1
bt Japhn 1o lmmediste ad
mediate Betwsen Japan and ourselves. Plesss
£all the Presidest's sttesticn te the fact that

the ruthless ssployee
offers ihe
faw memihs to make pence.” &1

he showld, €3

of eur submsrines new
apsllisg Englam

capett of

€i
() g
\_/ B
3

Q Om in

@
@

The HM-BIiTAM model
(B. Zhao and E.P Xing,
. ACL 2006)
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Fancier GMs:
solid state physics

Ising/Potts model
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Bayesian Network: Factorization Theorem | ¢

P(Xy, Xp Xa) X4 Xs, Xg, X, Xg)

= P(Xp) P(Xp) PO Xy) POX,[ X)) POXg| Xy)
P(Xgl X3, Xg) P(X7] Xg) P(Xg| X5, Xg)

hod cnd. ohf

e Theorem: F (% L X%: )

Given a DAG, The most general form of the probability distribution
that is consistent with the ( probablllstlc independence properties

encoded in the) graph f to “node glven its parents”:
(X) H P(Xi X))

where X is the set of parents of xi. d is the number of nodes
(variables) in the graph.
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Example: a pedigree of people o

e Genetic Pedigree

L
////// .j;iﬁHamT GEEEED;&
¢ Marae

|Hnmer

_'_
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Specification of a BN

e There are two components to any GM:
e the qualitative specification

o the guantitative specification

P(F | C.D)

© Eric Xing @ CMU, 2006-2016
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Qualitative Specification

e \Where does the qualitative specification come from?

e Prior knowledge of causal relationships

e Prior knowledge of modular relationships

e Assessment from experts

e Learning from data

e We simply link a certain architecture (e.g. a layered graph)

© Eric Xing @ CMU, 2006-2016
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Local Structures & eess

(() o2

Independencies - IR °

e Common parent CB\ D
e Fixing B decouples A and C

"given the level of gene B, the levels of A and C are independent” @ O

—_— e Y e
e (Cascade
e Knowing B decouples A and C CA_> BV > CC O
"given the level of gene B, the level gene A provides no /\'LC ‘ B

extra prediction value for the level of gene C"

4\ C
® Velmcture () @ &>
e Knowing C couples A and B \
because A can "explain away" B w.r.t. C CC N\ D

"If A correlates to C, then chance for B to also correlate to B will decrease" /l\

e The language is compact, the concepts aré\Vin:L'K @
ARDC
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A simple justification 4+

[Wh s )
ES &
— [/
= [/ () PLALY) Pec (8) ALcly
PA b ()
ATV PCA .C[})
= P(AY) pLC [b)

= (I (K] [ean) [




Graph separation criterion -

e D-separation criterion for Bayesian networks (D for Directed
edges):

Definition: variables x and y are D-separated (conditionally
independent) given z if they are separated in the moralized
ancestral graph

e Example:

|
'@: e, L e
y =
S \
y y
— z L = z ’

original graph ancestral moral ancestral
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Local Markov properties of DAGs | ¢

Structure: DAG P

 Meaning: a node is - -
conditionally independent
of every other node in the ota M

network outside its Markov
blanket

* Local conditional Xy‘ﬂ‘

distributions (CPD) and the -
DAG completely determine

the joint dist. m \‘

- Children's co-parent ]

* Give causality
relationships, and facilitate
a generative process

Descendent
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Global Markov properties of
DAGs

e X is d-separated (directed-separated) from Z given Y if we can't
send a ball from any node in X to any node in Z using the "Bayes-
-ball" algorithm illustrated bellow (and plus some boundary
conditions):

X ¢ b 4 X ¥ Z

— = .« Defn: I(6)=all independence
properties that correspond to d-

@ ®
separation:
AR A
/_\
X_ V4 X Z

1(G) = X LZIY Hseps (X;Z|V)}
—~e——~——

(@) (b)
Q\ /-) Q\O/O - D-separation is sound and
7 S5 Ay
. | complete
(b)

(a)
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X e Complete thelI(G)of this
4

X,

Essentially: A BN is a database of Pr. Independence statements among variables.
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Towards quantitative specific jon of | eess

probability distribution

e Separation properties in the graph |

properties about the associated varlables ?

e For the graph to be useful, any conditional i ndence
properties we can derive from the graph d for the
probability distribution that the graph represents

\2 (\AL - T XL/)

e The Equivalence Theorem

For a graph G,

Let 2, denote the family of all distributions that satisfy 1(G),

Let 9, denote the family of all distributions that factor according to G,
Then 9,=9,.
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Conditional probability tables sece
(CPTs) os

a® |0.75 o |0.33 P(a,b,c.d) =
1 1
al |0.25 b |0.67 P(a)P(b)P(c|a,b)P(d|c)
YQ,
a0ho a’b? a'b? a'b’
| 045 1 0.9 0.7
¢ | 055 0 0.1 0.3
cO c’
& |03 |05
d* |07 |05
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Conditional probability density
func. (CPDs)

P(a,b,c.d) =

A~N(4,, ) B~N(y,, %,)

P(a)P(b)P(cla,b)P(d|c)

C~N(A+B, %)

‘ D~N(u,+C, £,)
D

© Eric Xing @ CMU, 2006-2016

34



Conditional Independencies

Y -X)

Label

Features

What is this model

1. When Y is observed?
2. WhenY is unobserved?
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Conditionally Independent 1
Observations os

Model parameters

@ @___ ° Data = {y,,...y,,}
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“Plate” Notation oo

‘ Model parameters

Data = {x,,...X,}

I=1:n

Plate = rectangle in graphical model

variables within a plate are replicated
in a conditionally independent manner

© Eric Xing @ CMU, 2006-2016 37



000
0000
HE:
Example: Gaussian Model oo
‘ ’ Generative model:
\
p(X1,...Xn | H, G) = P p(xi | ks 0)
= p(data | parameters)
= p(D |0)
1I=1:n where 0 = {, ¢}
= Likelihood = p(data | parameters)
=p(D]6)
=L (0)

= Likelihood tells us how likely the observed data are conditioned
on a particular setting of the parameters

= Often easier to work with log L (6)
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Bayesian models




A Generative Scheme for model
design
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Suppose you were told about the -

following story before heading to Vegas... | ¢

The Dishonest Casino !!!

A casino has two dice:
e Fair die
P(1) = P(2) = P(3) = P(5) = P(6) =1/6
e Loaded die
P(1) = P(2) = P(3) =P(5) =1/10
P(6) = 1/2
Casino player switches back-&-forth

between fair and loaded die once
every 20 turns

© Eric Xing @ CMU, 2006-2012
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An HMM is a Stochastic
Generative Model

e Observed sequence:

SO O O OSORR O

A Y-"
9.V

e Hidden sequence (a parse or segmentation):

B
B—E@—0O—EO—0O—E—




A Generative Scheme for model 44

design oo
[

V& LAL) @/\) VDE 7(9)7 - - -

x et (%) @ (éy _.



Definition (of HMM)

Observation space

Index set of hidden states

v

Alphabetic set: C = {CDCZD <+, Cy } @ )] Y3 @
Euclidean space: Rd
) 4
D - @

1={2,--,M} Q @ O

Transition probabilities between any two states
P()’tj =1ly,, =)= a ;-
or  p(y, lyi1=1~ Multinomial(a,.J,a,-’z,...,a,’,M ),‘v’i el
Start probabilities
p(y;) ~ Multinomial(7r1 TToseees Ty )
Emission probabilities associated with each state
p(x, |y, =1)~Multinomial(h, ,b ,,....b ) Vi €.
or in general:

p(x, |y, =1 ~f([6)Viel

© Eric Xing @ CMU, 2006-2012

Graphical model

State automata
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Why graphical models -

A language for communication
A language for computation
A language for development

e Origins:
e Wright 1920’s

e Independently developed by Spiegelhalter and Lauritzen in statistics and Pearl in
computer science in the late 1980’s
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Why graphical models

e Probability theory provides the glue whereby the parts are combined,
ensuring that the system as a whole is consistent, and providing ways to
interface models to data.

e The graph theoretic side of graphical models provides both an intuitively
appealing interface by which humans can model highly-interacting sets of
variables as well as a data structure that lends itself naturally to the design of
efficient general-purpose algorithms.

e Many of the classical multivariate probabilistic systems studied in fields
such as statistics, systems engineering, information theory, pattern
recognition and statistical mechanics are special cases of the general
graphical model formalism

e The graphical model framework provides a way to view all of these systems
as instances of a common underlying formalism.

--- M. Jordan
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Summary

e Represent dependency structure with a directed acyclic graph

e Node <-> random variable

e Edges encode dependencies
Absence of edge -> conditional independence

e Plate representation
e A GM is a database of prob. Independence statement on variables

O«+—0+—=0

e The factorization theorem of the joint probability
e Local specification - globally consistent distribution
e Local representation for exponentially complex state-space

e Itis a smart way to write/specify/compose/design exponentially-large
probability distributions without paying an exponential cost, and at the
same time endow the distributions with structured semantics

e Support efficient inference and learning
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