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 Representation: what is the joint probability dist. on multiple 
variables?

 How many state configurations in total? --- 28

 Are they all needed to be represented?
 Do we get any scientific/medical insight?

 Learning: where do we get all this probabilities? 
 Maximal-likelihood estimation? but how many data do we need?
 Are there other est. principles?
 Where do we put domain knowledge in terms of plausible relationships between variables, and 

plausible values of the probabilities?

 Inference: If not all variables are observable, how to compute the 
conditional distribution of latent variables given evidence?
 Computing p(H|A) would require summing over all 26 configurations of the 

unobserved variables
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Recap of Basic Prob. Concepts
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What is a Graphical Model?
--- Multivariate Distribution in High-D Space

 A possible world for cellular signal transduction: 
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GM: Structure Simplifies 
Representation

 Dependencies among variables
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 If Xi's are conditionally independent (as described by a PGM), the 
joint can be factored to a product of simpler terms, e.g.,

 Why we may favor a PGM?
 Incorporation of domain knowledge and causal (logical) structures

P(X1, X2, X3, X4, X5, X6, X7, X8)

= P(X1) P(X2) P(X3| X1) P(X4| X2) P(X5| X2)
P(X6| X3, X4) P(X7| X6) P(X8| X5, X6)

Probabilistic Graphical Models
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1+1+2+2+2+4+2+4=18, a 16-fold reduction from 28 in representation cost ! 

Stay tune for what are these independencies!
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GM: Data Integration
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More Data Integration
 Text + Image + Network   Holistic Social Media

 Genome + Proteome + Transcritome + Phenome + … 
PanOmic Biology
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 If Xi's are conditionally independent (as described by a PGM), the 
joint can be factored to a product of simpler terms, e.g., 

 Why we may favor a PGM?
 Incorporation of domain knowledge and causal (logical) structures

 Modular combination of heterogeneous parts – data fusion

Probabilistic Graphical Models
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2+2+4+4+4+8+4+8=36, an 8-fold reduction from 28 in representation cost ! 
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P(X1, X2, X3, X4, X5, X6, X7, X8)

= P(X2) P(X4| X2) P(X5| X2) P(X1) P(X3| X1) 
P(X6| X3, X4) P(X7| X6) P(X8| X5, X6)
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Rational Statistical Inference

 This allows us to capture uncertainty about the model in a principled way

 But how can we specify and represent a complicated model?
 Typically the number of genes need to be modeled are in the order of thousands!
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h

d

The Bayes Theorem:

9



GM: MLE and Bayesian Learning
 Probabilistic statements of  is conditioned on the values of the 

observed variables Aobs and prior p( |)
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 If Xi's are conditionally independent (as described by a PGM), the 
joint can be factored to a product of simpler terms, e.g., 

 Why we may favor a PGM?
 Incorporation of domain knowledge and causal (logical) structures

 Modular combination of heterogeneous parts – data fusion

 Bayesian Philosophy
 Knowledge meets data

Probabilistic Graphical Models
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2+2+4+4+4+8+4+8=36, an 8-fold reduction from 28 in representation cost ! 
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P(X1, X2, X3, X4, X5, X6, X7, X8)

= P(X1) P(X2) P(X3| X1) P(X4| X2) P(X5| X2)
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So What Is a PGM After All?
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In a nutshell: 

PGM   =   Multivariate Statistics + Structure

12

GM   =   Multivariate Obj. Func. + Structure



So What Is a PGM After All?
 The informal blurb:

 It is a smart way to write/specify/compose/design exponentially-large probability 
distributions without paying an exponential cost, and at the same time endow the 
distributions with structured semantics

 A more formal description:
 It refers to a family of distributions on a set of random variables that are 

compatible with all the probabilistic independence propositions encoded by a 
graph that connects these variables
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 Directed edges give causality relationships (Bayesian 
Network or Directed Graphical Model):

 Undirected edges simply give correlations between variables 
(Markov Random Field or Undirected Graphical model):

Two types of GMs

© Eric Xing @ CMU, 2006-2016
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P(X1, X2, X3, X4, X5, X6, X7, X8)

= P(X1) P(X2) P(X3| X1) P(X4| X2) P(X5| X2)
P(X6| X3, X4) P(X7| X6) P(X8| X5, X6)

P(X1, X2, X3, X4, X5, X6, X7, X8)

= 1/Z exp{E(X1)+E(X2)+E(X3, X1)+E(X4, X2)+E(X5, X2)
+ E(X6, X3, X4)+E(X7, X6)+E(X8, X5, X6)}
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Towards structural specification of 
probability distribution

 Separation properties in the graph imply independence 
properties about the associated variables

 For the graph to be useful, any conditional independence 
properties we can derive from the graph should hold for the 
probability distribution that the graph represents

 The Equivalence Theorem
For a graph G,
Let D1 denote the family of all distributions that satisfy I(G),
Let D2 denote the family of all distributions that factor according to G,
Then D1≡D2.
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Structure: DAG

• Meaning: a node is 
conditionally independent
of every other node in the 
network outside its Markov 
blanket

• Local conditional distributions 
(CPD) and the DAG
completely determine the 
joint dist. 

• Give causality relationships, 
and facilitate a generative
process
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Bayesian Networks
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Structure: undirected graph

• Meaning: a node is conditionally 
independent of every other node 
in the network given its Directed 
neighbors

• Local contingency functions 
(potentials) and the cliques in 
the graph completely determine 
the joint dist. 

• Give correlations between 
variables, but no explicit way to 
generate samples

X

Y1 Y2

Markov Random Fields
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Density estimation

Regression

Classification

Parametric and nonparametric  methods

Linear, conditional mixture, nonparametric

Generative and discriminative approach

Q

X

Q

X

X Y

m,s

X X

GMs are your old friends

© Eric Xing @ CMU, 2006-2016

Clustering 
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(Picture by Zoubin 
Ghahramani and 
Sam Roweis)

© Eric Xing @ CMU, 2006-2016

An 
(incomplete) 

genealogy 
of graphical 

models
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Fancier GMs: 
machine translation
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SMT

The HM-BiTAM model 
(B. Zhao and E.P Xing,  
ACL 2006)
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Fancier GMs: 
solid state physics
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Ising/Potts model
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Bayesian Network: Factorization Theorem

 Theorem: 
Given a DAG, The most general form of the probability distribution 
that is consistent with the (probabilistic independence properties 
encoded in the) graph factors according to “node given its parents”:

where      is the set of parents of xi. d is the number of nodes 
(variables) in the graph.

P(X1, X2, X3, X4, X5, X6, X7, X8)

= P(X1) P(X2) P(X3| X1) P(X4| X2) P(X5| X2)
P(X6| X3, X4) P(X7| X6) P(X8| X5, X6)
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Example: a pedigree of people
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 Genetic Pedigree
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Specification of a BN
 There are two components to any GM:

 the qualitative specification
 the quantitative specification
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Qualitative Specification
 Where does the qualitative specification come from?

 Prior knowledge of causal relationships
 Prior knowledge of modular relationships
 Assessment from experts
 Learning from data
 We simply link a certain architecture (e.g. a layered graph) 
 …
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Local Structures & 
Independencies
 Common parent

 Fixing B decouples A and C
"given the level of gene B, the levels of A and C are independent"

 Cascade
 Knowing B decouples A and C

"given the level of gene B, the level gene A provides no 
extra prediction value for the level of gene C"

 V-structure
 Knowing C couples A and B

because A can "explain away" B w.r.t. C
"If A correlates to C, then chance for B to also correlate to B will decrease"

 The language is compact, the concepts are rich!
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A simple justification

A

B

C
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Graph separation criterion
 D-separation criterion for Bayesian networks (D for Directed 

edges):

Definition: variables x and y are D-separated (conditionally 
independent) given z if they are separated in the moralized 
ancestral graph

 Example:

28© Eric Xing @ CMU, 2006-2016



Structure: DAG

• Meaning: a node is 
conditionally independent
of every other node in the 
network outside its Markov 
blanket

• Local conditional 
distributions (CPD) and the 
DAG completely determine 
the joint dist. 

• Give causality
relationships, and facilitate 
a generative process
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Child

Local Markov properties of DAGs
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Global Markov properties of 
DAGs
 X is d-separated (directed-separated) from Z given Y if we can't 

send a ball from any node in X to any node in Z using the "Bayes-
ball" algorithm illustrated bellow (and plus some boundary 
conditions):

• Defn: I(G)all independence 
properties that correspond to d-
separation:

• D-separation is sound and 
complete

 );(dsep:)(I YZXYZXG G
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Example: 
 Complete the I(G) of this 

graph:

x1

x2

x4

x3

Essentially: A BN is a database of Pr. Independence statements among variables.

31© Eric Xing @ CMU, 2006-2016



Towards quantitative specification of 
probability distribution

 Separation properties in the graph imply independence 
properties about the associated variables

 For the graph to be useful, any conditional independence 
properties we can derive from the graph should hold for the 
probability distribution that the graph represents

 The Equivalence Theorem
For a graph G,
Let D1 denote the family of all distributions that satisfy I(G),
Let D2 denote the family of all distributions that factor according to G,
Then D1≡D2.
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a0 0.75
a1 0.25

b0 0.33
b1 0.67

a0b0 a0b1 a1b0 a1b1

c0 0.45 1 0.9 0.7
c1 0.55 0 0.1 0.3

A B

C

P(a,b,c.d) = 
P(a)P(b)P(c|a,b)P(d|c)

D
c0 c1

d0 0.3 0.5
d1 07 0.5

Conditional probability tables 
(CPTs)
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A B

C

P(a,b,c.d) = 
P(a)P(b)P(c|a,b)P(d|c)

D

A~N(μa, Σa) B~N(μb, Σb)

C~N(A+B, Σc)

D~N(μa+C, Σa)
D

C

P(
D
| 
C)

Conditional probability density 
func. (CPDs)
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Conditional Independencies

X1

Y

Features

Label

X2 Xn-1 Xn

What is this model

1. When Y is observed?
2. When Y is unobserved?
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Conditionally Independent 
Observations



Data = {y1,…yn}

Model parameters

X1 X2 Xn-1 Xn
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“Plate” Notation

Xi

i=1:n



Data = {x1,…xn}

Model parameters

Plate = rectangle in graphical model

variables within a plate are replicated
in a conditionally independent manner
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Example: Gaussian Model

xi

i=1:n

 Generative model:   

p(x1,…xn | , ) = P p(xi | , )
=   p(data | parameters)
=   p(D  | )     

where  = {, }



 Likelihood = p(data | parameters) 
= p( D |  ) 
= L () 

 Likelihood tells us how likely the observed data are conditioned 
on a particular setting of the parameters
 Often easier to work with log L () 
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Bayesian models

xi

i=1:n


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A Generative Scheme for model 
design
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Suppose you were told about the 
following story before heading to Vegas…

The Dishonest Casino !!!

A casino has two dice:
 Fair die

P(1) = P(2) = P(3) = P(5) = P(6) = 1/6
 Loaded die

P(1) = P(2) = P(3) = P(5) = 1/10
P(6) = 1/2

Casino player switches back-&-forth 
between fair and loaded die once 
every 20 turns

41© Eric Xing @ CMU, 2006-2012



An HMM is a Stochastic 
Generative Model
 Observed sequence:

 Hidden sequence (a parse or segmentation):

A

B

1 4 3 6 6 4

BA A ABB
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A Generative Scheme for model 
design

© Eric Xing @ CMU, 2006-2016 43



Definition (of HMM)
 Observation space

Alphabetic set:
Euclidean space:

 Index set of hidden states

 Transition probabilities between any two states

or

 Start probabilities

 Emission probabilities associated with each state

or in general:

A AA Ax2 x3x1 xT

y2 y3y1 yT... 

... 
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State automata
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Why graphical models

 A language for communication
 A language for computation
 A language for development

 Origins: 
 Wright 1920’s
 Independently developed by Spiegelhalter and Lauritzen in statistics and Pearl in 

computer science in the late 1980’s
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 Probability theory provides the glue whereby the parts are combined, 
ensuring that the system as a whole is consistent, and providing ways to 
interface models to data. 

 The graph theoretic side of graphical models provides both an intuitively 
appealing interface by which humans can model highly-interacting sets of 
variables as well as a data structure that lends itself naturally to the design of 
efficient general-purpose algorithms. 

 Many of the classical multivariate probabilistic systems studied in fields 
such as statistics, systems engineering, information theory, pattern 
recognition and statistical mechanics are special cases of the general 
graphical model formalism

 The graphical model framework provides a way to view all of these systems 
as instances of a common underlying formalism. 

--- M. Jordan

Why graphical models
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Summary
 Represent dependency structure with a directed acyclic graph

 Node <-> random variable
 Edges encode dependencies

 Absence of edge -> conditional independence
 Plate representation
 A GM is a database of prob. Independence statement on variables 

 The factorization theorem of the joint probability
 Local specification  globally consistent distribution
 Local representation for exponentially complex state-space
 It is a smart way to write/specify/compose/design exponentially-large 

probability distributions without paying an exponential cost, and at the 
same time endow the distributions with structured semantics

 Support efficient inference and learning
47© Eric Xing @ CMU, 2006-2016


