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The Satisfiability (SAT) problem

(X5 \/Xg\/iz)/\(Xz\/i] V)_(g)/\(ig\/fg\/fﬂ/\(75\/7(3\/7(3) A\
(7_(6\/¥1 \/§5)/\(X3\/§9\/X3)/\(X2\/X] VX3)/\(71 \/Xg\/X4) A\
(7_(9\/76\/7(3)/\()(3\/7(3\/7_(9)/\(X9\/7_(3 VX3)/\(X6\/¥9\/X5) AN
(Xz\/fg\/ig)/\()cg\/ig;\/fﬂ/\(Xg\/7_(3 \/%1]/\(Y8\/X6\/§2) A\
(X7\/X9\/¥2)/\(X8\/§9\/X2)/\(§1 \/7_(9\/7(4)/\(7(8\/7(1 \/?2) AN
(X3 \/f4\/26)/\(f1 \/27\/7(5)/\(%7\/7(] VX6)/\(Y5VX4\/§6) AN
(§4\/X9\/f8)/\(Xz\/Xg\/X])/\(X5\/7_(7\/X1)/\(f7\/§9\/f6) /A\
(Xz\/X5\/X4)/\(X3\/¥4\/X5)/\(X5\/X9\/X3)/\(f5\/§7\/7€9) AN
(Xz\/?gVX])/\(f7\/X1 \/X5)/\(X] \/X4\/X3)/\(X1 \/f9\/74) AN
(X3 \/X5\/X6)/\(75\/X3\/)_(9)/\(§7\/X5\/X9)/\(X7\/§5\/§2) A\
(xs Vx7Vx3) A\ (x4 VX VX)) A (x5 VX VX)) (x5 VXV x7) A
(XG\/X7\/§3)/\(73\/§6\/7_(7)/\(XG\/XZ\/Xg)/\(fg\/Xz\/Xﬂ

Does there exist an assignment satisfying all clauses?
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Search for a satisfying assignment (or proof none exists)

(X5 \/Xg\/Xz)/\(Xz\/Y1 \/ig)/\(ig\/ig\/iﬂ/\(X5\/X3\/Xg) A\
(X6 VX VXs) A (xg VX Vx3) A (VX V) A (X VxgVixg) A
(Xo VX Vxg) A (xgVx3VXe) A (xe VX3V xg) A (xgVXoVxs) A
(VX3 VX)) A (xs VX VX)) A (xs VX3 VXA (X3 Vxe VX)) A
(X7\/X9\/X )/\(XgVig\/Xz)/\(i] \/7?9\/7(4)/\(7(8\/7(1 \/Xz) AN
(Xg,\/X4\/X6)/\(¥1 \/?7\/)(5)/\(?7\/7(1\/Xg)/\(X5\/X4\/X ) AN
(X4VX9\/X8)/\(X2\/X9\/X1)/\(X5\/i7\/X])/\(X7\/X9\/X6) A
(o Vxs Vxg) A (xg Vxa Vxs) A (xs VxoVxs) A (X5 VXV xe) A
(o VX Vx)A XV xi Vxs) A (i Vaxa Vxs)A(x Ve Vxg) A
(x3 Vx5 Vxg) A (XgVx3 VX)) A (X7 Vx5 Vxo) A (x7 Vs VX)) A
(s Vx7Vx3) A (s VX VX)) A (x5 VX V) A (x5 VX Vxs) A
(X6 Vx7 VX3) A (Xs VX VX)) A (X6 VX2 Vx3) A (XgVxoVxs)
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SAT Solver Paradigms Overview

DPLL: Aims at finding a small search-tree by selecting
effective splitting variables (e.g. via looking ahead).

Strength: Effective on small, hard formulas.

Weakness: Expensive.
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Local search: Given a full assignment for a formula T,
flip the truth values of variables until satisfying T.

Strength: Can quickly find solutions for hard formulas.

Weakness: Cannot prove unsatisfiability.
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SAT Solver Paradigms Overview

DPLL: Aims at finding a small search-tree by selecting
effective splitting variables (e.g. via looking ahead). ‘\Tr
Strength: Effective on small, hard formulas.

—o0

Weakness: Expensive.

Local search: Given a full assignment for a formula T,

-
flip the truth values of variables until satisfying T.
Strength: Can quickly find solutions for hard formulas.

Weakness: Cannot prove unsatisfiability.

Conflict-driven clause learning (CDCL): Makes fast
decisions and converts conflicts into learned clauses.

Strength: Effective on large, “easy” formulas.
Weakness: Hard to parallelize.
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Conflict-driven Clause Learning: Overview

m Most successful architecture

m Superior on industrial benchmarks

m Brute-force?

® Addition conflict clauses
® Fast unit propagation

m Complete local search (for a refutation)?

m State-of-the-art (sequential) CDCL solvers:
Kissat, CaDiCal, Glucose, CryptoMiniSAT
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Clause Learning
Data-structures

Heuristics

Clause Management
Conflict-Clause Minimization

Recent Advances and Conclusions
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Clause Learning
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Conflict-driven SAT solvers: Search and Analysis
(x1 V' x4) A
(x3 Vx4 VX5) A @
(X3 VX2 Vxy) A

I—‘extra
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Conflict-driven SAT solvers: Search and Analysis
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Conflict-driven SAT solvers: Search and Analysis

X1V x4) A

(
(Xg VX X4 \/X5)
(Xg VX X2 \/X4)

rextra

marijn@cmu.edu

X5:1<?

XZZ]

X]ZO
X4:1
X3:1
X3:0

8/ 35



Conflict-driven SAT solvers: Search and Analysis

(x1 Vxq) A
(Xg VX X4 \/X5)
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rextra
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Conflict-driven SAT solvers: Search and Analysis

X1V x4) A\

(
(x3 Vx4V X5)
(X3 VX2V Xy4)

r;xtra
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Conflict-driven SAT solvers: Search and Analysis

(x1 Vxg) A
(x3 Vx4 Vxs5) A _
(X3\/X2\/X4) A\ X5 =
rextra X4:O
Xz:] x]:]
x3 =1 @
X5—]
O— x; =0
Xx1=0 x4 =1 Xq =1
Xg,:]
X3:0 X3:O

X2:1

(X2 VX3V Xs)
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Conflict-driven SAT solvers: Search and Analysis

(x1 Vxg) A
(x3 Vx4 Vxs5) A _
(X3\/X2\/X4) AN X5 =
rextra X4:O
Xz:] x]:]
X3:1 @
X5—] .
O— X =0
x1=0 x4 =1 xXg =1 O
Xg,:]
X3:0 X3:O

X2:1

(X2 VX3V Xs)
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Implication graph [Marques-SilvaSakallah '96]

CDCL in a nutshell:

1. Main loop combines efficient problem simplification with
cheap, but effective decision heuristics; (> 90% of time)

2. Reasoning kicks in if the current state is conflicting;
3. The current state is analyzed and turned into a constraint;

4. The constraint is added to the problem, the heuristics are
updated, and the algorithm (partially) restarts.
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Implication graph [Marques-SilvaSakallah '96]

CDCL in a nutshell:

1. Main loop combines efficient problem simplification with
cheap, but effective decision heuristics; (> 90% of time)

2. Reasoning kicks in if the current state is conflicting;
3. The current state is analyzed and turned into a constraint;

4. The constraint is added to the problem, the heuristics are
updated, and the algorithm (partially) restarts.

However, it has three weaknesses:
m CDCL is notoriously hard to parallelize;
m the representation impacts CDCL performance; and
m CDCL has exponential runtime on some “simple” problems.
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Conflict-driven Clause Learning: Pseudo-code

1: while TRUE do
2: Lgecision := Decide ()

3 If no lgecision then return satisfiable

4 I := Simplify (T'(Laecision ¢ 1))

5 while T" contains Cy,i50.q dO

6: Ceontlict = Analyze (Crasifiea)

7: If Ceonnicc = L then return unsatisfiable
8: BackTrack (Ceonflict)

0 = Simplify (" U{Ceontict))

10: end while

11: end while
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Learning conflict clauses ~ [Marques-SilvaSakallah'96]

X11=1 x10=0

XgZ] X]7:0

X13—0
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Learning conflict clauses ~ [Marques-SilvaSakallah'96]

XgZ] X]7:0

Xg= N\ X]z—o
X13:1
x11=1 {e x10=0 x3=1

X5:O

—O
e (%1 VX3V xs Vxiz VXio)

tri-asserting clause
marijn@cmu.edu 11/35
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Learning conflict clauses ~ [Marques-SilvaSakallah'96]

XgZ] X]7:0

(x10 VX3V x17 V X19)

first unique implication point
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Learning conflict clauses ~ [Marques-SilvaSakallah'96]

XgZ] X]7:0

(Xz V Xy VgV X7 \/%19)

second unique implication point
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Average Learned Clause Length
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Data-structures
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Simple data structure for unit propagation

-1 -2

-1] 2

Variables Clauses

3|-1|-2

ARG
/4
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Conflict-driven: Watch pointers (1) [MoskewiczMZZM'01]

OC:{X1 — *>X2 — *>X3 - *)X4 — *>X5 - *)XG - *}
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Conflict-driven: Watch pointers (1) [MoskewiczMZZM'01]

OC:{X1 — 1>X2 — *>X3 = 1>X4 — *>X5 - 1>X6 - *}
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Conflict-driven: Watch pointers (1) [MoskewiczMZZM'01]

OC:{X1 — 1>X2 — *>X3 = 1>X4 — *>X5 - 1>X6 - *}
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Conflict-driven: Watch pointers (1) [MoskewiczMZZM'01]

x={x1=1,xp=*x3=1,x =0,x5 = 1,x¢ = *}
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Conflict-driven: Watch pointers (1) [MoskewiczMZZM'01]

o ={x; = Lix;=0,x3=1,% =0,x5 = 1,x¢ = *}
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Conflict-driven: Watch pointers (1) [MoskewiczMZZM'01]

x={x1=1,x,=0,x3=1,x4 =0,x5 = 1, xg = 1}
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Conflict-driven: Watch pointers (1) [MoskewiczMZZM'01]

x={x1=1,x,=0,x3=1,x4 =0,x5 = 1, xg = 1}
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Conflict-driven: Watch pointers (2) [MoskewiczMZZM'01]

Only examine (get in the cache) a clause when both
m a watch pointer gets falsified
m the other one is not satisfied

While backjumping, just unassign variables
Conflict clauses — watch pointers
No detailed information available

Not used for binary clauses
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Average Number of Clauses Visited Per Propagation
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Percentage visited clauses with other watched literal true
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Heuristics
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Most important CDCL heuristics

Variable selection heuristics
® aim: minimize the search space

m plus: could compensate a bad value selection
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Value selection heuristics
® aim: guide search towards a solution or conflict

m plus: could compensate a bad variable selection,
cache solutions of subproblems [PipatsrisawatDarwiche'07]
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Most important CDCL heuristics

Variable selection heuristics
® aim: minimize the search space

m plus: could compensate a bad value selection

Value selection heuristics
® aim: guide search towards a solution or conflict

m plus: could compensate a bad variable selection,
cache solutions of subproblems [PipatsrisawatDarwiche'07]

Restart strategies
m aim: avoid heavy-tail behavior [GomesSelmanCrato'97]

m plus: focus search on recent conflicts when combined with
dynamic heuristics
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Variable selection heuristics

Based on the occurrences in the (reduced) formula

m examples: Jeroslow-Wang, Maximal Occurrence in clauses
of Minimal Size (MOMS), look-aheads

m not practical for CDCL solver due to watch pointers
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Variable selection heuristics

Based on the occurrences in the (reduced) formula

m examples: Jeroslow-Wang, Maximal Occurrence in clauses
of Minimal Size (MOMS), look-aheads

m not practical for CDCL solver due to watch pointers

Variable State Independent Decaying Sum (VSIDS)

m original idea (zChaff): for each conflict, increase the score
of involved variables by 1, half all scores each 256 conflicts
[MoskewiczMZZM'01]

m improvement (MiniSAT): for each conflict, increase the
score of involved variables by & and increase & := 1.058
[EenSorensson’03]
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Visualization of VSIDS in PicoSAT

http:
//www.youtube . com/watch?v=M0jhFywLre8
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Value selection heuristics

Based on the occurrences in the (reduced) formula

m examples: Jeroslow-Wang, Maximal Occurrence in clauses
of Minimal Size (MOMS), look-aheads

m not practical for CDCL solver due to watch pointers
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Value selection heuristics

Based on the occurrences in the (reduced) formula

m examples: Jeroslow-Wang, Maximal Occurrence in clauses
of Minimal Size (MOMS), look-aheads

m not practical for CDCL solver due to watch pointers

Based on the encoding / consequently
m negative branching (early MiniSAT) [EenSorensson’03]

Based on the last implied value (phase-saving)
m introduced to CDCL [PipatsrisawatDarwiche'07]
m already used in local search [HirschKojevnikov'01]
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Heuristics: Phase-saving  [PipatsrisawatDarwiche'07]

Selecting the last implied value

Variable index
g

0 50000 100000 150000 200000 250000 300000 350000 400000
Decision number

negative branching

marijn@cmu.edu

remembers solved components

Variable index

0 50000 100000 150000 200000 250000
Decision number

phase-saving
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Restarts

Restarts in CDCL solvers:
m Counter heavy-tail behavior [GomesSelmanCrato'97]
m Unassign all variables but keep the (dynamic) heuristics
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Restarts

Restarts in CDCL solvers:
m Counter heavy-tail behavior [GomesSelmanCrato'97]
m Unassign all variables but keep the (dynamic) heuristics

Restart strategies: [Walsh'99, LubySinclairZuckerman'93]
m Geometrical restart: e.g. 100,150, 225,333,500, 750, ...
m Luby sequence: e.g. 100,100, 200, 100, 100, 200, 400, ...
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Restarts

Restarts in CDCL solvers:
m Counter heavy-tail behavior [GomesSelmanCrato'97]
m Unassign all variables but keep the (dynamic) heuristics

Restart strategies: [Walsh'99, LubySinclairZuckerman'93]
m Geometrical restart: e.g. 100,150, 225,333,500, 750, ...
m Luby sequence: e.g. 100,100, 200, 100, 100, 200, 400, ...

Rapid restarts by reusing trail: [vanderTakHeuleRamos'11]

m Partial restart same effect as full restart
m Optimal strategy Luby-1: 1,1,2,1,1,2,4,...
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Heuristics: SAT vs UNSAT [Oh'15]

The best heuristics choices depend on satisfiability: E.g.
m Restart frequently for UNSAT instances to get conflict early
m Restart sporadically for SAT instances to keep “progress”

Also, keeping learned clauses is less important on SAT
instances and can actually slow down the search.

State-of-the-art CDCL solvers, such as CaDiCaL, have separate
modes for SAT and UNSAT and they alternate between them.
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Clause Management
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Clause delection [EenSorensson’'03, AudemardSimon’09]

Conflict clauses can significantly slow down CDCL solvers:
m Conflict clauses can quickly outnumber the original clauses
m Conflict clauses consists of important variables

Clause deletion is used to reduce the overhead:
m When the learned clause reach a limit, remove half
m Increase limit after every removal (completeness)
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Clause delection [EenSorensson’'03, AudemardSimon’09]

Conflict clauses can significantly slow down CDCL solvers:
m Conflict clauses can quickly outnumber the original clauses
m Conflict clauses consists of important variables

Clause deletion is used to reduce the overhead:
m When the learned clause reach a limit, remove half
m Increase limit after every removal (completeness)

Clause deletion heuristics:
m length of the clause
m relevance of the clause (when was it used in Analyze)
m the number of involved decision levels
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Conflict-Clause Minimization
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Self-Subsumption

Use self-subsumption to shorten conflict clauses

CVl DVI1 (aVbVLl) (aVbVeVl)
CCD
D (aVbVe)

Conflict clause minimization is an important
optimization.
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Self-Subsumption

Use self-subsumption to shorten conflict clauses

CV1l DVI (aVbV1) (aVbVeVD)
CCD
D (aVbVe)

Conflict clause minimization is an important
optimization.

Use implication chains to further minimization:

.(avo)(dbVe)lavVeVvd)... =
.(avb)(dbVe)lcVd)...
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Conflict-clause minimization [SorenssonBiere'09]

XzZ] X3:0

X]ZO@ ?
X5:0 X6:1 X7:O

X4:1@
X9:O
%=10—@
x11 =0 =1
0
B
4
0

X
= 10— Q——0
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Conflict-clause minimization [SorenssonBiere'09]

Xy = 1

X3 = 0
X1 =0 (i)

X5 = 0

X = 1 X7 = 0
X4 =1 (é)

X10 =1 (E)

A
" \f/lr)s(‘i :J/n)i_ccfu\e/ X7%XM = oX15 =0 é
implication point

X13 =1
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XzZ] X3:0

X]ZO@
X5:0 X6:1

X4:1@
Xo =
w1 O—
X1 =

0 X]zz]
= 10+—Q0——0

Conflict-clause minimization [SorenssonBiere'09]
(x1 VX4 VX3V Xi0) xu=1 _x5=0

Tx
0
B
last unique o o é

implication point X13 =

7=0

X13

0
1
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Conflict-clause minimization [SorenssonBiere'09]

Xz—] X3—0

(iz\/X5 \/26\/7(11)
reduced conflict clause
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Conflict-clause minimization [SorenssonBiere'09]

X4:1@
Xo =
%=10——©
x11 =0 =1
X1o:1@ 1 12 ?XB:O
;
4

?2 \/X5 \/Xn . _
- (. . ) xiu=1 _Xi5=
minimized conflict clause o o
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Recent Advances and Conclusions
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Recent Advances (1)
A new idea contributes to winning the competition.

Winner 2017: Clause vivification during search
[LuoLiXiaoManydLi'17]

Winner 2018: Chronological backtracking
[NadelRyvchin'18]

Winner 2019: Multiple learnt clauses per conflict
[KochemazovZaikinKondratievSemenov'19]

Winner 2020: Back to C and “target phases”
[BiereFleury'20]
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Recent Advances (1)

A new idea contributes to winning the competition.

Winner 2021: Selecting decision heuristics using RL
[CherifHabet Terrioux'21]

Winner 2022: Decision tree of local search strategies
[ZhengHeChenZhouli'22]

Winner 2023: Structured Reencoding of Formulas
[HaberlandtGreen'23]

The 2023 winning solver was on a course project
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Conclusions: state-of-the-art CDCL solver

Key contributions to CDCL solvers:

m concept of conflict clauses (grasp) [Marques-SilvaSakallah'96]
m restart strategies [GomesSC'97,LubySZ'93]
m 2-watch pointers and VSIDS (zChaff) [MoskewiczMZZM'01]
m efficient implementation (Minisat) [EenSorensson’03]
m phase-saving (Rsat) [PipatsrisawatDarwiche'07]
m conflict-clause minimization [SorenssonBiere'09]
m SAT vs UNSAT [Oh'15]

+ Pre- and in-processing techniques
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