
Reasoning with Quantified Boolean Formulas

Marijn J.H. Heule

http://www.cs.cmu.edu/~mheule/15816-f24/

Automated Reasoning and Satisfiability
October 9, 2024

marijn@cmu.edu 1 / 31

http://www.cs.cmu.edu/~mheule/15816-f24/

What are QBF?

Quantified Boolean formulas (QBF) are

formulas of propositional logic + quantifiers

Examples:
• (x∨ y)∧ (x∨ y) (propositional logic)

• ∃x∀y(x∨ y)∧ (x∨ y)

Is there a value for x such that for all values of y the
formula is true?

• ∀y∃x(x∨ y)∧ (x∨ y)

For all values of y, is there a value for x such that the
formula is true?

marijn@cmu.edu 2 / 31

What are QBF?

Quantified Boolean formulas (QBF) are

formulas of propositional logic + quantifiers

Examples:
• (x∨ y)∧ (x∨ y) (propositional logic)

• ∃x∀y(x∨ y)∧ (x∨ y)

Is there a value for x such that for all values of y the
formula is true?

• ∀y∃x(x∨ y)∧ (x∨ y)

For all values of y, is there a value for x such that the
formula is true?

marijn@cmu.edu 2 / 31

What are QBF?

Quantified Boolean formulas (QBF) are

formulas of propositional logic + quantifiers

Examples:
• (x∨ y)∧ (x∨ y) (propositional logic)

• ∃x∀y(x∨ y)∧ (x∨ y)

Is there a value for x such that for all values of y the
formula is true?

• ∀y∃x(x∨ y)∧ (x∨ y)

For all values of y, is there a value for x such that the
formula is true?

marijn@cmu.edu 2 / 31

SAT vs. QSAT aka NP-complete vs. PSPACE-complete

SAT
ϕ(x1, x2, x3)

Is there a satisfying
assignment?

QBF
∃x1∀x2∃x3ϕ(x1, x2, x3)

Is there a satisfying
assignment tree?

marijn@cmu.edu 3 / 31

Small Example QSAT Problems

Consider the formula ∀a ∃b, c.(a∨ b)∧ (a∨ c)∧ (b∨ c)

A model is: a

b

b

c

c

⊤

⊤

0

1

1

0

0

1

Consider the formula ∃b∀a ∃c.(a∨ b)∧ (a∨ c)∧ (b∨ c)

A counter-model is:
b

a

a

⊥

c

⊥

⊥

0

1

0

1

0

1

The quantifier prefix frequently determines the truth of a QBF.

marijn@cmu.edu 4 / 31

Small Example QSAT Problems

Consider the formula ∀a ∃b, c.(a∨ b)∧ (a∨ c)∧ (b∨ c)

A model is: a

b

b

c

c

⊤

⊤

0

1

1

0

0

1

Consider the formula ∃b∀a ∃c.(a∨ b)∧ (a∨ c)∧ (b∨ c)

A counter-model is:
b

a

a

⊥

c

⊥

⊥

0

1

0

1

0

1

The quantifier prefix frequently determines the truth of a QBF.

marijn@cmu.edu 4 / 31

Small Example QSAT Problems

Consider the formula ∀a ∃b, c.(a∨ b)∧ (a∨ c)∧ (b∨ c)

A model is: a

b

b

c

c

⊤

⊤

0

1

1

0

0

1

Consider the formula ∃b∀a ∃c.(a∨ b)∧ (a∨ c)∧ (b∨ c)

A counter-model is:
b

a

a

⊥

c

⊥

⊥

0

1

0

1

0

1

The quantifier prefix frequently determines the truth of a QBF.

marijn@cmu.edu 4 / 31

Small Example QSAT Problems

Consider the formula ∀a ∃b, c.(a∨ b)∧ (a∨ c)∧ (b∨ c)

A model is: a

b

b

c

c

⊤

⊤

0

1

1

0

0

1

Consider the formula ∃b∀a ∃c.(a∨ b)∧ (a∨ c)∧ (b∨ c)

A counter-model is:
b

a

a

⊥

c

⊥

⊥

0

1

0

1

0

1

The quantifier prefix frequently determines the truth of a QBF.

marijn@cmu.edu 4 / 31

The Two Player Game Interpretation of QSAT

Interpretation of QSAT as two player game for a QBF
∃x1∀a1∃x2∀a2 · · · ∃xn∀anψ:

Player A (existential player) tries to satisfy the formula by
assigning existential variables

Player B (universal player) tries to falsify the formula by
assigning universal variables

Player A and Player B make alternately an assignment of
the variables in the outermost quantifier block

Player A wins: formula is satisfiable, i.e., there is a
strategy for assigning the existential variables such that
the formula is always satisfied

Player B wins: formula is unsatisfiable

marijn@cmu.edu 5 / 31

Promises of QBF

QSAT is the prototypical problem for PSPACE.

QBFs are suitable as host language for the encoding of
many application problems like
• verification
• artificial intelligence
• knowledge representation
• game solving

In general, QBF allow more succinct encodings then SAT

marijn@cmu.edu 6 / 31

Application of a QBF Solver

QBF Solver returns

1. yes/no

2. witnesses

marijn@cmu.edu 7 / 31

Example of ∃∀∃: Synthesis
Given an input-output specification, does there exists a circuit
that satisfies the input-output specification.

QBF solving can be used to find the smallest sorting network:

(∃) Does there exists a sorting network of k wires,

(∀) such that for all input variables of the network

(∃) the output Oi ≤ Oi+1

marijn@cmu.edu 8 / 31

Example of ∀∃ . . . ∀∃: Games

Many games, such as Go and Reversi, can
be naturally expressed as a QBF problem.

Boolean variables ai,k, bj,k express that
the existential player places a piece on
row i and column j at his kth turn.
Variables ci,k, dj,k are used for the
universal player. Go

Reversi

The QBF problem is of the form

∀ci,1, dj,1∃ai,1, bj,1 . . . ∀ci,n, dj,n∃ai,n, bj,n.ψ
Outcome “satisfiable”: the second player
(existential) can always prevent that the
first player (universal) wins.

marijn@cmu.edu 9 / 31

Illustrating Example ∀∃: Conway’s Game of Life

Conway’s Game of Life is an infinite
2D grid of cells that are either alive or
dead using the following update rules:

Any alive cell with fewer than
two alive neighbors dies;

Any alive cell with two or three
live neighbors lives;

Any alive cell with more than
three alive neighbors dies;

Any dead cell with exactly three
alive neighbors becomes alive.

Game of Life is very popular: over 1,100 wiki articles

marijn@cmu.edu 10 / 31

Garden of Eden in Conway’s Game of Life

A Garden of Eden (GoE) is a state
that can only exist as initial state.

Let T(x, y) denote the CNF formula
that encodes the transition relation
from a state to its successor using
variables x that describe the current
state and variables y the successor
state.

A QBF that encodes the GoE problem is simply

∀y∃x.T(x, y)

The smallest Garden of Eden known so far (shown above) was
found using a QBF solver. [Hartman et al. 2013]

marijn@cmu.edu 11 / 31

The Language of QBF

The language of quantified Boolean formulas LP over a set
of propositional variables P is the smallest set such that

if v ∈ P ∪ {⊤,⊥} then v ∈ LP (variables, constants)

if ϕ ∈ LP then ϕ ∈ LP (negation)

if ϕ and ψ ∈ LP then ϕ∧ψ ∈ LP (conjunction)

if ϕ and ψ ∈ LP then ϕ∨ψ ∈ LP (disjunction)

if ϕ ∈ LP then ∃vϕ ∈ LP (existential quantifier)

if ϕ ∈ LP then ∀vϕ ∈LP (universal quantifier)

marijn@cmu.edu 12 / 31

Some Notes on Variables and Truth Constants

⊤ stands for top
• always true
• empty conjunction

⊥ stands for bottom
• always false
• empty disjunction

literal: variable or negation of a variable
• examples: l1 = v, l2 = w
• var(l) = v if l = v or l = v
• complement of literal l: l

var(ϕ): set of variables occurring in QBF ϕ

marijn@cmu.edu 13 / 31

Some QBF Terminology
Let Qvψ with Q∈ {∀,∃} be a subformula in a QBF ϕ, then

ψ is the scope of v

Q is the quantifier binding of v

quant(v) = Q

free variable w in ϕ: w has no quantifier binding in ϕ

bound variable w in QBF ϕ: w has quantifier binding in ϕ

closed QBF: no free variables

Example

bound var a︷︸︸︷
∀a (a∧

free variable︷︸︸︷
x ∨

closed QBF︷ ︸︸ ︷
bound vars y, z︷ ︸︸ ︷

∀y∃z
scope of y, z︷ ︸︸ ︷

((y∨ z)∧ (y∨ z)))︸ ︷︷ ︸
scope of a

marijn@cmu.edu 14 / 31

Prenex Conjunctive Normal Form (PCNF)

A QBF ϕ is in prenex conjunctive normal form iff

ϕ is in prenex normal form ϕ = Q1v1 . . .Qnvnψ

matrix ψ is in conjunctive normal form, i.e.,

ψ = C1 ∧ · · ·∧ Cm

where Ci are clauses, i.e., disjunctions of literals.

Example

∀x∃y︸ ︷︷ ︸
prefix

((x∨ y)∧ (x∨ y))︸ ︷︷ ︸
matrix in CNF

marijn@cmu.edu 15 / 31

Some Words on Notation

If convenient, we write

a conjunction of clauses as a set, i.e.,

C1 ∧ . . .∧ Cm = {C1, . . . , Cm}

a clause as a set of literals, i.e.,

l1 ∨ . . .∨ lk = {l1, . . . , lk}

var(ϕ) for the variables occurring in ϕ

var(l) for the variable of a literal, i.e.,

var(l) = x iff l = x or l = x

Example

∀x∃y︸ ︷︷ ︸
prefix

((x∨ y)∧ (x∨ y))︸ ︷︷ ︸
matrix in CNF

≈ ∀x∃y︸ ︷︷ ︸
prefix

{{x, y}, {x, y}}︸ ︷︷ ︸
matrix in CNF

marijn@cmu.edu 16 / 31

Semantics of QBFs

A valuation function I: LP → {T , F} for closed QBFs is
defined as follows:

I(⊤) = T ; I(⊥) = F
I(ψ) = T iff I(ψ) = F
I(ϕ∨ψ) = T iff I(ϕ) = T or I(ψ) = T
I(ϕ∧ψ) = T iff I(ϕ) = T and I(ψ) = T
I(∀v.ψ) = T iff I(ψ[⊥/v]) = T and I(ψ[⊤/v]) = T
I(∃v.ψ) = T iff I(ψ[⊥/v]) = T or I(ψ[⊤/v]) = T

marijn@cmu.edu 17 / 31

Boolean s p l i t (QBF ϕ)

sw i t c h (ϕ)
case ⊤ : r e t u r n true ;
case ⊥ : r e t u r n f a l s e ;
case ψ : r e t u r n (not s p l i t (ψ)) ;
case ψ ′ ∧ψ ′′ : r e t u r n s p l i t (ψ ′) && s p l i t (ψ ′′) ;
case ψ ′ ∨ψ ′′ : r e t u r n s p l i t (ψ ′) | | s p l i t (ψ ′′) ;
case QXψ :

s e l e c t x ∈ X ; X ′ = X\{x} ;
i f (Q == ∀)

r e t u r n (s p l i t (QX ′ψ[⊤/x]) &&
s p l i t (QX ′ψ[⊥/x])) ;

e l s e
r e t u r n (s p l i t (QX ′ψ[⊤/x]) | |

s p l i t (QX ′ψ[⊥/x])) ;

marijn@cmu.edu 18 / 31

Some Simplifications

The following rewritings are equivalence preserving:

1. ⊤ ⇒ ⊥; ⊥ ⇒ ⊤;

2. ⊤∧ϕ⇒ ϕ; ⊥∧ϕ⇒ ⊥; ⊤∨ϕ⇒ ⊤; ⊥∨ϕ⇒ ϕ;

3. (Qxϕ) ⇒ ϕ, Q ∈ {∀, ∃}, x does not occur in ϕ;

Example

∀ab∃x∀c∃yz∀d{{a, b, c}, {a, b,⊤},
{c, y, d,⊥}, {x, y,⊥}, {x, c, d,⊤}}

≈
∀abc∃y∀d{{a, b, c}, {a, b}, {c, y, d}}

marijn@cmu.edu 19 / 31

Boolean sp l i tCNF (P r e f i x P , ma t r i x ψ)

i f (ψ == ⊤) : r e t u r n true ;
i f (⊥ ∈ ψ) : r e t u r n f a l s e ;

P = QXP ′ ,x ∈ X , X ′ = X\{x} ;

i f (Q == ∀)
r e t u r n (sp l i tCNF (QX ′P ′, ψ ′) &&

sp l i tCNF (QX ′P ′, ψ ′′)) ;
e l s e

r e t u r n (sp l i tCNF (QX ′P ′, ψ ′) | |
sp l i tCNF (QX ′P ′, ψ ′′)) ;

where
ψ ′ : take clauses of ψ, delete clauses with x, delete literals x
ψ ′′ : take clauses of ψ, delete clauses with x, delete literals x

marijn@cmu.edu 20 / 31

Unit Clauses

A clause C is called unit in a formula ϕ iff

C contains exactly one existential literal

the universal literals of C are to the right of the existential
literal in the prefix

The existential literal in the unit clause is called unit literal.

Example

∀ab∃x∀c∃y∀d{{a, b, x, c}, {a, b}, {c, y, d}, {x, y}, {x, c, d}, {y}}

Unit literals: x, y

marijn@cmu.edu 21 / 31

Unit Clauses

A clause C is called unit in a formula ϕ iff

C contains exactly one existential literal

the universal literals of C are to the right of the existential
literal in the prefix

The existential literal in the unit clause is called unit literal.

Example

∀ab∃x∀c∃y∀d{{a, b, x, c}, {a, b}, {c, y, d}, {x, y}, {x, c, d}, {y}}

Unit literals: x, y

marijn@cmu.edu 21 / 31

Unit Literal Elimination

Let ϕ be a QBF with unit literal l and let ϕ ′ be a QBF
obtained from ϕ by

removing all clauses containing l

removing all occurrences of l

Then
ϕ ≈ ϕ ′

Example

∀ab∃x∀c∃y∀d{{a, b, x, c}, {a, b}, {c, y, d}, {x, y}, {x, c, d}, {y}}

After unit literal elimiation: ∀abc{{a, b, c}, {a, b}}

marijn@cmu.edu 22 / 31

Pure Literals

A literal l is called pure in a formula ϕ iff

l occurs in ϕ

the complement of l, i.e., l does not occur in ϕ

Example

∀ab∃x∀c∃yz∀d{{a, b, c}, {a, b}, {c, y, d}, {x, y}, {x, c, d}}

Pure: a, d, x, y

marijn@cmu.edu 23 / 31

Pure Literals

A literal l is called pure in a formula ϕ iff

l occurs in ϕ

the complement of l, i.e., l does not occur in ϕ

Example

∀ab∃x∀c∃yz∀d{{a, b, c}, {a, b}, {c, y, d}, {x, y}, {x, c, d}}

Pure: a, d, x, y

marijn@cmu.edu 23 / 31

Pure Literal Elimination

Let ϕ be a QBF with pure literal l and let ϕ ′ be a QBF
obtained from ϕ by

removing all clauses with l if quant(l) = ∃
removing all occurrences of l if quant(l) = ∀

Then
ϕ ≈ ϕ ′

Example

∀ab∃x∀c∃yz∀d{{a, b, c}, {a, b}, {c, y, d}, {x, y}, {x, c, d}}

After Pure Literal Elimination: ∀b{{b}, {b}}

marijn@cmu.edu 24 / 31

Universal Reduction (UR)

Let Π.ψ be a QBF in PCNF and C ∈ ψ.
Let l ∈ C with
• quant(l) = ∀
• forall k ∈ C with quant(k) = ∃ k <Π l, i.e., all
existential variables k of C are to the left of l in Π.

Then l may be removed from C.

C\{l} is called the universal reduct of C.

Example

∀ab∃x∀c∃yz∀d{{a, b, x, c}, {a, b, x}, {c, y, d}, {x, y}, {x, c, d}}}

After Universal Reduction:

∀ab∃x∀c∃yz∀d{{a, b, x}, {a, b, x}, {c, y}, {x, y}, {x}}}

marijn@cmu.edu 25 / 31

Universal Reduction (UR)

Let Π.ψ be a QBF in PCNF and C ∈ ψ.
Let l ∈ C with
• quant(l) = ∀
• forall k ∈ C with quant(k) = ∃ k <Π l, i.e., all
existential variables k of C are to the left of l in Π.

Then l may be removed from C.

C\{l} is called the universal reduct of C.

Example

∀ab∃x∀c∃yz∀d{{a, b, x, c}, {a, b, x}, {c, y, d}, {x, y}, {x, c, d}}}

After Universal Reduction:

∀ab∃x∀c∃yz∀d{{a, b, x}, {a, b, x}, {c, y}, {x, y}, {x}}}

marijn@cmu.edu 25 / 31

Boolean sp l i tCNF2 (P r e f i x P , ma t r i x ψ)

(P,ψ) = simplify(P,ψ) ;

i f (ψ == ⊥) : r e t u r n true ;
i f (⊥ ∈ ψ) : r e t u r n f a l s e ;

P = QXP ′ ,x ∈ X , X ′ = X\{x} ;

i f (Q == ∀)
r e t u r n (sp l i tCNF2 (QX ′P ′, ψ ′) &&

sp l i tCNF2 (QX ′P ′, ψ ′′)) ;
e l s e

r e t u r n (sp l i tCNF2 (QX ′P ′, ψ ′) | |
sp l i tCNF2 (QX ′P ′, ψ ′′)) ;

where
ψ ′ : take clauses of ψ, delete clauses with x, delete x
ψ ′′ : take clauses of ψ, delete clauses with x, delete x

marijn@cmu.edu 26 / 31

Resolution for QBF

Q-Resolution: propositional resolution + universal reduction.

Definition
Let C1, C2 be clauses with existential literal l ∈ C1 and l ∈ C2.
1. Tentative Q-resolvent:
C1 ▷◁ C2 := (UR(C1) ∪ UR(C2)) \ {l, l}.

2. If {x, x} ⊆ C1 ▷◁ C2 then no Q-resolvent exists.

3. Otherwise, Q-resolvent C := (C1 ▷◁ C2).

Q-resolution is a sound and complete calculus.

Universals as pivot are also possible.

marijn@cmu.edu 27 / 31

Q-Resolution Small Example

Exclusive OR (XOR): QBF ψ = ∃x∀y(x∨ y)∧ (x∨ y)

Truth Table

x y ψ
0 0 0
0 1 1
1 0 1
1 1 0

unsat

Q-Resolution Proof

x ∨ y

x x

x ∨ y

⊥

Universal-Reduction −→
Resolution −→

−→ y = x ⇒ ψ = 0

−→ fy(x) = x (counter model)

marijn@cmu.edu 28 / 31

Q-Resolution Small Example

Exclusive OR (XOR): QBF ψ = ∃x∀y(x∨ y)∧ (x∨ y)

Truth Table

x y ψ
0 0 0
0 1 1
1 0 1
1 1 0

unsat

−→ y = x ⇒ ψ = 0

−→ fy(x) = x (counter model)

marijn@cmu.edu 28 / 31

Q-Resolution Small Example

Exclusive OR (XOR): QBF ψ = ∃x∀y(x∨ y)∧ (x∨ y)

Truth Table

x y ψ
0 0 0
0 1 1
1 0 1
1 1 0

unsat

Q-Resolution Proof

x ∨ y

x x

x ∨ y

⊥

−→ y = x ⇒ ψ = 0

−→ fy(x) = x (counter model)

marijn@cmu.edu 28 / 31

Q-Resolution Small Example

Exclusive OR (XOR): QBF ψ = ∃x∀y(x∨ y)∧ (x∨ y)

Truth Table

x y ψ
0 0 0
0 1 1
1 0 1
1 1 0

unsat

Q-Resolution Proof

x ∨ y

x x

x ∨ y

⊥

Universal-Reduction −→

−→ y = x ⇒ ψ = 0

−→ fy(x) = x (counter model)

marijn@cmu.edu 28 / 31

Q-Resolution Small Example

Exclusive OR (XOR): QBF ψ = ∃x∀y(x∨ y)∧ (x∨ y)

Truth Table

x y ψ
0 0 0
0 1 1
1 0 1
1 1 0

unsat

Q-Resolution Proof

x ∨ y

x x

x ∨ y

⊥

Universal-Reduction −→
Resolution −→

−→ y = x ⇒ ψ = 0

−→ fy(x) = x (counter model)

marijn@cmu.edu 28 / 31

Q-Resolution Small Example

Exclusive OR (XOR): QBF ψ = ∃x∀y(x∨ y)∧ (x∨ y)

Truth Table

x y ψ
0 0 0
0 1 1
1 0 1
1 1 0

unsat

Q-Resolution Proof

x ∨ y

x x

x ∨ y

⊥

−→ y = x ⇒ ψ = 0

−→ fy(x) = x (counter model)

marijn@cmu.edu 28 / 31

Q-Resolution Small Example

Exclusive OR (XOR): QBF ψ = ∃x∀y(x∨ y)∧ (x∨ y)

Truth Table

x y ψ
0 0 0
0 1 1
1 0 1
1 1 0

unsat

Q-Resolution Proof

x ∨ y

x x

x ∨ y

⊥

−→ y = x ⇒ ψ = 0

−→ fy(x) = x (counter model)

marijn@cmu.edu 28 / 31

Q-Resolution Large Example

Input Formula

∃a∀b∃cd∀e∃fg.(a∨ g)∧ (b∨ f∨ g)∧ (c∨ e∨ f) ∧

(d∨ e∨ f)∧ (c∨ d∨ e)∧ (a∨ f)

Q-Resolution Proof DAG

a∨ fc∨ d∨ e

c∨ e∨ f

d∨ e∨ f

e∨ f

c∨ e∨ f

b∨ e∨ g

b∨ f∨ g

a∨ b∨ e

a∨ g

a∨ e

⊥

marijn@cmu.edu 29 / 31

Q-Resolution Large Example

Input Formula

∃a∀b∃cd∀e∃fg.(a∨ g)∧ (b∨ f∨ g)∧ (c∨ e∨ f) ∧

(d∨ e∨ f)∧ (c∨ d∨ e)∧ (a∨ f)

Q-Resolution Proof DAG

a∨ fc∨ d∨ e

c∨ e∨ f

d∨ e∨ f

e∨ f

c∨ e∨ f

b∨ e∨ g

b∨ f∨ g

a∨ b∨ e

a∨ g

a∨ e

⊥

marijn@cmu.edu 29 / 31

QBF Preprocessing

Preprocessing is crucial to solve most QBF instances efficiently.

Results of DepQBF w/ and w/o bloqqer on QBF Eval 2012 [1]

 0

 200

 400

 600

 800

 1000

 1200

 0 20 40 60 80 100 120 140 160 180 200

C
PU

 ti
m

e
(s

ec
on

ds
)

Number of solved instances

w/o preprocessing
w/ preprocessing

marijn@cmu.edu 30 / 31

Quantified Blocked Clause

Definition (Quantified Blocking literal)

An existential literal l in a clause C of a QBF Π.φ blocks C
with respect to Π.φ if for every clause D ∈ Fl, there exists a
literal k ̸= l with k ≤Π l such that k ∈ C and k ∈ D.

Definition (Quantified Blocked clause)

A clause is blocked if it contains a literal that blocks it.

Example

∃a∀bcd∃ef∀g.(a∨ g)∧ (b∨ f∨ g)∧ (c∨ e∨ f) ∧

(d∨ e∨ f)∧ (c∨ d∨ e)∧ (a∨ f)

marijn@cmu.edu 31 / 31

Quantified Blocked Clause

Definition (Quantified Blocking literal)

An existential literal l in a clause C of a QBF Π.φ blocks C
with respect to Π.φ if for every clause D ∈ Fl, there exists a
literal k ̸= l with k ≤Π l such that k ∈ C and k ∈ D.

Definition (Quantified Blocked clause)

A clause is blocked if it contains a literal that blocks it.

Example

∃a∀bcd∃ef∀g.(a∨ g)∧ (b∨ f∨ g)∧ (c∨ e∨ f) ∧

(d∨ e∨ f)∧ (c∨ d∨ e)∧ (a∨ f)

marijn@cmu.edu 31 / 31

Quantified Blocked Clause

Definition (Quantified Blocking literal)

An existential literal l in a clause C of a QBF Π.φ blocks C
with respect to Π.φ if for every clause D ∈ Fl, there exists a
literal k ̸= l with k ≤Π l such that k ∈ C and k ∈ D.

Definition (Quantified Blocked clause)

A clause is blocked if it contains a literal that blocks it.

Example

∃a∀bcd∃ef∀g.(a∨ g)∧ (b∨ f∨ g)∧ (c∨ e∨ f) ∧

(d∨ e∨ f)∧ (c∨ d∨ e)∧ (a∨ f)

marijn@cmu.edu 31 / 31

Quantified Blocked Clause

Definition (Quantified Blocking literal)

An existential literal l in a clause C of a QBF Π.φ blocks C
with respect to Π.φ if for every clause D ∈ Fl, there exists a
literal k ̸= l with k ≤Π l such that k ∈ C and k ∈ D.

Definition (Quantified Blocked clause)

A clause is blocked if it contains a literal that blocks it.

Example

∃a∀bcd∃ef∀g.(a∨ g)∧ (b∨ f∨ g)∧ (c∨ e∨ f) ∧

(d∨ e∨ f)∧ (c∨ d∨ e)∧ (a∨ f)

marijn@cmu.edu 31 / 31

Quantified Blocked Clause

Definition (Quantified Blocking literal)

An existential literal l in a clause C of a QBF Π.φ blocks C
with respect to Π.φ if for every clause D ∈ Fl, there exists a
literal k ̸= l with k ≤Π l such that k ∈ C and k ∈ D.

Definition (Quantified Blocked clause)

A clause is blocked if it contains a literal that blocks it.

Example

∃a∀bcd∃ef∀g.(a∨ g)∧ (b∨ f∨ g)∧ (c∨ e∨ f) ∧

(d∨ e∨ f)∧ (c∨ d∨ e)∧ (a∨ f)

marijn@cmu.edu 31 / 31

Quantified Blocked Clause

Definition (Quantified Blocking literal)

An existential literal l in a clause C of a QBF Π.φ blocks C
with respect to Π.φ if for every clause D ∈ Fl, there exists a
literal k ̸= l with k ≤Π l such that k ∈ C and k ∈ D.

Definition (Quantified Blocked clause)

A clause is blocked if it contains a literal that blocks it.

Example

∃a∀bcd∃ef∀g.(a∨ g)∧ (b∨ f∨ g)∧ (c∨ e∨ f) ∧

(d∨ e∨ f)∧ (c∨ d∨ e)∧ (a∨ f)

marijn@cmu.edu 31 / 31

Quantified Blocked Clause

Definition (Quantified Blocking literal)

An existential literal l in a clause C of a QBF Π.φ blocks C
with respect to Π.φ if for every clause D ∈ Fl, there exists a
literal k ̸= l with k ≤Π l such that k ∈ C and k ∈ D.

Definition (Quantified Blocked clause)

A clause is blocked if it contains a literal that blocks it.

Example

∃a∀bcd∃ef∀g.(a∨ g)∧ (b∨ f∨ g)∧ (c∨ e∨ f) ∧

(d∨ e∨ f)∧ (c∨ d∨ e)∧ (a∨ f)

marijn@cmu.edu 31 / 31

Quantified Blocked Clause

Definition (Quantified Blocking literal)

An existential literal l in a clause C of a QBF Π.φ blocks C
with respect to Π.φ if for every clause D ∈ Fl, there exists a
literal k ̸= l with k ≤Π l such that k ∈ C and k ∈ D.

Definition (Quantified Blocked clause)

A clause is blocked if it contains a literal that blocks it.

Example

∃a∀bcd∃ef∀g.(a∨ g)∧ (b∨ f∨ g)∧ (c∨ e∨ f) ∧

(d∨ e∨ f)∧ (c∨ d∨ e)∧ (a∨ f)

marijn@cmu.edu 31 / 31

	anm0:
	0.36:
	0.35:
	0.34:
	0.33:
	0.32:
	0.31:
	0.30:
	0.29:
	0.28:
	0.27:
	0.26:
	0.25:
	0.24:
	0.23:
	0.22:
	0.21:
	0.20:
	0.19:
	0.18:
	0.17:
	0.16:
	0.15:
	0.14:
	0.13:
	0.12:
	0.11:
	0.10:
	0.9:
	0.8:
	0.7:
	0.6:
	0.5:
	0.4:
	0.3:
	0.2:
	0.1:
	0.0:

