Carnegie Mellon University Tepper School of Business

Decision Diagrams for Discrete Optimization

Willem-Jan (Willem) van Hoeve Carnegie Mellon University

15816 Advanced Topics in Logic: Automated Reasoning and Satisfiability – Fall 2022

Example: Maximum Independent Set Problem

Independent set in a graph:

- Subset of non-adjacent vertices **Maximum Independent Set Problem**:
- Find independent set with maximum weight

Integer Programming Formulation:

$$\begin{array}{l} \max \ 5x_{A} + 4x_{B} + 2x_{C} + 6x_{D} + 8x_{E} \\ \text{subject to} \ \ x_{A} + x_{B} \leq 1 \\ x_{A} + x_{E} \leq 1 \\ x_{B} + x_{C} \leq 1 \\ x_{B} + x_{D} \leq 1 \\ x_{C} + x_{D} \leq 1 \\ x_{D} + x_{E} \leq 1 \\ x_{A}, x_{B}, x_{C}, x_{D}, x_{E} \in \{0, 1\} \end{array}$$

BDDs can Represent Optimization Problems

Independent set in a graph:

- Subset of non-adjacent vertices **Maximum Independent Set Problem**:
- Find independent set with maximum weight

BDD representing all independent sets of the graph

BDDs can Represent Optimization Problems

Independent set in a graph:

- Subset of non-adjacent vertices **Maximum Independent Set Problem**:
- Find independent set with maximum weight

Maximum independent set: Longest root-to-terminal path in the BDD

An Optimization Solver Based on Decision Diagrams

- Input: problem specification (e.g., weighted graph)
- Model: state-based formulation (e.g., dynamic program)
 - Question: How to compile the BDD? We need states and transitions.
- Solver: DD-based branch-and-bound
 - systematic search procedure (to prove optimality)
 - decision diagram provides upper and lower bounds
 - decision diagram defines the search method

BDD Compilation for Maximum Independent Set

Merge equivalent nodes

X_F

BDD Compilation for Maximum Independent Set

Theorem: This top-down compilation procedure generates a reduced exact BDD

[Bergman, Cire, vH, Hooker, IJOC 2014]

Optimal solution: Longest path

Independent Set Problem: Relaxed DD

Maximum width = 3

X_E

Independent Set Problem: Relaxed DD

Maximum width = 3

X_E

Independent Set Problem: Relaxed DD

Maximum width = 3

Relaxed Decision Diagrams: Polynomial Size

- Exponential size is handled by explicitly limiting the size (e.g., the width) of the diagram
- Merge non-equivalent nodes
 - define node merging rule to safely aggerate states
 - for independent set: take the union of the states
- Requirement: no solution is lost
 - over-approximation of the solution space
 - provides discrete relaxation
 - strength is controlled by the maximum width

[Andersen, Hadzic, Hooker, Tiedemann, CP 2007] [Bergman, Cire, vH, Hooker, CPAIOR 2011, IJOC 2016]

C 2

Relaxation Bound: Independent Set

Restricted Decision Diagrams

• Under-approximation of the feasible set

Maximum width = 3

[Bergman, Cire, vH, Yunes, J Heur. 2014]

Restricted Decision Diagrams

Under-approximation of the feasible set

Maximum width = 3

x = (0, 1, 0, 0, 1)Lower bound = 12

[Bergman, Cire, vH, Yunes, J Heur. 2014]

Heuristic Bound: Set Covering Problem

Exact Search Method

- Novel decision diagram branch-and-bound scheme
 - Relaxed diagrams play the role of the LP relaxation
 - Restricted diagrams are used as primal heuristics
- Branching is done on the *nodes* of the diagram
 - Branching on pools of partial solutions
 - Eliminates some search symmetry
 - No need to backtrack!

Branch and Bound

Node Queue

Node Queue

Maximum Independent Set: 500 variables

Maximum Independent Set: 1500 variables

Maximum Cut Problem: BiqMac vs BDD

	BiqMac		BDD		Best known (2015)	
instance	LB	UB	LB	UB	LB	UB
g50	5880	5988.18	5880	5899*	5880	5988.18
g32	1390	1567.65	1410*	1645	1398	1560
g33	1352	1544.32	1380*	1536*	1376	1537
g34	1366	1546.70	1376*	1688	1372	1541
g11	558	629.17	564	567*	564	627
g12	548	623.88	556	616*	556	621
g13	578	647.14	580	652	580	645

Parallelization: Centralized Architecture

Master maintains a **pool** of BDD nodes to process

 nodes with larger upper bound have higher priority

Workers receive BDD nodes, generate *restricted* & *relaxed* BDDs, and send new BDD nodes and bounds to master

they also maintain a local pool of nodes

[Bergman et al. CPAIOR 2014]

Parallelization: BDD vs CPLEX

- n = 170, each data point avg over 30 maximum independent set instances
- 1 worker: BDD 1.25 times faster than CPLEX (for density 0.29)
- 32 workers: BDD 5.5 times faster than CPLEX (for density 0.29)

Parallelization: BDD vs CPLEX

- n = 170, each data point avg over 30 maximum independent set instances
- 1 worker: BDD 1.25 times faster than CPLEX (for density 0.29)
- 32 workers: BDD 5.5 times faster than CPLEX (for density 0.29)
- BDDs scale well to (at least) 256 workers

Other Applications of Relaxed Decision Diagrams

- Constraint Programming
 - DD-based constraint propagation

- Excellent survey paper: Castro, Cire & Beck [IJOC 2022]
- Integer Linear and Nonlinear Programming
 - Cutting plane generation, addition of DD-bounds in MIP search tree, column 'elimination'
- Sequencing, routing, and scheduling
 - State-of-the-art results on machine scheduling, TSPTW with side constraints, sequential ordering problem, …
- Al planning
 - Provide admissible heuristic for A* search

References

- Henrik Reif Andersen, Tarik Hadzic, John N. Hooker, Peter Tiedemann: A Constraint Store Based on Multivalued Decision Diagrams. CP 2007: 118-132
- David Bergman, Willem Jan van Hoeve, John N. Hooker: Manipulating MDD Relaxations for Combinatorial Optimization. CPAIOR 2011: 20-35
- David Bergman, André A. Ciré, Willem Jan van Hoeve, John N. Hooker: Optimization Bounds from Binary Decision Diagrams. INFORMS J. Comput. 26(2): 253-268 (2014)
- David Bergman, André A. Ciré, Willem Jan van Hoeve, Tallys H. Yunes: BDD-based heuristics for binary optimization. J. Heuristics 20(2): 211-234 (2014)
- David Bergman, André A. Ciré, Ashish Sabharwal, Horst Samulowitz, Vijay A. Saraswat, Willem Jan van Hoeve: Parallel Combinatorial Optimization with Decision Diagrams. CPAIOR 2014: 351-367
- David Bergman, André Augusto Ciré, Willem-Jan van Hoeve, John N. Hooker: Discrete Optimization with Decision Diagrams. INFORMS J. Comput. 28(1): 47-66 (2016)
- Margarita P. Castro, Andre A. Cire, J. Christopher Beck: Decision Diagrams for Discrete Optimization: A Survey of Recent Advances. INFORMS J. Comput. 34(4):2271-2295 (2022) <u>https://doi.org/10.1287/ijoc.2022.1170</u>
- David Bergman, André A. Ciré, Willem-Jan van Hoeve, John N. Hooker: Decision Diagrams for Optimization. Springer 2016, ISBN 978-3-319-42847-5 <u>https://link.springer.com/book/10.1007/978-3-319-42849-9</u>

2 Springer

David Bergman

Andre A. Gre Willem-Jan van Hoeve

John Hooker

Decision

Diagrams for

Optimization