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Automated Reasoning Programs

Formalized
Problem

Reasoning

Tool Outcome

Example Applications

▶ Verifying hardware and software systems

▶ Analyzing security protocols

▶ Proving mathematical theorems

▶ Solving optimization problems
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Automated Reasoning Programs

Formalized
Problem

Reasoning

Tool Outcome

Can We Trust the Results?

▶ No!

▶ Complex software with
many optimizations
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Automated Reasoning Programs

Formalized
Problem

Reasoning

Tool Outcome

Can We Trust the Results?

▶ No!

▶ Complex software with
many optimizations

Is This a Problem?

▶ Yes!

▶ Automated reasoning is
cornerstone of trusted
system development
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Boolean Satisfiability Solvers

Boolean
formula

SAT

solver

solution
satisfiable
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Proof-Generating Automated Reasoning Programs

Formalized
Problem

Reasoning

Tool

Proof

Outcome

Checker

Checkable Proofs

▶ Step-by-step proof in some logical framework

▶ Independently validated by proof checker
▶ Checker should operate in low-degree polynomial time

▶ Relative to proof size

▶ Checker should be based on well-understood logical framework
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Proof-Generating SAT Solvers

Boolean
formula

SAT

solver unsatisfiability
proof

unsatisfiable

Proof
Checker

Impact

▶ Since 2016: Entrants to SAT competition must produce
UNSAT proofs

▶ 2020: No entrants had errors
▶ Even on new benchmarks
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Motivating Example: Parity Benchmark

▶ Chew and Heule, SAT 2020

For n Boolean variables and random permutation π:

x1 ⊕ x2 ⊕ · · · ⊕ xn = 1 Odd parity
xπ(1) ⊕ xπ(2) ⊕ · · · ⊕ xπ(n) = 0 Even parity

▶ Conjunction unsatisfiable
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Parity Benchmark Runtime
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KISSAT

▶ KISSAT: State-of-the-art CDCL solver

▶ 3 different random permutations for each value of n

▶ Cannot get beyond n = 42 within 600 seconds
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Reduced Ordered Binary Decision Diagrams (BDDs)

▶ Bryant, 1986

▶ Based on earlier work by Lee (1959) and Akers (1978)

Graph Representation of Boolean Functions

▶ Canonical Form

▶ Compact for many useful problems

▶ Simple algorithms to construct & manipulate

Used in SAT, QBF, Model Checking, . . .
▶ Bottom-up approach

▶ Construct canonical representation of problem
▶ Generate solutions

▶ Compare to search-based methods
▶ E.g., DPLL, CDCL
▶ Top-down approaches
▶ Keep branching on variables until find solution
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Boolean Function Representations

Truth Table

1 1 1 ⊤
1 1 0 ⊥
1 0 1 ⊤
1 0 0 ⊥
0 1 1 ⊤
0 1 0 ⊥
0 0 1 ⊥
0 0 0 ⊥
x1 x2 x3 f

Decision Tree

x1

x2 x2

x3 x3 x3 x3

⊥ ⊥ ⊥ ⊤ ⊥ ⊤ ⊥ ⊤

▶ Size = O(2n)
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Boolean Function Representations

Truth Table

1 1 1 ⊤
1 1 0 ⊥
1 0 1 ⊤
1 0 0 ⊥
0 1 1 ⊤
0 1 0 ⊥
0 0 1 ⊥
0 0 0 ⊥
x1 x2 x3 f

Decision Tree

x1

x2 x2

x3 x3 x3 x3

⊥ ⊥ ⊥ ⊤ ⊥ ⊤ ⊥ ⊤

▶ Size = O(2n)

▶ Assignment defines path from root to leaf
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Reducing to Canonical Form

Truth Table

1 1 1 ⊤
1 1 0 ⊥
1 0 1 ⊤
1 0 0 ⊥
0 1 1 ⊤
0 1 0 ⊥
0 0 1 ⊥
0 0 0 ⊥
x1 x2 x3 f

Graph Representation

x1

x2 x2

x3 x3 x3 x3

⊥ ⊥ ⊥ ⊤ ⊥ ⊤ ⊥ ⊤

▶ Merge isomorphic nodes

▶ Eliminate redundant tests

http://www.cs.cmu.edu/~bryant 10 / 48

http://www.cs.cmu.edu/~bryant


Reducing to Canonical Form

Truth Table

1 1 1 ⊤
1 1 0 ⊥
1 0 1 ⊤
1 0 0 ⊥
0 1 1 ⊤
0 1 0 ⊥
0 0 1 ⊥
0 0 0 ⊥
x1 x2 x3 f

Graph Representation

x1

x2 x2

x3 x3 x3 x3

⊥ ⊤
▶ Merge isomorphic nodes

▶ Eliminate redundant tests

http://www.cs.cmu.edu/~bryant 10 / 48

http://www.cs.cmu.edu/~bryant


Reducing to Canonical Form

Truth Table

1 1 1 ⊤
1 1 0 ⊥
1 0 1 ⊤
1 0 0 ⊥
0 1 1 ⊤
0 1 0 ⊥
0 0 1 ⊥
0 0 0 ⊥
x1 x2 x3 f

Graph Representation

x1

x2 x2

x3

⊥ ⊤
▶ Merge isomorphic nodes

▶ Eliminate redundant tests

http://www.cs.cmu.edu/~bryant 10 / 48

http://www.cs.cmu.edu/~bryant


Reducing to Canonical Form

Truth Table

1 1 1 ⊤
1 1 0 ⊥
1 0 1 ⊤
1 0 0 ⊥
0 1 1 ⊤
0 1 0 ⊥
0 0 1 ⊥
0 0 0 ⊥
x1 x2 x3 f

Graph Representation

x1

x2

x3

⊥ ⊤
▶ Merge isomorphic nodes

▶ Eliminate redundant tests

http://www.cs.cmu.edu/~bryant 10 / 48

http://www.cs.cmu.edu/~bryant


Canonical Form

Truth Table

1 1 1 ⊤
1 1 0 ⊥
1 0 1 ⊤
1 0 0 ⊥
0 1 1 ⊤
0 1 0 ⊥
0 0 1 ⊥
0 0 0 ⊥
x1 x2 x3 f

Reduced Ordered
Binary Decision Diagram

x1

x2

x3

⊥ ⊤
▶ Canonical representation of Boolean function

▶ No further simplifications possible
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Effect of Variable Ordering

(a1 ∧ b1) ∨ (a2 ∧ b2) ∨ (a3 ∧ b3)

Good Ordering
a1

b1

a2

b2

a3

b3

⊥ ⊤

▶ Linear growth

Bad Ordering
a1

a2 a2

a3 a3 a3 a3

b1 b1 b1 b1

b2 b2

b3

⊥ ⊤

▶ Exponential growthhttp://www.cs.cmu.edu/~bryant 12 / 48
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BDD Representation of Parity Constraints
Odd Parity

x1

x2 x2

x3 x3

x4 x4

x5 x5

⊥ ⊤

Even Parity

x1

x2 x2

x3 x3

x4 x4

x5 x5

⊤ ⊥

▶ Linear complexity

▶ Insensitive to variable order

▶ Potential major advantage over CDCL
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Symbolic Manipulation with BDDs

Strategy
▶ Represent data as set of BDDs

▶ All with same variable ordering

▶ Express method as sequence of symbolic operations
▶ Generate new BDDs. Test properties of BDDs

▶ Implement each operation via BDD manipulation
▶ Never enumerate individual cases
▶ Efficient, as long as BDDs stay small

Key Algorithmic Properties

▶ Arguments at each step are BDDs with same variable ordering

▶ Result is BDD with same ordering

▶ Each step has polymomial complexity
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Apply Algorithm

w ← u ⊙ v

▶ u, v , w functions represented as BDDs
▶ ⊙ binary Boolean operator

▶ E.g., ∧, ∨, ⊕

u
a

b

c

d

⊥ ⊤

F1

F2

F6

F3

F4 F5

∨
v
a

c

d

⊥ ⊤

G1

G5

G2

G3 G4

→

w = u ∨ v
a

b

c

d

⊥ ⊤
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Apply Algorithm Recursion

▶ Recurse through argument graphs

▶ Stop when hit terminal case

▶ Save results in cache to reuse when hit same arguments

u
a

b

c

d

⊥ ⊤

F1

F2

F6

F3

F4 F5

v
a

c

d

⊥ ⊤

G1

G5

G2

G3 G4

Recursive Calls

aF1; G1

http://www.cs.cmu.edu/~bryant 16 / 48

http://www.cs.cmu.edu/~bryant


Apply Algorithm Recursion

▶ Recurse through argument graphs

▶ Stop when hit terminal case

▶ Save results in cache to reuse when hit same arguments

u
a

b

c

d

⊥ ⊤

F1

F2

F6

F3

F4 F5

v
a

c

d

⊥ ⊤

G1

G5

G2

G3 G4

Recursive Calls

a

b

F1; G1

F2; G2

http://www.cs.cmu.edu/~bryant 16 / 48

http://www.cs.cmu.edu/~bryant


Apply Algorithm Recursion

▶ Recurse through argument graphs

▶ Stop when hit terminal case

▶ Save results in cache to reuse when hit same arguments

u
a

b

c

d

⊥ ⊤

F1

F2

F6

F3

F4 F5

v
a

c

d

⊥ ⊤

G1

G5

G2

G3 G4

Recursive Calls

a

b

d

F1; G1

F2; G2

F3; G2

http://www.cs.cmu.edu/~bryant 16 / 48

http://www.cs.cmu.edu/~bryant


Apply Algorithm Recursion

▶ Recurse through argument graphs

▶ Stop when hit terminal case

▶ Save results in cache to reuse when hit same arguments

u
a

b

c

d

⊥ ⊤

F1

F2

F6

F3

F4 F5

v
a

c

d

⊥ ⊤

G1

G5

G2

G3 G4

Recursive Calls

a

b

d

⊥ ⊤

F1; G1

F2; G2

F3; G2

F4; G3 F5; G4

http://www.cs.cmu.edu/~bryant 16 / 48

http://www.cs.cmu.edu/~bryant


Apply Algorithm Recursion

▶ Recurse through argument graphs

▶ Stop when hit terminal case

▶ Save results in cache to reuse when hit same arguments

u
a

b

c

d

⊥ ⊤

F1

F2

F6

F3

F4 F5

v
a

c

d

⊥ ⊤

G1

G5

G2

G3 G4

Recursive Calls

a

b

c

d

⊥ ⊤

F1; G1

F2; G2

F6; G2

F3; G2

F4; G3 F5; G4

http://www.cs.cmu.edu/~bryant 16 / 48

http://www.cs.cmu.edu/~bryant


Apply Algorithm Recursion

▶ Recurse through argument graphs

▶ Stop when hit terminal case

▶ Save results in cache to reuse when hit same arguments

u
a

b

c

d

⊥ ⊤

F1

F2

F6

F3

F4 F5

v
a

c

d

⊥ ⊤

G1

G5

G2

G3 G4

Recursive Calls

a

b

c c

d ⊤ ⊤

⊥ ⊤

F1; G1

F2; G2

F6; G2 F6; G5

F3; G2 F5; G2 F3; G3

F4; G3 F5; G4

http://www.cs.cmu.edu/~bryant 16 / 48

http://www.cs.cmu.edu/~bryant


Apply Algorithm Result

Recursive Calls

a

b

c c

d ⊤ ⊤

⊥ ⊤

F1; G1

F2; G2

F6; G2 F6; G5

F3; G2 F5; G2 F3; G3

F4; G3 F5; G4

Reduced Result w
a

b

c

d

⊥ ⊤
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Apply Algorithm Recursion

Apply(u, v ,∧)

xu

u0 u1

xv

v0 v1

Recursion

Apply(u1, v1,∧) →
w1

Apply(u0, v0,∧) →
w0

Result

xw

w0 w1
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Clausal Proofs

Conjunctive Normal Form (CNF) Input Formula

C1,C2, . . . ,Cm,Cm+1, . . . ,Ct

Unsatisfiability Proof

C1,C2, . . . ,Cm,Cm+1, . . . ,Ct

▶ For all i > m:

If C1, . . . ,Ci−1 has a satisfying assignment,
then so does C1, . . . ,Ci−1,Ci .

▶ Ct = [ ]
▶ Empty clause unsatisfiable
▶ ⇒ Original formula unsatisfiable
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Clausal Proof Frameworks

Resolution (Robinson, 1965)

▶ Proof rule guarantees implication redundancy:∧
1≤j<i

Cj → Ci
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Clausal Proof Frameworks

Resolution (Robinson, 1965)

▶ Proof rule guarantees implication redundancy:∧
1≤j<i

Cj → Ci

Extended Resolution (Tseitin, 1967)
▶ Allow extension variables

▶ Variable e shorthand for some formula F over input and
previous extension variables

▶ Add clauses encoding e ↔ F to proof

▶ Can make proofs exponentially more compact
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Clausal Proof Frameworks
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▶ Proof rule guarantees implication redundancy:∧
1≤j<i

Cj → Ci

Extended Resolution (Tseitin, 1967)
▶ Allow extension variables

▶ Variable e shorthand for some formula F over input and
previous extension variables

▶ Add clauses encoding e ↔ F to proof

▶ Can make proofs exponentially more compact

Deletion Resolution Asymmetric Tautology (DRAT)

▶ Superset of extended resolution

▶ Variety of efficient checkers, including formally verified ones
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Proof-Generating Solvers Based on BDDs

Implementations

▶ EBDDRES: Sinz, Biere, Jussila, 2006

▶ PGBDD: Bryant, Heule, 2021

▶ PGPBS: Bryant, Biere, Heule, 2022
▶ TBUDDY: Bryant, 2022

▶ Supports pseudo-Boolean reasoning

Extended-Resolution Proof Generation

▶ Introduce extension variable for each BDD node

▶ Generate proof steps based on recursive structure of BDD
algorithms

▶ Proof is (very) detailed justification of each BDD operation
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Proof Comparison

UNSAT Proof from CDCL Solver

▶ Clauses describe detected conflicts

▶ Keep narrowing search space until it becomes empty

UNSAT Proof from BDD-Based Solver

▶ Step by step justification for each node generated

▶ Sequence of BDD operations leading to leaf node ⊥.

Both within DRAT Framework

▶ Proof system can accomodate variety of styles
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Tbuddy Trusted BDD Package

Concept

▶ BDD package with built-in support for proof generation

▶ Generate clausal proof as BDD operations proceed

Applications

▶ Implement standalone solver tbsat

▶ Incorporate into other solvers

Implementation

▶ Build on BuDDy BDD package

▶ Also support parity reasoning
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Generating Extended Resolution Proofs

▶ Extension variable u for each node u in BDD

xu

u0 u1

▶ Defining clauses encode constraint u ↔ ITE (x , u1, u0)

Clause name Formula Clausal form

HD(u) x → (u → u1) [x ∨ u ∨ u1]
LD(u) x → (u → u0) [x ∨ u ∨ u0]
HU(u) x → (u1 → u) [x ∨ u1 ∨ u]
LU(u) x → (u0 → u) [x ∨ u0 ∨ u]
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Proof-Generating Apply Operation

Integrate Proof Generation into Apply Operation

▶ Apply(u, v ,∧) returns w
▶ Also generate proof u ∧ v → w

Key Idea:
Proof follows recursion of the Apply algorithm
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Apply Algorithm Recursion

Apply(u, v ,∧)

xu

u0 u1

xv

v0 v1

Recursion

Result

u ∧ v → w
xw

w0 w1
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Apply Algorithm Recursion

Apply(u, v ,∧)

xu

u0 u1

xv

v0 v1

Recursion

Apply(u1, v1,∧) →
u1 ∧ v1 → w1

w1

Apply(u0, v0,∧) →
u0 ∧ v0 → w0

w0

Result

xw

w0 w1
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Apply Proof Structure

Defining Clauses

Clause Formula Clause Formula
HD(u) x → (u → u1) LD(u) x → (u → u0)
HD(v) x → (v → v1) LD(v) x → (v → v0)
HU(w) x → (w1 → w) LU(w) x → (w0 → w)

Resolution Steps

x → (u → u1)

x → (v → v1)

x → (w1 → w) u1 ∧ v1 → w1

x → (u ∧ v → w)

x → (u → u0)

x → (v → v0)

x → (w0 → w) u0 ∧ v0 → w0

x → (u ∧ v → w)

u ∧ v → w
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Quantification Operation

Operation EQuant(u, x)

∃x f = f |x=0 ∨ f |x=1

▶ Abstract away details of satisfying solutions
▶ Not logically required for SAT solver

▶ But, critical for obtaining good performance

Proof Generation

▶ EQuant(u, x)→ v
▶ Separately run ProveImplication(u, v)

▶ Generates proof u → v
▶ Algorithm similar to proof-generating Apply operation
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Trusted BDDs (TBDDs)

Components of TBDD u̇
▶ BDD with root node u.
▶ Associated extension variable u

▶ Proof step for unit clause [u]

Interpretation. For input formula ϕ:

▶ ϕ ⊨ u

▶ Any variable assignment that satisfies ϕ
traces path in BDD from u to leaf node ⊤

a

b

c

⊤

a = 1

b = 0

c = 1

u̇

Terminal Case

▶ u̇ = ⊥̇
▶ ϕ has no satisfying assignments

⊥
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TBDD API

tbdd tbdd from clause id(int i);
▶ Create TBDD representation u̇i of input clause Ci

▶ Add proof step for Ci ⊨ ui

tbdd tbdd and(tbdd u̇, tbdd v̇);
▶ Form conjunction ẇ of TBDDs u̇ and v̇ .

▶ Apply operation generates proof u ∧ v → w
▶ Resolution with unit clauses [u] and [v ] yields unit clause [w ]

tbdd tbdd validate(bdd v, tbdd u̇);
▶ Upgrade BDD v to TBDD v̇

▶ ProveImplication operation generates proof u → v
▶ Resolution with unit clause [u] yields unit clause [v ]
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TBDD Execution Example
u̇1 ←− tbdd from clause(C1)
u̇2 ←− tbdd from clause(C2)

a a

b

c

⊥ ⊤ ⊥ ⊤

C1 ⊨ u1 C2 ⊨ u2

u̇1 u̇2
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TBDD Execution Example
u̇3 ←− tbdd and(u̇1, u̇2)

a a a

b b

c c

⊥ ⊤ ⊥ ⊤ ⊥ ⊤

C1 ⊨ u1 C2 ⊨ u2 C1,C2 ⊨ u3

u̇1 u̇2 u̇3

http://www.cs.cmu.edu/~bryant 31 / 48

http://www.cs.cmu.edu/~bryant


TBDD Execution Example
u4 ←− bdd exists(u3, a)

a a a

b b b

c c c

⊥ ⊤ ⊥ ⊤ ⊥ ⊤ ⊥ ⊤

C1 ⊨ u1 C2 ⊨ u2 C1,C2 ⊨ u3

u̇1 u̇2 u̇3 u4
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TBDD Execution Example
u4 ←− bdd exists(u3, a)
u̇4 ←− tbdd validate(u4, u̇3)

a a a

b b b

c c c

⊥ ⊤ ⊥ ⊤ ⊥ ⊤ ⊥ ⊤

C1 ⊨ u1 C2 ⊨ u2 C1,C2 ⊨ u3 C1,C2 ⊨ u4

u̇1 u̇2 u̇3 u̇4
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BuDDy BDD Package

▶ ∼12K lines of code

▶ Clean, robust, and well documented

▶ Benchmark comparisons demonstrate good performance
▶ Node identified by 32-bit index into table

▶ Rather than as 64-bit pointer
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Tbuddy Data Structures

Node data

level, mark, rc

low

high

next

head

xvar

dclause

Cache entry

op

arg1

arg2

arg3

res

jclause

Key

Node representation

Unique table

Proof information

▶ Node entries: 20 bytes → 28 to store proof information

▶ Cache entry: Existing 24 bytes can also hold proof information

▶ Total memory overhead 1.35×
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Parity Benchmark Runtime

10 100 1,000 10,000 100,000 1,000,000
0.01

0.1

1.0

10.0

100.0

600.0

n

se
co
n
d
s

KISSAT
TBSAT, Bucket

▶ Bucket elimination
▶ Systematic way to perform conjunctions and quantifications

▶ Random variable ordering

▶ No guidance from user
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CDCL Proofs vs. BDD Proofs

104 105 106 107 108 109
0.1

1.0

10.0

100.0

Proof clauses

T
im

e/
cl
au
se

(µ
s)

kissat

No Quantification

Bucket-Input

Bucket-Random

Linear

Column Scan

▶ CDCL proof step indicates reduction in search space
▶ BDD proof steps justify algorithmic steps
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Exploiting Parity Reasoning

Boolean
Formula
(CNF)

Parity Constraints

Infeasible
or

Simplified Constraints

Parity

Extractor

Parity

Solver

Parity Constraints

x1 ⊕ x3 ⊕ x4 = 0
x1 ⊕ x2 ⊕ x4 = 1

▶ View parity constraints as system of linear equations
▶ Reduce via Gaussian elimination

▶ If get constraint 0 = 1, then infeasible
▶ Otherwise, can easily generate solutions

▶ Challenge: Certifying results
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Integrating Parity Reasoning

Boolean
Formula
(CNF)

Parity Formula

Steps

Other clauses

UNSAT Proof
or

Validated Constraints

Parity

Extractor

Parity

Solver

Parity Step

Validation

CNF-Parity

Validation

BDD-Based
Proof Generator

▶ Fully automated

▶ UNSAT if constraints infeasible

▶ Otherwise, supply validated constraints to BDD-based solver
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Gaussian Elimination Over GF2

Parity Constraints P = P1,P2, . . . ,Pm, each of form

a1 · x1 ⊕ a2 · x2 ⊕ · · · ⊕ an · xn = p

▶ Coefficients ai ∈ {0, 1}
▶ Phase p ∈ {0, 1}

Elimination Steps

▶ For pivot Ps , replace each constraint Pj by P ′
j = Pj ⊕ Ps

a1 a2 a3 a4 p
Ps 1 0 1 1 0
Pj 1 1 0 1 1

P ′
j 0 1 1 0 1

▶ Stop with infeasible constraint 0 = 1
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TBDD-Based Parity Reasoning Example

Goal: Compute P ′
j ←− Ps ⊕ Pj

a a

b b

c c

⊥ ⊤ ⊤ ⊥

Ps : a⊕ c = 1 Pj : a⊕ b = 0

v̇s v̇j
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TBDD-Based Parity Reasoning Example

v ′
j ←− bdd xnor(vs , vj)

a a

b b b

c c c c

⊥ ⊤ ⊤ ⊥ ⊥ ⊤

Ps : a⊕ c = 1 Pj : a⊕ b = 0 P ′
j : Ps ⊕ Pj

v̇s v̇j v ′
j
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TBDD-Based Parity Reasoning Example
ẇ ←− tbdd and(v̇s , v̇j)

a a a

b b b b b

c c c c c c

⊥ ⊤ ⊤ ⊥ ⊥ ⊤ ⊥ ⊤

Ps : a⊕ c = 1 Pj : a⊕ b = 0 Pi ∧ Pj P ′
j : Ps ⊕ Pj

v̇s v̇j ẇ v ′
j
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TBDD-Based Parity Reasoning Example
ẇ ←− tbdd and(v̇s , v̇j)
v̇ ′
j ←− tbdd validate(v ′

j , ẇ)

a a a

b b b b b

c c c c c c

⊥ ⊤ ⊤ ⊥ ⊥ ⊤ ⊥ ⊤

Ps : a⊕ c = 1 Pj : a⊕ b = 0 Pi ∧ Pj P ′
j : Ps ⊕ Pj

v̇s v̇j ẇ v ′
jv̇
′
j
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Parity Benchmark Runtime

10 100 1,000 10,000 100,000 1,000,000
0.01

0.1

1.0

10.0

100.0

600.0

n

se
co
n
d
s

KISSAT
TBSAT, Bucket
TBSAT, Gauss

▶ Upper limit: n = 699,051
▶ BuDDy limited to 221 − 1 BDD variables
▶ CNF file has 2,097,147 variables and 5,592,392 clauses

▶ Some failures for large values of n due to poor pivot selection
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A Perspective on the State of SAT Solving

Hard

Easy

Mathematical

Tractability

CDCL TractabilityEasy Hard

NP-hard probs

Math proofs
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A Perspective on the State of SAT Solving

Hard

Easy

Mathematical

Tractability

CDCL TractabilityEasy Hard

NP-hard probs

Math proofs

Parity Equations
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A Perspective on the State of SAT Solving

Hard

Easy

Mathematical

Tractability

CDCL TractabilityEasy Hard

NP-hard probs

Math proofs

BDDs can help

Parity Equations
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A Perspective on the State of SAT Solving

Hard

Easy

Mathematical

Tractability

CDCL TractabilityEasy Hard

NP-hard probs

Math proofs

BDDs can help

Parity Equations

Can we get here?
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Exploiting Cardinality Constraints

Reeves, Heule, and Bryant, 2024

▶ At-most-one: Constrain set of variables to be one-hot

x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9 + x10 = 1

▶ Optimization: Place bound on resource constraint

x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9 + x10 ≤ 5

▶ Best encoding depends on many factors

• Relation to other clauses in formula
• Whether formula is satisfiable

▶ In practice, many formulas have suboptimal encodings
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Exploiting Cardinality Constraints

Boolean
Formula
(CNF)

Cardinality

Extractor
Reencode

Other Clauses

Cardinality Constraints

▶ Detect cardinality constraints in formula
▶ Reencode into better form

• More sophisticated encodings
• Possibly alter dynamically during solver operation
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Detecting Cardinality Constraints

Clauses

1 -11 0

2 11 -12 0

3 12 -13 0

4 13 -14 0

5 14 -15 0

6 15 0

2 -16 0

3 16 -17 0

4 17 -18 0

5 18 -19 0

6 19 -20 0

7 20 0

3 -21 0

4 21 -22 0

5 22 -23 0

6 23 -24 0

7 24 -25 0

8 25 0

4 -26 0

5 26 -27 0

6 27 -28 0

7 28 -29 0

8 29 -30 0

9 30 0

5 -31 0

6 31 -32 0

7 32 -33 0

8 33 -34 0

9 34 -35 0

10 35 0

11 -16 0

12 -17 0

13 -18 0

14 -19 0

15 -20 0

16 -21 0

17 -22 0

18 -23 0

19 -24 0

20 -25 0

21 -26 0

22 -27 0

23 -28 0

24 -29 0

25 -30 0

26 -31 0

27 -32 0

28 -33 0

29 -34 0

30 -35 0

Constraint

x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9 + x10 ≥ 5

▶ Often use additional encoding variables

▶ Many possible encoding methods

▶ Single formula can contain many constraints + other clauses
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BDD Representation of Cardinality Constraints

x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9 + x10 ≥ 5

x1

x2

x3

x4

x5

x6

x7

x8

x9

x10

⊥ ⊤

▶ O(n2) nodes

• Independent of variable
ordering

▶ From BDD, easy to
determine parameters of
constraint

• Size bounds
• Phases of variables
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Cardinality Constraint Extraction

Boolean
Formula
(CNF)

Cardinality

Extractor
Reencode

Other Clauses

Cardinality Constraints

Guess-and-Verify

▶ Detect patterns of data and encoding variables that resemble
cardinality constraints

▶ Build BDD by forming conjunction of clauses and quantifying
encoding variables

▶ Detect whether BDD represents valid constraint
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Possible Areas to Explore

Observations

▶ BDDs form useful supplement to CDCL

▶ Tbuddy provides efficient and reliable implementation

Enhancing SAT Solving

▶ Integrate other forms of reasoning

▶ Create collaboration between CDCL and BDD engines

Beyond SAT

▶ Quantified Boolean Formulas (QBF)

▶ Model counting

▶ Checking proofs in other proof systems
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