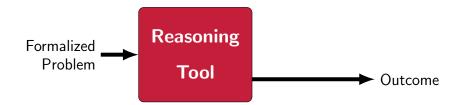
Binary Decision Diagrams Applied to Verifiable Automated Reasoning

Randal E. Bryant

Carnegie Mellon University

2024

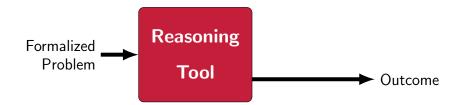
Automated Reasoning Programs



Example Applications

- Verifying hardware and software systems
- Analyzing security protocols
- Proving mathematical theorems
- Solving optimization problems

Automated Reasoning Programs



Can We Trust the Results?

- ► No!
- Complex software with many optimizations

Automated Reasoning Programs

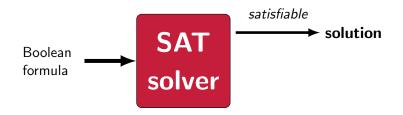
Can We Trust the Results? Is This a Problem?

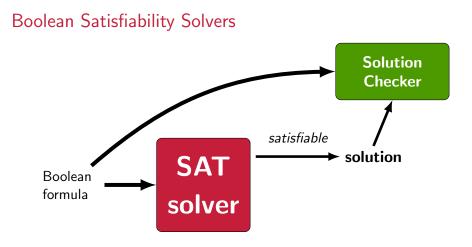
- ► No!
- Complex software with many optimizations

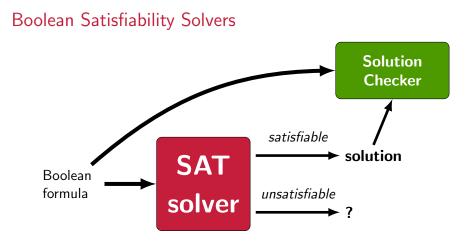
Yes!

 Automated reasoning is cornerstone of trusted system development

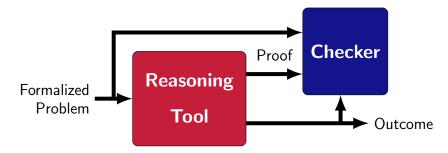
Boolean Satisfiability Solvers





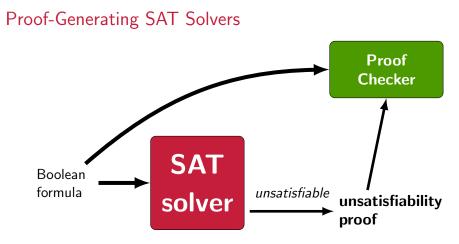


Proof-Generating Automated Reasoning Programs



Checkable Proofs

- Step-by-step proof in some logical framework
- Independently validated by proof checker
- Checker should operate in low-degree polynomial time
 - Relative to proof size
- Checker should be based on well-understood logical framework



Impact

- Since 2016: Entrants to SAT competition must produce UNSAT proofs
- 2020: No entrants had errors
 - Even on new benchmarks

Motivating Example: Parity Benchmark

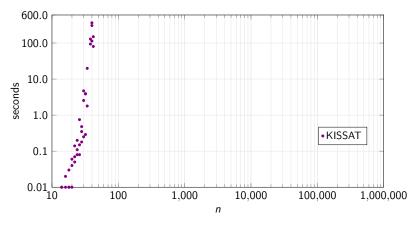
Chew and Heule, SAT 2020

For *n* Boolean variables and random permutation π :

$$x_1 \oplus x_2 \oplus \cdots \oplus x_n = 1$$
 Odd parity
 $x_{\pi(1)} \oplus x_{\pi(2)} \oplus \cdots \oplus x_{\pi(n)} = 0$ Even parity

Conjunction unsatisfiable

Parity Benchmark Runtime



KISSAT: State-of-the-art CDCL solver

- 3 different random permutations for each value of n
- Cannot get beyond n = 42 within 600 seconds

Reduced Ordered Binary Decision Diagrams (BDDs)

Bryant, 1986

Based on earlier work by Lee (1959) and Akers (1978)

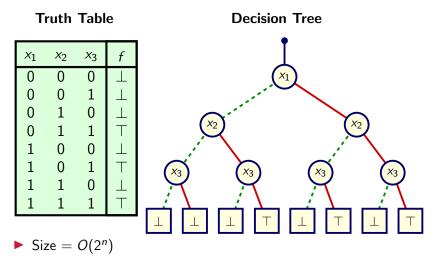
Graph Representation of Boolean Functions

- Canonical Form
- Compact for many useful problems
- Simple algorithms to construct & manipulate

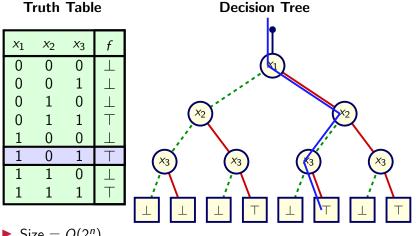
Used in SAT, QBF, Model Checking, ...

- Bottom-up approach
 - Construct canonical representation of problem
 - Generate solutions
- Compare to search-based methods
 - E.g., DPLL, CDCL
 - Top-down approaches
 - Keep branching on variables until find solution

Boolean Function Representations

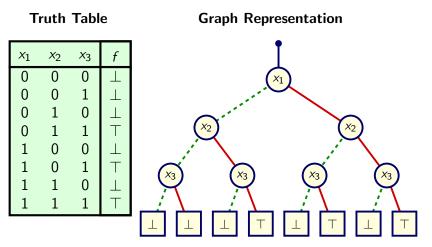


Boolean Function Representations

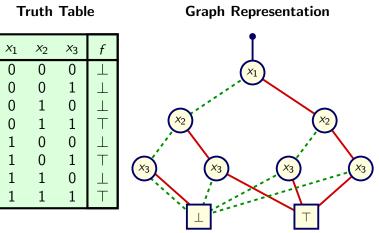


• Size = $O(2^n)$

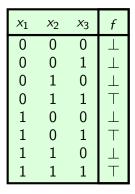
Assignment defines path from root to leaf

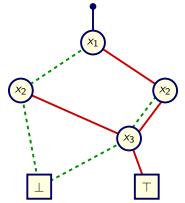


- Merge isomorphic nodes
- Eliminate redundant tests



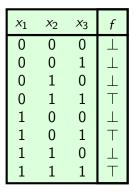
- Merge isomorphic nodes
- Eliminate redundant tests

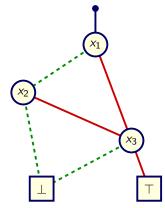




- Merge isomorphic nodes
- Eliminate redundant tests

Graph Representation

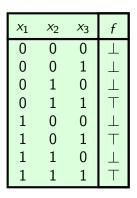




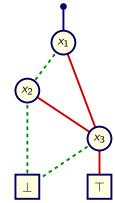
- Merge isomorphic nodes
- Eliminate redundant tests

Canonical Form

Truth Table



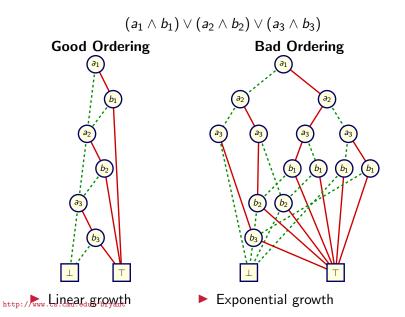
Reduced Ordered Binary Decision Diagram



Canonical representation of Boolean function

No further simplifications possible

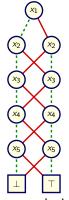
Effect of Variable Ordering

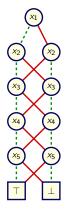


BDD Representation of Parity Constraints

Odd Parity

Even Parity





Linear complexity

- Insensitive to variable order
- Potential major advantage over CDCL

Symbolic Manipulation with BDDs

Strategy

- Represent data as set of BDDs
 - All with same variable ordering
- Express method as sequence of symbolic operations
 - Generate new BDDs. Test properties of BDDs
- Implement each operation via BDD manipulation
 - Never enumerate individual cases
 - Efficient, as long as BDDs stay small

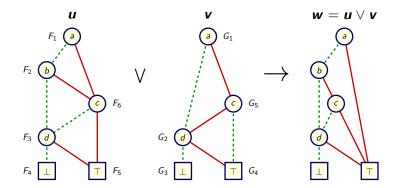
Key Algorithmic Properties

- Arguments at each step are BDDs with same variable ordering
- Result is BDD with same ordering
- Each step has polymomial complexity

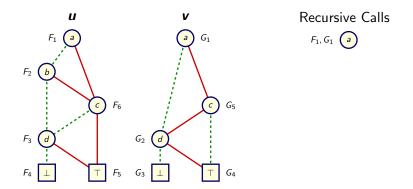
Apply Algorithm

 $\mathbf{w} \leftarrow \mathbf{u} \odot \mathbf{v}$

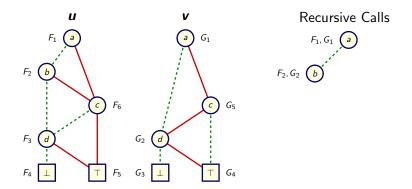
u, *v*, *w* functions represented as BDDs
 ⊙ binary Boolean operator
 E.g., ∧, ∨, ⊕



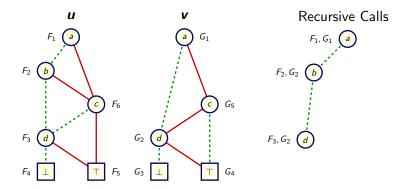
- Recurse through argument graphs
- Stop when hit terminal case
- Save results in cache to reuse when hit same arguments



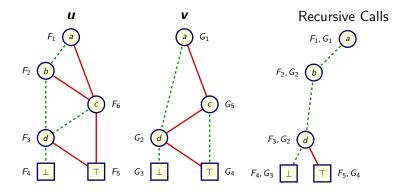
- Recurse through argument graphs
- Stop when hit terminal case
- Save results in cache to reuse when hit same arguments



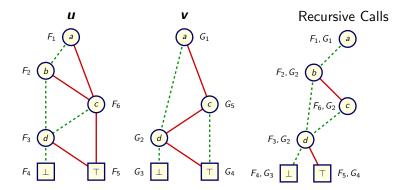
- Recurse through argument graphs
- Stop when hit terminal case
- Save results in cache to reuse when hit same arguments



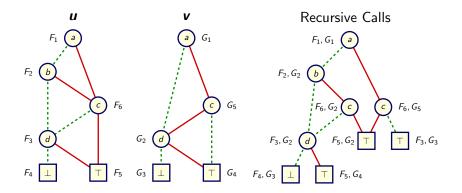
- Recurse through argument graphs
- Stop when hit terminal case
- Save results in cache to reuse when hit same arguments



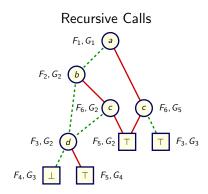
- Recurse through argument graphs
- Stop when hit terminal case
- Save results in cache to reuse when hit same arguments



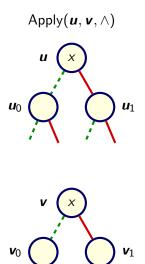
- Recurse through argument graphs
- Stop when hit terminal case
- Save results in cache to reuse when hit same arguments

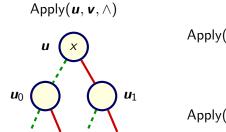


Apply Algorithm Result

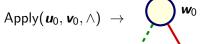


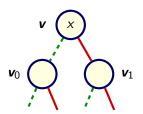
Reduced Result *w*

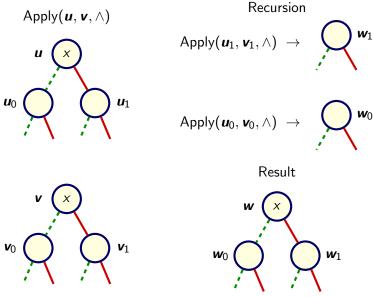




$$\begin{array}{c} \mathsf{Recursion} \\ \mathsf{Apply}(\boldsymbol{u}_1,\boldsymbol{v}_1,\wedge) \rightarrow \\ \boldsymbol{v}_1 \end{array}$$







http://www.cs.cmu.edu/~bryant

Clausal Proofs

Conjunctive Normal Form (CNF) Input Formula

$$C_1, C_2, \ldots, C_m$$

Unsatisfiability Proof

$$C_1, C_2, \ldots, C_m, C_{m+1}, \ldots, C_t$$

For all i > m: If C_1, \ldots, C_{i-1} has a satisfying assignment, then so does $C_1, \ldots, C_{i-1}, C_i$.

C_t = []
 Empty clause unsatisfiable
 ⇒ Original formula unsatisfiable

Clausal Proof Frameworks

Resolution (Robinson, 1965)

Proof rule guarantees implication redundancy:

$$\bigwedge_{1 \leq j < i} C_j \rightarrow C_i$$

Clausal Proof Frameworks

Resolution (Robinson, 1965)

Proof rule guarantees implication redundancy:

$$\bigwedge_{1 \leq j < i} C_j \rightarrow C_i$$

Extended Resolution (Tseitin, 1967)

- Allow extension variables
 - Variable e shorthand for some formula F over input and previous extension variables
 - Add clauses encoding $e \leftrightarrow F$ to proof
- Can make proofs exponentially more compact

Clausal Proof Frameworks

Resolution (Robinson, 1965)

Proof rule guarantees implication redundancy:

$$\bigwedge_{1 \leq j < i} C_j \rightarrow C_i$$

Extended Resolution (Tseitin, 1967)

- Allow extension variables
 - Variable e shorthand for some formula F over input and previous extension variables
 - Add clauses encoding $e \leftrightarrow F$ to proof
- Can make proofs exponentially more compact

Deletion Resolution Asymmetric Tautology (DRAT)

- Superset of extended resolution
- Variety of efficient checkers, including formally verified ones

Proof-Generating Solvers Based on BDDs

Implementations

- EBDDRES: Sinz, Biere, Jussila, 2006
- PGBDD: Bryant, Heule, 2021
- ▶ PGPBS: Bryant, Biere, Heule, 2022
- ► TBUDDY: Bryant, 2022
 - Supports pseudo-Boolean reasoning

Extended-Resolution Proof Generation

- Introduce extension variable for each BDD node
- Generate proof steps based on recursive structure of BDD algorithms
- Proof is (very) detailed justification of each BDD operation

Proof Comparison

UNSAT Proof from CDCL Solver

- Clauses describe detected conflicts
- Keep narrowing search space until it becomes empty

UNSAT Proof from BDD-Based Solver

- Step by step justification for each node generated
- Sequence of BDD operations leading to leaf node \perp .

Both within DRAT Framework

Proof system can accomodate variety of styles

TBUDDY Trusted BDD Package

Concept

- BDD package with built-in support for proof generation
- Generate clausal proof as BDD operations proceed

Applications

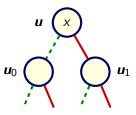
- Implement standalone solver TBSAT
- Incorporate into other solvers

Implementation

- Build on BUDDY BDD package
- Also support parity reasoning

Generating Extended Resolution Proofs

Extension variable *u* for each node *u* in BDD



• Defining clauses encode constraint $u \leftrightarrow ITE(x, u_1, u_0)$

Clause name	Formula	Clausal form
HD(u)	$x \rightarrow (u \rightarrow u_1)$	$[\overline{x} \lor \overline{u} \lor u_1]$
LD(u)	$\overline{x} \rightarrow (u \rightarrow u_0)$	$[x \lor \overline{u} \lor u_0]$
HU(u)	$x \rightarrow (u_1 \rightarrow u)$	$[\overline{x} \lor \overline{u}_1 \lor u]$
LU(<i>u</i>)	$\overline{x} \rightarrow (u_0 \rightarrow u)$	$[x \lor \overline{u}_0 \lor u]$

Proof-Generating Apply Operation

Integrate Proof Generation into Apply Operation

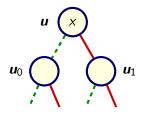
- ▶ Apply(u, v, ∧) returns w
- Also generate proof $u \land v \to w$

Key Idea:

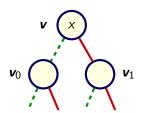
Proof follows recursion of the Apply algorithm

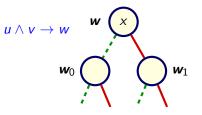
Apply Algorithm Recursion

Apply($\boldsymbol{u}, \boldsymbol{v}, \wedge$)

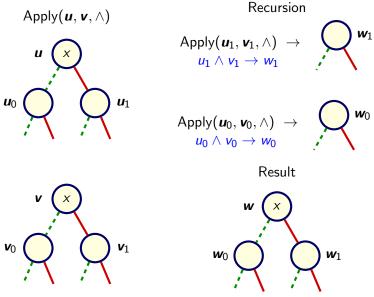


Result





Apply Algorithm Recursion



Apply Proof Structure

Defining Clauses

Clause	Formula	Clause	Formula
HD(u)	$x ightarrow (u ightarrow u_1)$	LD(u)	$\overline{x} \rightarrow (u \rightarrow u_0)$
HD(v)	$x ightarrow (v ightarrow v_1)$	LD(v)	$\overline{x} ightarrow (v ightarrow v_0)$
HU(w)	$x ightarrow (w_1 ightarrow w)$	LU(w)	$\overline{x} ightarrow (w_0 ightarrow w)$

Resolution Steps

$$\begin{array}{ccc} x \to (u \to u_1) & \overline{x} \to (u \to u_0) \\ x \to (v \to v_1) & \overline{x} \to (v \to v_0) \\ \hline x \to (w_1 \to w) & u_1 \wedge v_1 \to w_1 \\ \hline \hline x \to (u \wedge v \to w) & \overline{x} \to (w_0 \to w) & u_0 \wedge v_0 \to w_0 \\ \hline \hline u \wedge v \to w & \overline{x} \to (u \wedge v \to w) \\ \hline \end{array}$$

Quantification Operation

Operation EQuant(*u*, *x*)

$$\exists x f = f|_{x=0} \lor f|_{x=1}$$

Abstract away details of satisfying solutions

- Not logically required for SAT solver
 - But, critical for obtaining good performance

Proof Generation

- EQuant $(\boldsymbol{u}, x) \rightarrow \boldsymbol{v}$
- Separately run ProveImplication(u, v)
 - Generates proof $u \rightarrow v$
 - Algorithm similar to proof-generating Apply operation

Trusted BDDs (TBDDs)

Components of TBDD \dot{u}

- BDD with root node u.
- Associated extension variable u
- Proof step for unit clause [u]

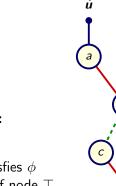
Interpretation. For input formula ϕ :

•
$$\phi \models u$$

Any variable assignment that satisfies φ traces path in BDD from u to leaf node ⊤

Terminal Case

- ▶ **ü** = ⊥́
- ϕ has no satisfying assignments



a = 1

b = 0

c = 1

h

TBDD API

tbdd tbdd_from_clause_id(int i);

• Create TBDD representation \dot{u}_i of input clause C_i

• Add proof step for $C_i \vDash u_i$

tbdd tbdd_and(tbdd $\dot{\boldsymbol{u}}$, tbdd $\dot{\boldsymbol{v}}$);

Form conjunction \dot{w} of TBDDs \dot{u} and \dot{v} .

- Apply operation generates proof $u \wedge v \rightarrow w$
- Resolution with unit clauses [u] and [v] yields unit clause [w]

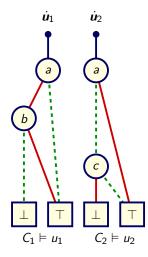
tbdd tbdd_validate(bdd v, tbdd \dot{u});

Upgrade BDD v to TBDD v

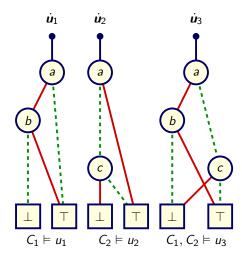
- Provel
mplication operation generates proof $u \rightarrow v$
- Resolution with unit clause [u] yields unit clause [v]

TBDD Execution Example

 $\dot{\boldsymbol{u}}_1 \longleftarrow \texttt{tbdd_from_clause}(C_1)$ $\dot{\boldsymbol{u}}_2 \longleftarrow \texttt{tbdd_from_clause}(C_2)$

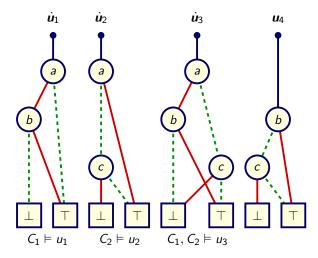


TBDD Execution Example $\dot{u}_3 \leftarrow \texttt{tbdd}_\texttt{and}(\dot{u}_1, \dot{u}_2)$



TBDD Execution Example

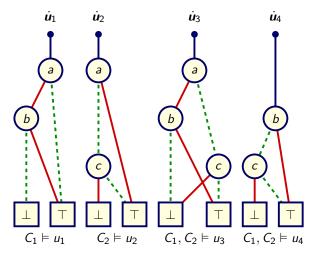
 $u_4 \leftarrow bdd_exists(u_3, a)$



TBDD Execution Example

$$u_4 \longleftarrow \texttt{bdd_exists}(u_3, a)$$

 $\dot{u}_4 \longleftarrow \texttt{tbdd_validate}(u_4, \dot{u}_3)$



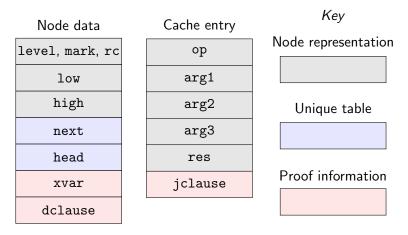
BuDDy BDD Package

BuDDy: Binary Decision Diagram package Release 2.2

Jørn Lind-Nielsen IT-University of Copenhagen (ITU) e-mail: buddy@itu.dk November 9, 2002

- ▶ ~12K lines of code
- Clean, robust, and well documented
- Benchmark comparisons demonstrate good performance
- Node identified by 32-bit index into table
 - Rather than as 64-bit pointer

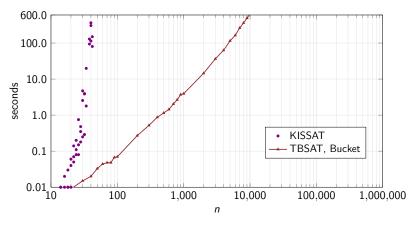
TBUDDY Data Structures



- ▶ Node entries: 20 bytes \rightarrow 28 to store proof information
- Cache entry: Existing 24 bytes can also hold proof information
- Total memory overhead $1.35 \times$

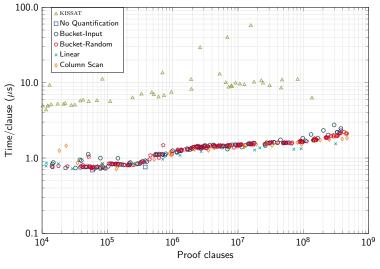
http://www.cs.cmu.edu/~bryant

Parity Benchmark Runtime



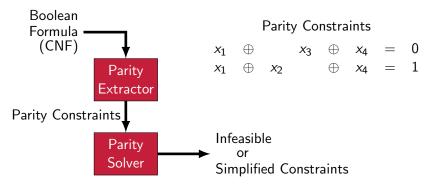
- Bucket elimination
 - Systematic way to perform conjunctions and quantifications
- Random variable ordering
- No guidance from user

CDCL Proofs vs. BDD Proofs



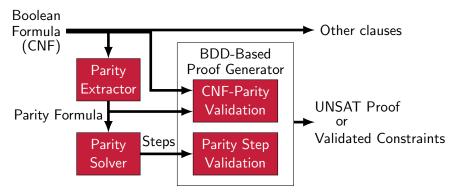
CDCL proof step indicates reduction in search space
 BDD proof steps justify algorithmic steps

Exploiting Parity Reasoning



- View parity constraints as system of linear equations
- Reduce via Gaussian elimination
 - If get constraint 0 = 1, then infeasible
 - Otherwise, can easily generate solutions
- Challenge: Certifying results

Integrating Parity Reasoning



- Fully automated
- UNSAT if constraints infeasible
- Otherwise, supply validated constraints to BDD-based solver

Gaussian Elimination Over GF2

Parity Constraints $\mathcal{P} = P_1, P_2, \dots, P_m$, each of form

$$a_1 \cdot x_1 \oplus a_2 \cdot x_2 \oplus \cdots \oplus a_n \cdot x_n = p$$

• Coefficients
$$a_i \in \{0, 1\}$$

▶ Phase *p* ∈ {0,1}

Elimination Steps

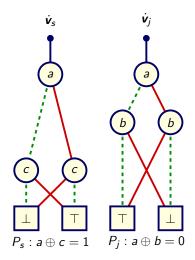
▶ For pivot P_s , replace each constraint P_j by $P'_i = P_j \oplus P_s$

	a_1	a_2	a ₃	a_4	р
P_s	1	0	1	1	0
P_{j}	1	1	0	1	1
P'_j	0	1	1	0	1

▶ Stop with infeasible constraint 0 = 1

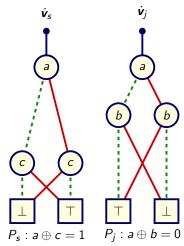
TBDD-Based Parity Reasoning Example

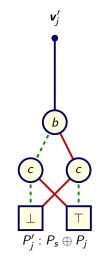
Goal: Compute $P'_i \leftarrow P_s \oplus P_j$



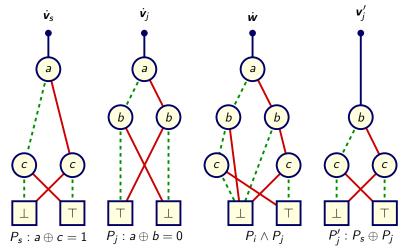
TBDD-Based Parity Reasoning Example

 $\mathbf{v}'_j \longleftarrow \texttt{bdd_xnor}(\mathbf{v}_s, \mathbf{v}_j)$



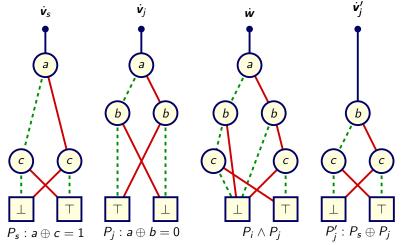


TBDD-Based Parity Reasoning Example $\dot{w} \leftarrow \text{tbdd}_\text{and}(\dot{v}_s, \dot{v}_j)$



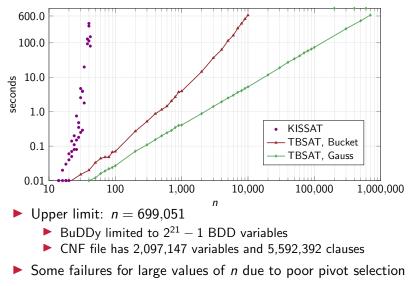
TBDD-Based Parity Reasoning Example

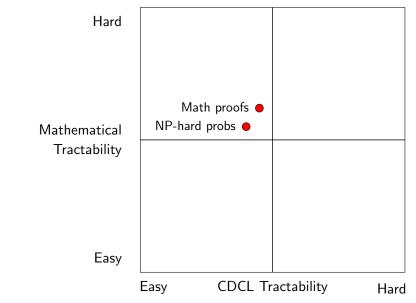
$$\dot{oldsymbol{w}} \longleftarrow \texttt{tbdd}_\texttt{and}(\dot{oldsymbol{v}}_s,\,\dot{oldsymbol{v}}_j)\ \dot{oldsymbol{v}}_j' \longleftarrow \texttt{tbdd}_\texttt{validate}(oldsymbol{v}_j',\,\dot{oldsymbol{w}})$$

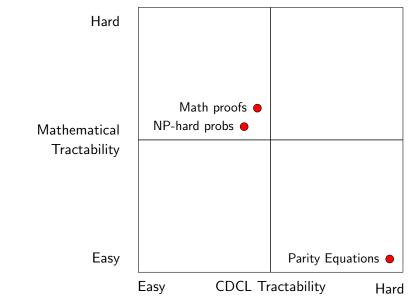


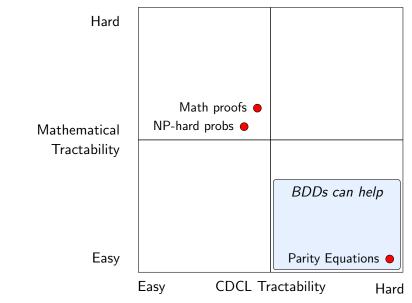
http://www.cs.cmu.edu/~bryant

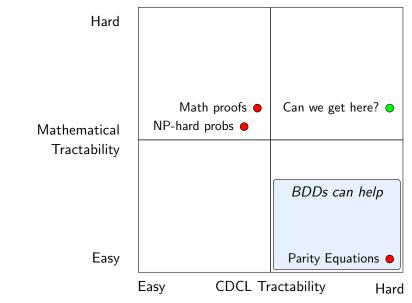
Parity Benchmark Runtime











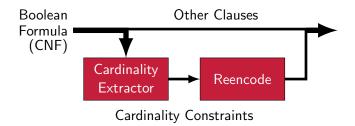
Exploiting Cardinality Constraints

Reeves, Heule, and Bryant, 2024

- At-most-one: Constrain set of variables to be one-hot $x_1 + x_2 + x_3 + x_4 + x_5 + x_6 + x_7 + x_8 + x_9 + x_{10} = 1$
- Optimization: Place bound on resource constraint $x_1 + x_2 + x_3 + x_4 + x_5 + x_6 + x_7 + x_8 + x_9 + x_{10} \leq 5$
- Best encoding depends on many factors
 - Relation to other clauses in formula
 - Whether formula is satisfiable

In practice, many formulas have suboptimal encodings

Exploiting Cardinality Constraints



- Detect cardinality constraints in formula
- Reencode into better form
 - More sophisticated encodings
 - Possibly alter dynamically during solver operation

Detecting Cardinality Constraints

Clauses

1 -11 0	6 19 -20 0	6 27 -28 0	11 -16 0	21 -26 0
2 11 -12 0	7 20 0	7 28 -29 0	12 -17 0	22 -27 0
3 12 -13 0	3 -21 0	8 29 -30 0	13 -18 0	23 -28 0
4 13 -14 0	4 21 -22 0	9 30 0	14 -19 0	24 -29 0
5 14 -15 0	5 22 -23 0	5 -31 0	15 -20 0	25 -30 0
6 15 0	6 23 -24 0	6 31 -32 0	16 -21 0	26 -31 0
2 -16 0	7 24 -25 0	7 32 -33 0	17 -22 0	27 -32 0
3 16 -17 0	8 25 0	8 33 -34 0	18 -23 0	28 -33 0
4 17 -18 0	4 -26 0	9 34 -35 0	19 -24 0	29 -34 0
5 18 -19 0	5 26 -27 0	10 35 0	20 -25 0	30 -35 0

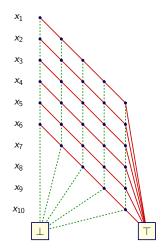
Constraint

 $x_1 + x_2 + x_3 + x_4 + x_5 + x_6 + x_7 + x_8 + x_9 + x_{10} \ge 5$

- Often use additional encoding variables
- Many possible encoding methods
- Single formula can contain many constraints + other clauses

BDD Representation of Cardinality Constraints

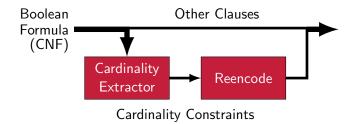
$$x_1 + x_2 + x_3 + x_4 + x_5 + x_6 + x_7 + x_8 + x_9 + x_{10} \geq 5$$



• $O(n^2)$ nodes

- Independent of variable ordering
- From BDD, easy to determine parameters of constraint
 - Size bounds
 - Phases of variables

Cardinality Constraint Extraction



Guess-and-Verify

- Detect patterns of data and encoding variables that resemble cardinality constraints
- Build BDD by forming conjunction of clauses and quantifying encoding variables
- Detect whether BDD represents valid constraint

References

BDDs

- R. E. Bryant, "Graph-Based Algorithms for Boolean Function Manipulation," IEEE Transactions on Computers, 1986
- R. E. Bryant, "Binary Decision Diagrams," Handbook of Model Checking, 2018
- J. R. Reeves, M. J. H. Heule, and R. E. Bryant "From Clauses to Klauses," CAV, 2024

Proof Generation with BDDs

- R. E. Bryant and M. J. H. Heule, "Generating Extended Resolution Proofs with a BDD-Based SAT Solver," TACAS, 2021
- R. E. Bryant and M. J. H. Heule, "Dual Proof Generation for Quantified Boolean Formulas with a BDD-Based Solver," CADE, 2021
- R. E. Bryant, A. Biere, and M. J. H. Heule, "Clausal Proofs from Pseudo-Boolean Reasoning," TACAS, 2022
- R. E. Bryant, "TBUDDY: A Proof-Generating BDD Package," FMCAD, 2022

Possible Areas to Explore

Observations

- BDDs form useful supplement to CDCL
- ▶ TBUDDY provides efficient and reliable implementation

Enhancing SAT Solving

- Integrate other forms of reasoning
- Create collaboration between CDCL and BDD engines

Beyond SAT

- Quantified Boolean Formulas (QBF)
- Model counting
- Checking proofs in other proof systems