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Motivation for Validating Proofs of Unsatisfiability

SAT solvers may have errors and only return yes/no.
Documented bugs in SAT, SMT, and QSAT solvers;

[Brummayer and Biere, 2009; Brummayer et al., 2010]

Competition winners have contradictory results
(HWMCC winners from 2011 and 2012)

Implementation errors often imply conceptual errors;
Proofs now mandatory for the annual SAT Competitions;
Mathematical results require a stronger justification than a
simple yes/no by a solver. UNSAT must be verifiable.
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“The Largest Math Proof Ever”
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Demo: Validating Results
git clone https://github.com/marijnheule/proof-demo
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Resolution Rule and Resolution Chains

Resolution Rule

C∨ x x∨D
C∨D

Or equivalently: C∨D := (C∨ x) ▷◁ (x∨D)

Many SAT techniques can be simulated by resolution.

A resolution chain is a sequence of resolution steps.
The resolution steps are performed from left to right.

Example
(c) := (a∨ b∨ c) ▷◁ (a∨ b) ▷◁ (a∨ c)

(a∨ c) := (a∨ b) ▷◁ (a∨ c) ▷◁ (a∨ b∨ c)

The order of the clauses in the chain matter
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Resolution Proofs versus Clausal Proofs
Consider Γ := (b∨c)∧ (a∨c)∧ (a∨b)∧ (a∨b)∧ (a∨b)∧ (b∨c)

A resolution graph of Γ is:

b∨c a∨c a∨b a∨b a∨b b∨c

c

b
a

⊥

A resolution proof consists of all nodes and edges of the resolution graph
Graphs from SAT solvers have ∼ 400 incoming edges per node
Resolution proof logging can heavily increase memory usage (×100)

A clausal proof is a list of all nodes sorted by topological order
Clausal proofs are easy to emit and relatively small
Clausal proof checking requires to reconstruct the edges (costly)
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Clausal Proof: Checker has to reconstruct resolution edges

c

b

a

⊥ b∨c a∨c a∨b a∨b a∨b b∨c

c

b
a

⊥

marijn@cmu.edu 10 / 48



Clausal Proof: Checker has to reconstruct resolution edges

c

b

a

⊥ b∨c a∨c a∨b a∨b a∨b b∨c

c

b
a

⊥

marijn@cmu.edu 10 / 48



Clausal Proof: Checker has to reconstruct resolution edges

c

b

a

⊥ b∨c a∨c a∨b a∨b a∨b b∨c

c

b
a

⊥

marijn@cmu.edu 10 / 48



Clausal Proof: Checker has to reconstruct resolution edges

c

b

a

⊥ b∨c a∨c a∨b a∨b a∨b b∨c

c

b
a

⊥

marijn@cmu.edu 10 / 48



Clausal Proof: Checker has to reconstruct resolution edges

c

b

a

⊥ b∨c a∨c a∨b a∨b a∨b b∨c

c

b
a

⊥

marijn@cmu.edu 10 / 48



Reconstruct Edges Efficiently: Reverse Unit Propagation

Unit propagation (UP) satisfies unit clauses by assigning
their literal to true (until fixpoint or a conflict).
Let F be a formula. A clause C is implied by F via UP
(denoted by F ⊢

1
C) if UP on F∧ ¬C results in a conflict.

Example

Γ = (a∨ b∨ c)∧ (a∨ b∨ c)∧ (b∨ c∨ d)∧ (b∨ c∨ d) ∧

(a∨ c∨ d)∧ (a∨ c∨ d)∧ (a∨ b∨ d)∧ (a∨ b∨ d)

clause (a∨ b)

units a∧ b

(a∨ c∨ d) (b∨ c∨ d)

(a∨ b∨ c) (a∨ b∨ c)

(a∨ b)
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Forward vs Backward Proof Checking

original formula

core

backward checking

forward checking

⊥
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Improvement I: Backwards Checking

Goldberg and Novikov proposed checking the
refutation backwards [DATE 2003]:

start by validating the empty clause;
mark all lemmas using conflict analysis;
only validate marked lemmas.

Advantage: validate fewer lemmas.

Disadvantage: more complex.

c

b

a

⊥
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Improvement II: Clause Deletion

We proposed to extend clausal proofs with
deletion information [STVR 2014]:

clause deletion is crucial for efficient solving;
emit learning and deletion information;
proof size might double;
checking speed can be reduced significantly.

Clause deletion can be combined with backwards
checking [FMCAD 2013]:

ignore deleted clauses earlier in the proof;
optimize clause deletion for trimmed proofs.

b

b∨c

a

a∨b

c

⊥
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Improvement III: Core-first Unit Propagation

We propose a new unit propagation variant:
1. propagate using clauses already in the core;
2. examine non-core clauses only at fixpoint;
3. if a non-core unit clause is found, goto 1);
4. otherwise terminate.

The variant, called Core-first Unit Propagation,
can reduce checking costs considerably.

Fast propagation in a checker is different
than fast propagation in a SAT solver. a∨b a∨b b∨c

b

⊥

Also, the resulting core and proof are smaller
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Checking: Backwards + Core-first + Deletion

b

b∨c

a

a∨b

c

⊥ b∨c a∨c a∨b a∨b a∨b b∨c

c

b

a

⊥

Core-first unit propagation results in smaller cores and proofs
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DRAT (Deletion Resolution Asymmetric Tautology)
Drawbacks of resolution:

For many seemingly simple formulas, there are only resolution
proofs of exponential size.

State-of-the-art solving techniques are not succinctly expressible.

A clause (C∨ x) is a resolution asymmetric tautology (RAT) on x

w.r.t. a CNF formula Γ if for every clause (D∨ x) ∈ Γ , the
resolvent C∨D is implied by Γ via unit-propagation, i.e., Γ ⊢

1
C∨D.

Popular example of a clausal proof system: DRAT

DRAT allows the addition of RATs to a formula.
• RATs are not necessarily implied by the formula.

• But RATs are redundant: their addition preserves satisfiability.

• Clause deletion may introduce clause addition options (interference)
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DRAT Example

A clause (C∨ x) is a resolution asymmetric tautology (RAT) on x

w.r.t. a CNF formula Γ if for every clause (D∨ x) ∈ Γ , the
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1
C∨D.

b∨c a∨b a∨b

c
b
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Demo: DRAT step
git clone https://github.com/marijnheule/proof-demo
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Clausal Proof System [Järvisalo, Heule, and Biere 2012]

Γ

Learn: add a clause
* Preserve satisfiability

Forget: remove a clause
* Preserve unsatisfiablity

Satisfiable
* Forget last clause

Unsatisfiable
* Learn empty clause

init
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Ideal Properties of a Proof System for SAT Solvers

Easy to Emit

Compact

Checked Efficiently

Expressive

Resolution Proofs
Zhang and Malik, 2003
Van Gelder, 2008; Biere, 2008

Clausal Proofs
Goldberg and Novikov, 2003
Van Gelder, 2008

Clausal proofs + deletion
Heule, Hunt, Jr., Wetzler [STVR’14]

Optimized clausal proof checker
Heule, Hunt, Jr., and Wetzler [FMCAD’13]

Clausal RAT proofs
Heule, Hunt, Jr., Wetzler [CADE’13]

DRAT proofs (RAT + deletion)
Wetzler, Heule, Hunt, Jr. [SAT’14]
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Ideal Properties of a Proof System for SAT Solvers

Easy to Emit

Compact

Checked Efficiently

Expressive

Verified

Resolution Proofs
Zhang and Malik, 2003
Van Gelder, 2008; Biere, 2008

Clausal Proofs
Goldberg and Novikov, 2003
Van Gelder, 2008

Clausal proofs + deletion
Heule, Hunt, Jr., Wetzler [STVR’14]

Optimized clausal proof checker
Heule, Hunt, Jr., and Wetzler [FMCAD’13]

Clausal RAT proofs
Heule, Hunt, Jr., Wetzler [CADE’13]
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Proof Formats: The Input Format DIMACS

E := (b∨ c)∧ (a∨ c)∧ (a∨b)∧ (a∨b)∧ (a∨b)∧ (b∨ c)

The input format of SAT solvers is known as DIMACS

header starts with p cnf followed by the
number of variables (n) and the number
of clauses (m)
the next m lines represent the clauses
positive literals are positive numbers
negative literals are negative numbers
clauses are terminated with a 0

p cnf 3 6
-2 3 0
1 3 0

-1 2 0
-1 -2 0
1 -2 0
2 -3 0

Most proof formats use a similar syntax.
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Proof Formats: Proofs with Hints
LRAT is the most popular resolution-style format (RAT also supported)

E := (b∨ c)∧ (a∨ c)∧ (a∨ b)∧ (a∨ b)∧ (a∨ b)∧ (b∨ c)

LRAT orders clauses by unit propagation, ending with falsified clause
formula implicit, index by input order

⟨trace⟩ = {⟨clause⟩}
⟨clause⟩ = ⟨pos⟩⟨literals⟩⟨clsidx⟩
⟨literals⟩ = {⟨lit⟩} "0"
⟨clsidx⟩ = {⟨pos⟩} "0"

⟨lit⟩ = ⟨pos⟩ | ⟨neg⟩
⟨pos⟩ = "1" | "2" | · · · | ⟨maxidx⟩
⟨neg⟩ = "−"⟨pos⟩

1 -2 3 0 0
2 1 3 0 0
3 -1 2 0 0
4 -1 -2 0 0
5 1 -2 0 0
6 2 -3 0 0

7 -2 0 4 5 0
8 3 0 3 2 1 0
9 0 8 7 6 0
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Proof Formats: Proofs with Hints Example
LRAT is the most popular resolution-style format (RAT also supported)

E := (b∨ c)∧ (a∨ c)∧ (a∨ b)∧ (a∨ b)∧ (a∨ b)∧ (b∨ c)

LRAT orders clauses by unit propagation, ending with falsified clause
formula implicit, index by input order

The clauses 1 to 6 are input clauses
Clause 7 is the resolvent of 5 and 4:
(b) := (a∨ b) ▷◁ (a∨ b)

Clause 8 is the resolvent of 1, 2 and 3:
(c) := (b∨ c) ▷◁ (a∨ b) ▷◁ (a∨ c)

Clause 9 is the resolvent of 6, 7 and 8:
⊥ := (b∨ c) ▷◁ (b) ▷◁ (c)

1 -2 3 0 0
2 1 3 0 0
3 -1 2 0 0
4 -1 -2 0 0
5 1 -2 0 0
6 2 -3 0 0

7 -2 0 4 5 0
8 3 0 3 2 1 0
9 0 8 7 6 0
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Proof Formats: Clausal Proofs

RUP and extensions is the most popular clausal-style format.

E := (b∨ c)∧ (a∨ c)∧ (a∨ b)∧ (a∨ b)∧ (a∨ b)∧ (b∨ c)

RUP is much more compact than LRAT because it lacks hints
formula not included as well

⟨proof⟩ = {⟨lemma⟩}
⟨lemma⟩ = ⟨delete⟩{⟨lit⟩} "0"
⟨delete⟩ = " " | "d"

⟨lit⟩ = ⟨pos⟩ | ⟨neg⟩
⟨pos⟩ = "1" | "2" | · · · | ⟨maxidx⟩
⟨neg⟩ = "−"⟨pos⟩

-2 0
3 0
0

E∧ (b) ⊢
1
⊥

E∧ (b)∧ (c) ⊢
1
⊥

E∧ (b)∧ (c) ⊢
1
⊥
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Proof Formats: Binary Formats

There are various cheap compression techniques to shrink proofs:
Use 4 bytes per literal instead storing the ascii characters
Sort literals in clauses and store the delta between literals
Use a variable byte encoding for literals

encoding example (prefix pivot lit1...litk−1 end) #bytes

ascii d 6278 -3425 -42311 9173 22754 0\n 33
sascii d 6278 -3425 9173 22754 -42311 0\n 33
4byte 64 0c310000 c31a0000 8f4a0100 aa470000 c4b10000 00000000 25

s4byte 64 0c310000 c31a0000 aa470000 c4b10000 8f4a0100 00000000 25
ds4byte 64 0c310000 c31a0000 e82c0000 1a6a0000 cb980000 00000000 25

vbyte 64 8c62c335 8f9505aa 8f01c4e3 0200 15
svbyte 64 8c62c335 aa8f01c4 e3028f95 0500 15

dsvbyte 64 8c62c335 e8599ad4 01cbb102 00 14
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Proof Formats: Beyond Checking

Clausal Proof checkers can produce many additional results:

Clausal core, e.g. useful for MUS computation, MaxSAT
DRAT-trim option: -c CORE

Extract a resolution proof, e.g. useful for interpolation
DRAT-trim option: -r RESPROOF

Proof minimization: removing redundant lemmas and literals
DRAT-trim option: -l OPTPROOF
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Demo: Proof Mining
git clone https://github.com/marijnheule/proof-demo
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Certified Checking: Tool Chain

1: SAT solver 2: DRAT-trim 3: certified checker

formula

original proof optimized proof

The proof of the Pythagorean Triples problem is almost 200
terabytes (DRAT) and has been validated in 16,000 CPU hours.

This proof has been certified using formally-verified checkers.
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Certified Checking: ACL2-Based, SAT Proof Checker

We developed a mechanically verified, ACL2-based, proof
checker for proofs of unsatisfiability.

Given files containing:
the initial conjecture, as a set of clauses, and
an ordered list of proof steps ending with the empty clause,

our mechanically verified, SAT proof checker attempts to
confirm the veracity of each proof step.

Parsing is hard, while writing is easy.
after verification, we emit a conjecture that can be
compared to the initial conjecture.
a common tool, such as diff, can do the comparison.
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Certified Checking: Proof Claims
Basic Soundness.

(implies (and (formula-p formula)
(refutation-p proof formula))

(not (satisfiable formula))))

Soundness Plus Formula Confirmation.

(let ((formula
(mv-nth 1 (proved-formula cnf-file clrat-file

chunk-size debug
nil ; incomplete-okp
ctx state))))

(implies formula
(not (satisfiable formula))))

; Print proved formula, to diff against input formula
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Certified Checking: Eliminate Complexity

Certified proof checking challenges:
backward checking is complex and heavy on memory;
unit propagation is expensive.

We eliminate both challenges by modifying the proof:
an efficient unverified tool removes the redundancy, making
forward checking as fast as backward checking;
searching for units is replaced by hints to locate units;
the modified proofs are not much larger;
we do not need to trust the unverified tool.
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Certified Checking: LRAT format
The LRAT format is syntactically similar to TraceCheck, however:

The formula in not included in the proof
Clause deletion support: ⟨pos⟩‘‘ d "⟨clsidx⟩
Can express a RAT step: use negative cls to denote resolvent

DIMACS:
p cnf 3 3
-2 3 0
-1 -2 0
1 -2 0

DRAT:
-3 0

LRAT:
4 -3 0 -1 2 3 0

b∨c a∨b a∨b

c
b
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1 -2 0

DRAT:
-3 0

LRAT:
4 -3 0 -1 2 3 0

b∨c a∨b a∨b

c
b
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Applications: Erdős Discrepancy Conjecture

Erdős Discrepancy Conjecture was recently solved using SAT.

The conjecture states that there exists no infinite sequence of
-1, +1 such that for all d, k holds that (xi ∈ {−1,+1}):∣∣∣∣∣

k∑
i=1

xid

∣∣∣∣∣ ≤ 2

The DRAT proof was 13Gb and checked
with the tool DRAT-trim [SAT14]
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Applications: SAT Competitions

DRAT proof logging supported by all the top-tier solvers:
e.g. Lingeling, MiniSAT, Glucose, and CryptoMiniSAT
Proof logging is mandatory since SAT Competition 2013
Formally-verified checking since SAT Competition 2017

Example run of DRAT-trim on Erdős Discrepancy Proof
fud$ ./DRAT-trim EDP2_1161.cnf EDP2_1161.drat
c finished parsing
c detected empty clause; start verification via backward checking
c 23090 of 25142 clauses in core
c 5757105 of 6812396 lemmas in core using 469808891 resolution steps
c 16023 RAT lemmas in core; 5267754 redundant literals in core lemmas
s VERIFIED
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Applications: Ramsey Numbers

Ramsey Number R(k): What is
the smallest n such that any
graph with n vertices has either
a clique or a co-clique of size k?

R(3) = 6
R(4) = 18

43 ≤ R(5) ≤ 48

6

1 2

3

5 4

SAT solvers can determine that R(4) = 18 in 1 second using
symmetry breaking; w/o symmetry breaking it requires weeks.

Symmetry breaking can be validated using DRAT [CADE’15]
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Demo: Certifying DRAT Proofs
git clone https://github.com/marijnheule/proof-demo
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Chromatic Number of the Plane

The Hadwiger-Nelson problem:
How many colors are required to color the plane such that each
pair of points that are exactly 1 apart are colored differently?

The answer must be three or more because three points can
be mutually 1 apart—and thus must be colored differently.
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Bounds since the 1950s

The Moser Spindle graph shows the lower bound of 4
A coloring of the plane showing the upper bound of 7
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First progress in decades
Recently enormous progress:

Lower bound of 5 [DeGrey ’18]
based on a 1581-vertex graph
This breakthrough started a
polymath project
Improved bounds of the fractional
chromatic number of the plane

We found smaller graphs with SAT:
874 vertices on April 14, 2018
803 vertices on April 30, 2018
610 vertices on May 14, 2018
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Propositional Proofs for Graph Validation and Shrinking

Checking that a unit-distance graph has chromatic number 5:
Show that there exists a 5-coloring
While there is no 4-coloring (formula is UNSAT)
Unsatisfiable core represents a subgraph

SAT solvers find short proofs of unsatisfiability for these formulas

Proof minimization techniques allow further reduction

Combining the techniques allows finding much smaller graphs
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Proof Minimization: 510 Vertices [Heule 2019]
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Many options in DRAT-trim

usage: drat-trim [INPUT] [<PROOF>] [<option> ...]
-h print this command line option summary
-c CORE prints the unsatisfiable core to CORE
-a ACTIVE prints the active clauses to ACTIVE
-l DRAT prints the core lemmas to DRAT
-L LRAT prints the core lemmas to LRAT
-r TRACE prints resolution graph to TRACE
-t <lim> time limit in seconds (default 20000)
-u default unit propagation (no core)
-f forward mode for UNSAT
-v more verbose output
-b show progress bar
-O optimize proof till fixpoint
-C compress core lemmas (emit binary proof)
-i force binary proof parse mode
-w suppress warning messages
-W exit after first warning
-p run in plain mode (no deletion)
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Conclusions

Verification of proofs of unsatisfiability is now mature:
Practically all state-of-the-art SAT solvers support it;
There exist formally-verified checkers in ACL2, Coq, Isabelle;
Proofs exist of recently solved long-standing open problems;
The SAT Competitions now require proof emission;
The overhead of certification is reasonable.

Challenges:
How to reduce the size of proofs on disk and in memory?
What information can be mined from proofs?
How to effectively deal with Gaussian elimination, cardinality
resolution, and pseudo-Boolean reasoning? Use BDDs!
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