
Introduction to Automated Reasoning
and Satisfiability

Marijn J.H. Heule

http://www.cs.cmu.edu/~mheule/15816-f24/

Automated Reasoning and Satisfiability
August 26, 2024

marijn@cmu.edu 1 / 42

http://www.cs.cmu.edu/~mheule/15816-f24/

To Start...

Marijn Heule

Instructor

Chase Norman

Teaching Assistant

Let’s start by shortly introducing ourselves

Everyone is expect to attend the lectures

Email me prior to a lecture if you can’t attend.

marijn@cmu.edu 2 / 42

To Start...

Marijn Heule

Instructor

Chase Norman

Teaching Assistant

Let’s start by shortly introducing ourselves

Everyone is expect to attend the lectures

Email me prior to a lecture if you can’t attend.

marijn@cmu.edu 2 / 42

Automated Reasoning Has Many Applications

formal verification

train safety exploit
generation

automated
theorem proving

bioinformaticssecurity planning and
scheduling

term rewriting

termination

encode decodeautomated reasoning

marijn@cmu.edu 3 / 42

Automated Reasoning Has Many Applications

formal verification

train safety exploit
generation

automated
theorem proving

bioinformaticssecurity planning and
scheduling

term rewriting

termination

encode decodeautomated reasoning

marijn@cmu.edu 3 / 42

Breakthrough in SAT Solving in the Last 20 Years

Satisfiability (SAT) problem: Can a Boolean formula be satisfied?

mid ’90s: formulas solvable with thousands of variables and clauses
now: formulas solvable with millions of variables and clauses

Edmund Clarke: “a key
technology of the 21st century”
[Biere, Heule, vanMaaren, and Walsh ’09]

Donald Knuth: “evidently a killer app,
because it is key to the solution of so

many other problems” [Knuth ’15]

marijn@cmu.edu 4 / 42

Satisfiability and Complexity

Complexity classes of decision problems:

P : efficiently computable answers.
NP : efficiently checkable yes-answers.

co-NP : efficiently checkable no-answers. P

co-NPNP

Cook-Levin Theorem [1971]: SAT is NP-complete.

Solving the P
?
= NP question is worth $1,000,000 [Clay MI ’00].

The effectiveness of SAT solving: fast solutions in practice.

The beauty of NP: guaranteed short solutions.

“NP is the new P!”

marijn@cmu.edu 5 / 42

Satisfiability and Complexity

Complexity classes of decision problems:

P : efficiently computable answers.
NP : efficiently checkable yes-answers.

co-NP : efficiently checkable no-answers. P

co-NPNP

Cook-Levin Theorem [1971]: SAT is NP-complete.

Solving the P
?
= NP question is worth $1,000,000 [Clay MI ’00].

The effectiveness of SAT solving: fast solutions in practice.

The beauty of NP: guaranteed short solutions.

“NP is the new P!”

marijn@cmu.edu 5 / 42

Course Overview

marijn@cmu.edu 6 / 42

Course Reports (I)
The second half of the course consists of a project

A group of 2 (or 1) students work on a research question

The results will be presented in a scientific report

Several have been published in journals and at conferences

Emre Yolcu, Xinyu Wu, and Marijn J. H. Heule
Mycielski graphs and PR proofs (2020). In Theory and
Practice of Satisfiability Testing - SAT 2020, Lecture
Notes in Computer Science 12178, pp. 201-217.
Best student paper award

Peter Oostema, Ruben Martins, and Marijn J. H. Heule.
Coloring Unit-Distance Strips using SAT (2020).
In Logic for Programming, Artificial Intelligence and
Reasoning, EPiC Series in Computing 73, pp. 373-389.

marijn@cmu.edu 7 / 42

Course Reports (II)

Bernardo Subercaseaux and Marijn Heule.
The Packing Chromatic Number of the Infinite Square
Grid is 15. Tools and Algorithms for the Construction
and Analysis of Systems 2023, pp. 389–406.
In Quanta Magazine and The New York Times

Andrew Haberlandt, Harrison Green, and Marijn Heule.
Effective Auxiliary Variables via Structured Reencoding
In Theory and Practice of Satisfiability Testing 2023,
LIPIcs 271, pp. 11:1–11:19.
The solver won SAT Competition 2023

marijn@cmu.edu 8 / 42

Introduction

Terminology

Basic Solving Techniques

Solvers and Benchmarks

marijn@cmu.edu 9 / 42

Introduction

Terminology

Basic Solving Techniques

Solvers and Benchmarks

marijn@cmu.edu 10 / 42

Diplomacy Problem

“You are chief of protocol for the embassy ball. The
crown prince instructs you either to invite Peru or to
exclude Qatar. The queen asks you to invite either
Qatar or Romania or both. The king, in a spiteful
mood, wants to snub either Romania or Peru or
both. Is there a guest list that will satisfy the whims
of the entire royal family?”

(p∨ q)∧ (q∨ r)∧ (r∨ p)

marijn@cmu.edu 11 / 42

Diplomacy Problem

“You are chief of protocol for the embassy ball. The
crown prince instructs you either to invite Peru or to
exclude Qatar. The queen asks you to invite either
Qatar or Romania or both. The king, in a spiteful
mood, wants to snub either Romania or Peru or
both. Is there a guest list that will satisfy the whims
of the entire royal family?”

(p∨ q)∧ (q∨ r)∧ (r∨ p)

marijn@cmu.edu 11 / 42

Truth Table

F := (p∨ q)∧ (q∨ r)∧ (r∨ p)

p q r falsifies eval(F)
0 0 0 (q∨ r) 0
0 0 1 — 1
0 1 0 (p∨ q) 0
0 1 1 (p∨ q) 0
1 0 0 (q∨ r) 0
1 0 1 (r∨ p) 0
1 1 0 — 1
1 1 1 (r∨ p) 0

marijn@cmu.edu 12 / 42

Slightly Harder Example

Slightly Harder Example 1

What are the solutions for the following formula?

(a∨ b∨ c) ∧
(a∨ b∨ c) ∧
(b∨ c∨ d) ∧
(b∨ c∨ d) ∧
(a∨ c∨ d) ∧
(a∨ c∨ d) ∧
(a∨ b∨ d)

a b c d
0 0 0 0
0 0 0 1
0 0 1 0
0 0 1 1
0 1 0 0
0 1 0 1
0 1 1 0
0 1 1 1

a b c d
1 0 0 0
1 0 0 1
1 0 1 0
1 0 1 1
1 1 0 0
1 1 0 1
1 1 1 0
1 1 1 1

marijn@cmu.edu 13 / 42

Slightly Harder Example

Slightly Harder Example 1

What are the solutions for the following formula?

(a∨ b∨ c) ∧
(a∨ b∨ c) ∧
(b∨ c∨ d) ∧
(b∨ c∨ d) ∧
(a∨ c∨ d) ∧
(a∨ c∨ d) ∧
(a∨ b∨ d)

a b c d
0 0 0 0
0 0 0 1
0 0 1 0
0 0 1 1
0 1 0 0
0 1 0 1
0 1 1 0
0 1 1 1

a b c d
1 0 0 0
1 0 0 1
1 0 1 0
1 0 1 1
1 1 0 0
1 1 0 1
1 1 1 0
1 1 1 1

marijn@cmu.edu 13 / 42

Pythagorean Triples Problem (I) [Ronald Graham, early 80’s]

Will any coloring of the positive integers with red and blue
result in a monochromatic Pythagorean Triple a2 + b2 = c2?

32 + 42 = 52 62 + 82 = 102 52 + 122 = 132 92 + 122 = 152

82 + 152 = 172 122 + 162 = 202 152 + 202 = 252 72 + 242 = 252

102 + 242 = 262 202 + 212 = 292 182 + 242 = 302 162 + 302 = 342

212 + 282 = 352 122 + 352 = 372 152 + 362 = 392 242 + 322 = 402

Best lower bound: a bi-coloring of [1, 7664] s.t. there is no
monochromatic Pythagorean Triple [Cooper & Overstreet 2015].

Myers conjectures that the answer is No [PhD thesis, 2015].

marijn@cmu.edu 14 / 42

Pythagorean Triples Problem (I) [Ronald Graham, early 80’s]

Will any coloring of the positive integers with red and blue
result in a monochromatic Pythagorean Triple a2 + b2 = c2?

32 + 42 = 52 62 + 82 = 102 52 + 122 = 132 92 + 122 = 152

82 + 152 = 172 122 + 162 = 202 152 + 202 = 252 72 + 242 = 252

102 + 242 = 262 202 + 212 = 292 182 + 242 = 302 162 + 302 = 342

212 + 282 = 352 122 + 352 = 372 152 + 362 = 392 242 + 322 = 402

Best lower bound: a bi-coloring of [1, 7664] s.t. there is no
monochromatic Pythagorean Triple [Cooper & Overstreet 2015].

Myers conjectures that the answer is No [PhD thesis, 2015].

marijn@cmu.edu 14 / 42

Pythagorean Triples Problem (II) [Ronald Graham, early 80’s]

Will any coloring of the positive integers with red and blue
result in a monochromatic Pythagorean Triple a2 + b2 = c2?

A bi-coloring of [1, n] is encoded using Boolean variables xi
with i ∈ {1, 2, . . . , n} such that xi = 1 (= 0) means that i is
colored red (blue). For each Pythagorean Triple a2 + b2 = c2,
two clauses are added: (xa ∨ xb ∨ xc) and (xa ∨ xb ∨ xc).

Theorem ([Heule, Kullmann, and Marek (2016)])

[1, 7824] can be bi-colored s.t. there is no monochromatic
Pythagorean Triple. This is impossible for [1, 7825].

4 CPU years computation, but 2 days on cluster (800 cores)

200 terabytes proof, but validated with verified checker

marijn@cmu.edu 15 / 42

Pythagorean Triples Problem (II) [Ronald Graham, early 80’s]

Will any coloring of the positive integers with red and blue
result in a monochromatic Pythagorean Triple a2 + b2 = c2?

A bi-coloring of [1, n] is encoded using Boolean variables xi
with i ∈ {1, 2, . . . , n} such that xi = 1 (= 0) means that i is
colored red (blue). For each Pythagorean Triple a2 + b2 = c2,
two clauses are added: (xa ∨ xb ∨ xc) and (xa ∨ xb ∨ xc).

Theorem ([Heule, Kullmann, and Marek (2016)])

[1, 7824] can be bi-colored s.t. there is no monochromatic
Pythagorean Triple. This is impossible for [1, 7825].

4 CPU years computation, but 2 days on cluster (800 cores)

200 terabytes proof, but validated with verified checker

marijn@cmu.edu 15 / 42

Pythagorean Triples Problem (II) [Ronald Graham, early 80’s]

Will any coloring of the positive integers with red and blue
result in a monochromatic Pythagorean Triple a2 + b2 = c2?

A bi-coloring of [1, n] is encoded using Boolean variables xi
with i ∈ {1, 2, . . . , n} such that xi = 1 (= 0) means that i is
colored red (blue). For each Pythagorean Triple a2 + b2 = c2,
two clauses are added: (xa ∨ xb ∨ xc) and (xa ∨ xb ∨ xc).

Theorem ([Heule, Kullmann, and Marek (2016)])

[1, 7824] can be bi-colored s.t. there is no monochromatic
Pythagorean Triple. This is impossible for [1, 7825].

4 CPU years computation, but 2 days on cluster (800 cores)

200 terabytes proof, but validated with verified checker

marijn@cmu.edu 15 / 42

Pythagorean Triples Problem (II) [Ronald Graham, early 80’s]

Will any coloring of the positive integers with red and blue
result in a monochromatic Pythagorean Triple a2 + b2 = c2?

A bi-coloring of [1, n] is encoded using Boolean variables xi
with i ∈ {1, 2, . . . , n} such that xi = 1 (= 0) means that i is
colored red (blue). For each Pythagorean Triple a2 + b2 = c2,
two clauses are added: (xa ∨ xb ∨ xc) and (xa ∨ xb ∨ xc).

Theorem ([Heule, Kullmann, and Marek (2016)])

[1, 7824] can be bi-colored s.t. there is no monochromatic
Pythagorean Triple. This is impossible for [1, 7825].

4 CPU years computation, but 2 days on cluster (800 cores)

200 terabytes proof, but validated with verified checker

marijn@cmu.edu 15 / 42

Media: “The Largest Math Proof Ever”

marijn@cmu.edu 16 / 42

Introduction

Terminology

Basic Solving Techniques

Solvers and Benchmarks

marijn@cmu.edu 17 / 42

Terminology: SAT question

Given a CNF formula,
does there exist an assignment
to the Boolean variables
that satisfies all clauses?

marijn@cmu.edu 18 / 42

Terminology: Variables and literals

Boolean variable xi
can be assigned the Boolean values 0 or 1

Literal
refers either to xi or its complement xi

literals xi are satisfied if variable xi is assigned to 1 (true)

literals xi are satisfied if variable xi is assigned to 0 (false)

marijn@cmu.edu 19 / 42

Terminology: Clauses

Clause
Disjunction of literals: E.g. Cj = (l1 ∨ l2 ∨ l3)

Can be falsified with only one assignment to its literals:
All literals assigned to false

Can be satisfied with 2k − 1 assignment to its k literals

One special clause - the empty clause (denoted by ⊥) -
which is always falsified

marijn@cmu.edu 20 / 42

Terminology: Formulae

Formula
Conjunction of clauses: E.g. F = C1 ∧ C2 ∧ C3

Is satisfiable if there exists an assignment satisfying all
clauses, otherwise unsatisfiable

Formulae are defined in Conjunction Normal Form (CNF)
and generally also stored as such - also learned information

Any propositional formula can be efficiently transformed
into CNF [Tseitin ’70]

marijn@cmu.edu 21 / 42

Terminology: Assignments

Assignment
Mapping of the values 0 and 1 to the variables
α ◦ F results in a reduced formula Freduced:
• all satisfied clauses are removed
• all falsified literals are removed

satisfying assignment ↔ Freduced is empty

falsifying assignment ↔ Freduced contains ⊥
partial assignment versus full assignment

marijn@cmu.edu 22 / 42

Resolution

The most commonly used inference rule in propositional logic
is the resolution rule (the operation is denoted by ▷◁)

C∨ x x̄∨D
C∨D

Examples for F := (p∨ q)∧ (q∨ r)∧ (r∨ p)

(q∨ p) ▷◁ (p∨ r) = (q∨ r)

(p∨ q) ▷◁ (q∨ r) = (p∨ r)

(q∨ r) ▷◁ (r∨ p) = (q∨ p)

Adding (non-redundant) resolvents until fixpoint, is a complete
proof procedure. It produces the empty clause if and only if
the formula is unsatisfiable

marijn@cmu.edu 23 / 42

Resolution

The most commonly used inference rule in propositional logic
is the resolution rule (the operation is denoted by ▷◁)

C∨ x x̄∨D
C∨D

Examples for F := (p∨ q)∧ (q∨ r)∧ (r∨ p)

(q∨ p) ▷◁ (p∨ r) = (q∨ r)

(p∨ q) ▷◁ (q∨ r) = (p∨ r)

(q∨ r) ▷◁ (r∨ p) = (q∨ p)

Adding (non-redundant) resolvents until fixpoint, is a complete
proof procedure. It produces the empty clause if and only if
the formula is unsatisfiable

marijn@cmu.edu 23 / 42

Resolution

The most commonly used inference rule in propositional logic
is the resolution rule (the operation is denoted by ▷◁)

C∨ x x̄∨D
C∨D

Examples for F := (p∨ q)∧ (q∨ r)∧ (r∨ p)

(q∨ p) ▷◁ (p∨ r) = (q∨ r)

(p∨ q) ▷◁ (q∨ r) = (p∨ r)

(q∨ r) ▷◁ (r∨ p) = (q∨ p)

Adding (non-redundant) resolvents until fixpoint, is a complete
proof procedure. It produces the empty clause if and only if
the formula is unsatisfiable

marijn@cmu.edu 23 / 42

Tautology

A clause C is a tautology if it contains
for some variable x, both the literals x and x.

Slightly Harder Example 2

Compute all non-tautological resolvents for:

(a∨ b∨ c)∧ (a∨ b∨ c)∧
(b∨ c∨ d)∧ (b∨ c∨ d)∧
(a∨ c∨ d)∧ (a∨ c∨ d)∧
(a∨ b∨ d)

Which resolvents remain after removing the supersets?

marijn@cmu.edu 24 / 42

Introduction

Terminology

Basic Solving Techniques

Solvers and Benchmarks

marijn@cmu.edu 25 / 42

SAT solving: Unit propagation

A unit clause is a clause of size 1

UnitPropagation (α, F):

1: while ⊥ /∈ F and unit clause y exists do
2: expand α by adding y = 1 and simplify F
3: end while
4: return α, F

marijn@cmu.edu 26 / 42

Unit Propagation: Example

Funit := (x1 ∨ x3 ∨ x4)∧ (x1 ∨ x2 ∨ x3)∧

(x1 ∨ x2)∧ (x1 ∨ x3 ∨ x6)∧ (x1 ∨ x4 ∨ x5)∧

(x1 ∨ x6)∧ (x4 ∨ x5 ∨ x6)∧ (x5 ∨ x6)

marijn@cmu.edu 27 / 42

Unit Propagation: Example

Funit := (x1 ∨ x3 ∨ x4)∧ (x1 ∨ x2 ∨ x3)∧

(x1 ∨ x2)∧ (x1 ∨ x3 ∨ x6)∧ (x1 ∨ x4 ∨ x5)∧

(x1 ∨ x6)∧ (x4 ∨ x5 ∨ x6)∧ (x5 ∨ x6)

α = {x1=1}

marijn@cmu.edu 27 / 42

Unit Propagation: Example

Funit := (x1 ∨ x3 ∨ x4)∧ (x1 ∨ x2 ∨ x3)∧

(x1 ∨ x2)∧ (x1 ∨ x3 ∨ x6)∧ (x1 ∨ x4 ∨ x5)∧

(x1 ∨ x6)∧ (x4 ∨ x5 ∨ x6)∧ (x5 ∨ x6)

α = {x1=1, x2=1}

marijn@cmu.edu 27 / 42

Unit Propagation: Example

Funit := (x1 ∨ x3 ∨ x4)∧ (x1 ∨ x2 ∨ x3)∧

(x1 ∨ x2)∧ (x1 ∨ x3 ∨ x6)∧ (x1 ∨ x4 ∨ x5)∧

(x1 ∨ x6)∧ (x4 ∨ x5 ∨ x6)∧ (x5 ∨ x6)

α = {x1=1, x2=1, x3=1}

marijn@cmu.edu 27 / 42

Unit Propagation: Example

Funit := (x1 ∨ x3 ∨ x4)∧ (x1 ∨ x2 ∨ x3)∧

(x1 ∨ x2)∧ (x1 ∨ x3 ∨ x6)∧ (x1 ∨ x4 ∨ x5)∧

(x1 ∨ x6)∧ (x4 ∨ x5 ∨ x6)∧ (x5 ∨ x6)

α = {x1=1, x2=1, x3=1, x4=1}

marijn@cmu.edu 27 / 42

Reverse Unit Propagation
Unit propagation (UP) satisfies unit clauses by assigning
their literal to true (until fixpoint or a conflict).

Let F be a formula. A clause C is implied by F via UP
(denoted by F ⊢

1
C) if UP on F∧¬C results in a conflict.

Example

F = (a∨ b∨ c)∧ (a∨ b∨ c)∧ (b∨ c∨ d)∧ (b∨ c∨ d) ∧

(a∨ c∨ d)∧ (a∨ c∨ d)∧ (a∨ b∨ d)∧ (a∨ b∨ d)

clause (a∨ b)

units a∧ b

(a∨ c∨ d) (b∨ c∨ d)

(a∨ b∨ c) (a∨ b∨ c)

(a∨ b)

marijn@cmu.edu 28 / 42

Reverse Unit Propagation
Unit propagation (UP) satisfies unit clauses by assigning
their literal to true (until fixpoint or a conflict).

Let F be a formula. A clause C is implied by F via UP
(denoted by F ⊢

1
C) if UP on F∧¬C results in a conflict.

Example

F = (a∨ b∨ c)∧ (a∨ b∨ c)∧ (b∨ c∨ d)∧ (b∨ c∨ d) ∧

(a∨ c∨ d)∧ (a∨ c∨ d)∧ (a∨ b∨ d)∧ (a∨ b∨ d)

clause (a∨ b)

units a∧ b

(a∨ c∨ d) (b∨ c∨ d)

(a∨ b∨ c) (a∨ b∨ c)

(a∨ b)

marijn@cmu.edu 28 / 42

Reverse Unit Propagation
Unit propagation (UP) satisfies unit clauses by assigning
their literal to true (until fixpoint or a conflict).

Let F be a formula. A clause C is implied by F via UP
(denoted by F ⊢

1
C) if UP on F∧¬C results in a conflict.

Example

F = (a∨ b∨ c)∧ (a∨ b∨ c)∧ (b∨ c∨ d)∧ (b∨ c∨ d) ∧

(a∨ c∨ d)∧ (a∨ c∨ d)∧ (a∨ b∨ d)∧ (a∨ b∨ d)

clause (a∨ b) (a∨ b∨ c)

units a∧ b c

(a∨ c∨ d) (b∨ c∨ d)

(a∨ b∨ c) (a∨ b∨ c)

(a∨ b)

marijn@cmu.edu 28 / 42

Reverse Unit Propagation
Unit propagation (UP) satisfies unit clauses by assigning
their literal to true (until fixpoint or a conflict).

Let F be a formula. A clause C is implied by F via UP
(denoted by F ⊢

1
C) if UP on F∧¬C results in a conflict.

Example

F = (a∨ b∨ c)∧ (a∨ b∨ c)∧ (b∨ c∨ d)∧ (b∨ c∨ d) ∧

(a∨ c∨ d)∧ (a∨ c∨ d)∧ (a∨ b∨ d)∧ (a∨ b∨ d)

clause (a∨ b) (a∨ b∨ c) (b∨ c∨ d)

units a∧ b c d

(a∨ c∨ d) (b∨ c∨ d)

(a∨ b∨ c) (a∨ b∨ c)

(a∨ b)

marijn@cmu.edu 28 / 42

Reverse Unit Propagation
Unit propagation (UP) satisfies unit clauses by assigning
their literal to true (until fixpoint or a conflict).

Let F be a formula. A clause C is implied by F via UP
(denoted by F ⊢

1
C) if UP on F∧¬C results in a conflict.

Example

F = (a∨ b∨ c)∧ (a∨ b∨ c)∧ (b∨ c∨ d)∧ (b∨ c∨ d) ∧

(a∨ c∨ d)∧ (a∨ c∨ d)∧ (a∨ b∨ d)∧ (a∨ b∨ d)

clause (a∨ b) (a∨ b∨ c) (b∨ c∨ d) (a∨ c∨ d)

units a∧ b c d ⊥

(a∨ c∨ d) (b∨ c∨ d)

(a∨ b∨ c) (a∨ b∨ c)

(a∨ b)

marijn@cmu.edu 28 / 42

Reverse Unit Propagation
Unit propagation (UP) satisfies unit clauses by assigning
their literal to true (until fixpoint or a conflict).

Let F be a formula. A clause C is implied by F via UP
(denoted by F ⊢

1
C) if UP on F∧¬C results in a conflict.

Example

F = (a∨ b∨ c)∧ (a∨ b∨ c)∧ (b∨ c∨ d)∧ (b∨ c∨ d) ∧

(a∨ c∨ d)∧ (a∨ c∨ d)∧ (a∨ b∨ d)∧ (a∨ b∨ d)

clause (a∨ b) (a∨ b∨ c) (b∨ c∨ d) (a∨ c∨ d)

units a∧ b c d ⊥

(a∨ c∨ d) (b∨ c∨ d)

(a∨ b∨ c) (a∨ b∨ c)

(a∨ b)

marijn@cmu.edu 28 / 42

SAT Solving: DPLL

Davis Putnam Logemann Loveland [DP60,DLL62]

Recursive procedure that in each recursive call:
Simplifies the formula (using unit propagation)

Splits the formula into two subformulas
• Variable selection heuristics (which variable to split on)
• Direction heuristics (which subformula to explore first)

marijn@cmu.edu 29 / 42

DPLL: Example

FDPLL := (x1 ∨ x2 ∨ x3)∧ (x1 ∨ x2 ∨ x3)∧

(x1 ∨ x2 ∨ x3)∧ (x1 ∨ x3)∧ (x1 ∨ x3)

x3

0 1

x2

x1 x3

0 1

0 1 1 0

marijn@cmu.edu 30 / 42

DPLL: Example

FDPLL := (x1 ∨ x2 ∨ x3)∧ (x1 ∨ x2 ∨ x3)∧

(x1 ∨ x2 ∨ x3)∧ (x1 ∨ x3)∧ (x1 ∨ x3)

x3

0 1

x2

x1 x3

0 1

0 1 1 0

marijn@cmu.edu 30 / 42

DPLL: Example

FDPLL := (x1 ∨ x2 ∨ x3)∧ (x1 ∨ x2 ∨ x3)∧

(x1 ∨ x2 ∨ x3)∧ (x1 ∨ x3)∧ (x1 ∨ x3)

x3

0 1

x2

x1 x3

0 1

0 1 1 0

marijn@cmu.edu 30 / 42

DPLL: Slightly Harder Example

Slightly Harder Example 3

Construct a DPLL tree for:

(a∨ b∨ c)∧ (a∨ b∨ c)∧
(b∨ c∨ d)∧ (b∨ c∨ d)∧
(a∨ c∨ d)∧ (a∨ c∨ d)∧
(a∨ b∨ d)

marijn@cmu.edu 31 / 42

SAT Solving: Decision and Implications

Decision variables
Variable selection heuristics and direction heuristics

Play a crucial role in performance

Implied variables
Assigned by reasoning (e.g. unit propagation)

Maximizing the number of implied variables is an
important aspect of look-ahead SAT solvers

marijn@cmu.edu 32 / 42

SAT Solving: Clauses ↔ assignments

A clause C represents a set of falsified assignments, i.e.
those assignments that falsify all literals in C

A falsifying assignment α for a given formula represents
a set of clauses that follow from the formula
• For instance with all decision variables
• Important feature of conflict-driven SAT solvers

marijn@cmu.edu 33 / 42

Introduction

Terminology

Basic Solving Techniques

Solvers and Benchmarks

marijn@cmu.edu 34 / 42

SAT Solving Paradigms

Conflict-driven
search for short refutation, complete

examples: lingeling, glucose, CaDiCaL, kissat

Look-ahead
extensive inference, complete

examples: march, OKsolver, kcnfs

Local search
local optimizations, incomplete

examples: probSAT, UnitWalk, DDFW, Dimetheus

marijn@cmu.edu 35 / 42

Progress of SAT Solvers

0 1,000 2,000 3,000 4,000 5,000
0

50

100

150

200

250

CPU time

so
lv
ed

in
st
a
n
ce
s

SAT Competition Winners on the SC2020 Benchmark Suite

kissat-2020
maple-lcm-disc-cb-dl-v3-2019
maple-lcm-dist-cb-2018
maple-lcm-dist-2017
maple-comsps-drup-2016
lingeling-2014
abcdsat-2015
lingeling-2013
glucose-2012
glucose-2011
cryptominisat-2010
precosat-2009
minisat-2008
berkmin-2003
minisat-2006
rsat-2007
satelite-gti-2005
zchaff-2004
limmat-2002

data produced by Armin Biere and Marijn Heule

marijn@cmu.edu 36 / 42

Applications: Industrial

Model checking
• Turing award ’07 Clarke, Emerson, and Sifakis

Software verification

Hardware verification

Equivalence checking

Planning and scheduling

Cryptography

Car configuration

Railway interlocking

marijn@cmu.edu 37 / 42

Applications: Crafted

Combinatorial challenges and solver obstruction instances

Pigeon-hole problems

Tseitin problems

Mutilated chessboard problems

Sudoku

Factorization problems

Ramsey theory

Rubik’s cube puzzles

marijn@cmu.edu 38 / 42

Random k-SAT: Introduction

All clauses have length k

Variables have the same probability to occur

Each literal is negated with probability of 50%

Density is ratio Clauses to Variables

marijn@cmu.edu 39 / 42

Random 3-SAT: % satisfiable, the phase transition

1 2 3 4 5 6 7 8
0

25

50

75

100

50
40
30
20
10

variables

clause-variable density

marijn@cmu.edu 40 / 42

Random 3-SAT: exponential runtime, the threshold

1 2 3 4 5 6 7 8
0

1,000

2,000

3,000

4,000

5,000

50
40
30
20
10

variables

clause-variable density

marijn@cmu.edu 41 / 42

SAT Game

SAT Game
by Olivier Roussel

http://www.cs.utexas.edu/~marijn/game/

marijn@cmu.edu 42 / 42

http://www.cs.utexas.edu/~marijn/game/

	Introduction
	Terminology
	Basic Solving Techniques
	Solvers and Benchmarks

