
SAT and SMT Solvers in Practice

Marijn J.H. Heule

http://www.cs.cmu.edu/~mheule/15816-f24/

https://github.com/marijnheule/sat-examples.git

Automated Reasoning and Satisfiability
September 9, 2024

SAT and SMT Solvers in Practice 1 / 35

http://www.cs.cmu.edu/~mheule/15816-f24/

DIMACS: SAT solver input format

The DIMACS format for SAT solvers has three types of lines:

header: p cnf n m in which n denotes the highest
variable index and m the number of clauses

clauses: a sequence of integers ending with “0”

comments: any line starting with “c ”

(a∨ b∨ c) ∧
(a∨ b∨ c) ∧
(b∨ c∨ d) ∧
(b∨ c∨ d) ∧
(a∨ c∨ d) ∧
(a∨ c∨ d) ∧
(a∨ b∨ d)

c example

p cnf 4 7

1 2 -3 0

-1 -2 3 0

2 3 -4 0

-2 -3 4 0

1 3 4 0

-1 -3 -4 0

-1 2 4 0

SAT and SMT Solvers in Practice 2 / 35

DIMACS: SAT solver output format

The solution line of a SAT solver starts with “s ”:

s SATISFIABLE: The formula is satisfiable

s UNSATISFIABLE: The formula is unsatisfiable

s UNKNOWN: The solver cannot determine satisfiability

In case the formula is satisfiable, the solver emits a certificate:

lines starting with “v ”

a list of integers ending with 0

e.g. v -1 2 4 0

In case the formula is unsatisfiable, then most solvers support
emitting a proof of unsatisfiability to a separate file

SAT and SMT Solvers in Practice 3 / 35

CaDiCaL: download and install

Most SAT solvers are implemented in C/C++

CaDiCaL is one of the strongest SAT solvers. As the name
suggests it is based on CDCL. Recommended for Linux and
macOS users.

obtain CaDiCaL:

git clone

https://github.com/arminbiere/cadical.git

cd cadical

./configure; make

to run: ./build/cadical formula.cnf

SAT and SMT Solvers in Practice 4 / 35

Kissat: download and install

Most SAT solvers are implemented in C/C++

Kissat is successor of CaDiCaL and it is written in C.
Recommended for Linux and macOS users.

obtain Kissat:

git clone

https://github.com/arminbiere/kissat.git

cd kissat

./configure; make

to run: ./build/kissat formula.cnf

SAT and SMT Solvers in Practice 4 / 35

SAT4J: download and install

SAT4J is a SAT solver in Java. It is also based on CDCL.
Recommended for windows users.

obtain SAT4J:

git clone

https://github.com/marijnheule/sat-examples.git

cd sat-examples

to run: java -jar org.sat4j.core-2.3.1.jar formula.cnf

SAT and SMT Solvers in Practice 5 / 35

UBCSAT: download and install

UBCSAT is a collection of local search SAT solvers.

obtain UBCSAT:

download and unzip
http://ubcsat.dtompkins.com/downloads/

ubcsat-beta-12-b18.tar.gz

cd ubcsat-beta-12-b18

make clean; make

to run: ./ubcsat -alg ddfw -i formula.cnf

there are many LS algorithms to choose from (-alg)
./ubcsat -ha (shows the available algorithms)

SAT and SMT Solvers in Practice 6 / 35

http://ubcsat.dtompkins.com/downloads/ubcsat-beta-12-b18.tar.gz
http://ubcsat.dtompkins.com/downloads/ubcsat-beta-12-b18.tar.gz

YalSAT: download and install

YalSAT: yet another local search SAT solver:

obtain YalSAT:

git clone

https://github.com/arminbiere/yalsat.git

cd yalsat

./configure.sh; make

to run: ./yalsat formula.cnf

A powerful local search solver from the author of CaDiCaL and
Kissat

SAT and SMT Solvers in Practice 7 / 35

Many SAT solvers

Many SAT solvers have been developed

Lots of them participate in the annual SAT competition

All code of participants in open source

Each solver is run on hundreds of benchmarks

Large timeout 5000 seconds

For details and downloading more solvers visit
http://satcompetition.org/

SAT and SMT Solvers in Practice 8 / 35

http://satcompetition.org/

Demo: SAT Solving

SAT and SMT Solvers in Practice 9 / 35

Graph coloring

Given a graph G(V, E), can the vertices be colored
with k colors such that for each edge (v,w) ∈ E,
the vertices v and w are colored differently.

SAT and SMT Solvers in Practice 10 / 35

Graph coloring encoding

Variables Range Meaning

xv,i
i ∈ {1, . . . , c}

v ∈ {1, . . . , |V |}
node v has color i

Clauses Range Meaning
(xv,1 ∨ xv,2 ∨ · · ·∨ xv,c) v ∈ {1, . . . , |V |} v is colored

(xv,s ∨ xv,t)
s ∈ {1, . . . , c− 1}
t ∈ {s+ 1, . . . , c}

v has at most
one color

(xv,i ∨ xw,i) (v,w) ∈ E
v and w have a
different color

SAT and SMT Solvers in Practice 11 / 35

Graph coloring encoding code

SAT and SMT Solvers in Practice 12 / 35

Demo: Encode, Decode

SAT and SMT Solvers in Practice 13 / 35

Unsatisfiable cores

An unsatisfiable core of an unsatisfiable formula F is a subset
of F that is unsatisfiable.

An minimal unsatisfiable core of an unsatisfiable formula such
that the removal of any clause makes the formula satisfiable.

Extracting a minimal unsatisfiable core from a formula has
many applications, but the computational costs could be high.

maxSAT

diagnosis

formal verification

SAT and SMT Solvers in Practice 14 / 35

Proofs

A proof of unsatisfiability is a certificate that a given formula
is unsatisfiable.

Various proof producing methods exists (another lecture).

Proof checking tools cannot only validate a proof but also
produce additional information about the formula:

unsatisfiable core

optimized proof

DRAT-trim is a tool that validates proofs and produces such
information

SAT and SMT Solvers in Practice 15 / 35

Demo: Core Extraction

SAT and SMT Solvers in Practice 16 / 35

StarExec

StarExec is a cross community logic solving service

Great to evaluate solvers/heuristics in parallel

Also used to run the SAT/SMT competitions

Register at https://www.starexec.org/

select SAT as your community

SAT and SMT Solvers in Practice 17 / 35

https://www.starexec.org/

Demo: StarExec

SAT and SMT Solvers in Practice 18 / 35

Tools for making SAT-based modeling easier

PySAT is a Python toolkit that makes it easier for users to call
SAT solvers and build encodings using Python:

https://pysathq.github.io/

SAT solver is still written in C, C++
Interface includes several encodings for linear constraints:

• At-most-one constraints
• Cardinality constraints
• AIGER circuits to CNF
• . . .

Well documented

Active development

SAT and SMT Solvers in Practice 19 / 35

https://pysathq.github.io/

Demo: PySAT

SAT and SMT Solvers in Practice 20 / 35

Satisfiability Modulo Theories (SMT)

SAT and SMT Solvers in Practice 21 / 35

SMT at Microsoft: Test Input Generation

SAT and SMT Solvers in Practice 22 / 35

SMT at Amazon Web Services: Provable Security

SAT and SMT Solvers in Practice 23 / 35

SMT-LIB: SMT solver input format (I)

http://smtlib.cs.uiowa.edu/

Language has similarities with functional languages and it is
more readable than CNF. Theories:

Arrays,

Bitvectors,

Boolean predicates,

Floating point,

Ints,

Reals

SAT and SMT Solvers in Practice 24 / 35

http://smtlib.cs.uiowa.edu/

SMT-LIB: SMT solver input format (II)

SAT and SMT Solvers in Practice 25 / 35

SMT-LIB: SMT solver input format (III)

SAT and SMT Solvers in Practice 26 / 35

SMT Solvers

Z3 (Microsoft):
https://github.com/Z3Prover/z3/wiki

CVC5 (Stanford): https://cvc5.github.io/

Yices (SRI): http://yices.csl.sri.com/

Bitwuzla (Stanford): https://bitwuzla.github.io/

SAT and SMT Solvers in Practice 27 / 35

https://github.com/Z3Prover/z3/wiki
https://cvc5.github.io/
http://yices.csl.sri.com/
https://bitwuzla.github.io/

SMT Solvers

We recommend the use of Z3:

Tutorial:
https://theory.stanford.edu/~nikolaj/

programmingz3.html

APIs for Python, C++, Java

MIT License: https://github.com/Z3Prover/z3

Most used and cited SMT solver (>9,500 citations)

SAT and SMT Solvers in Practice 27 / 35

https://theory.stanford.edu/~nikolaj/programmingz3.html
https://theory.stanford.edu/~nikolaj/programmingz3.html
https://github.com/Z3Prover/z3

Proving program equivalence in SMT

φa ≡(out0 a = in0 a)∧ (out1 a = out0 a× in0 a)∧

(out2 a = out1 a× in0 a)

φb ≡out0 b = (in0 b× in0 b)× in0 b

To show these programs are equivalent, we must show the following
formula is valid: in0 a = in0 b∧φa ∧φb =⇒ out2 a = out0 b

SAT and SMT Solvers in Practice 28 / 35

Demo: Program equivalence with SMT solving (BV)

SAT and SMT Solvers in Practice 29 / 35

Demo: Program equivalence with SMT solving (Int)

SAT and SMT Solvers in Practice 30 / 35

Demo: Program equivalence with SMT solving (UF)

SAT and SMT Solvers in Practice 31 / 35

Graph coloring encoding in SMT

Variables:

Integer variables xi for each node

Constraints:

1 ≤ xi ≤ c

xi ̸= xj for (xi, xj) ∈ E

SAT and SMT Solvers in Practice 32 / 35

Graph coloring encoding code

SAT and SMT Solvers in Practice 33 / 35

Demo: Encoding in SMT

SAT and SMT Solvers in Practice 34 / 35

Unsatisfiable cores in SMT

SAT and SMT Solvers in Practice 35 / 35

	Introduction

