SAT and SMT Solvers in Practice

Marijn J.H. Heule

Carnegie
Mellon
University

http://www.cs.cmu.edu/~mheule/15816-£24/
https://github.com/marijnheule/sat-examples.git

Automated Reasoning and Satisfiability
September 9, 2024

SAT and SMT Solvers in Practice 1/35

http://www.cs.cmu.edu/~mheule/15816-f24/

DIMACS: SAT solver input format

The DIMACS format for SAT solvers has three types of lines:

m header: p cnf n min which n denotes the highest
variable index and m the number of clauses

m clauses: a sequence of integers ending with “0"
m comments: any line starting with “c "

Cc example

p cnf 4
(aVbVc) A 1 2-30
(@vboVe) A -1 -2 30
(bVeVd) A 2 3-40
(bVevd) A -2 -3 40
(aVeVd) A 1 3 40
(@veVvd A -1-3-40
(@vbVvd) -1 2 40

SAT and SMT Solvers in Practice 2/35

DIMACS: SAT solver output format

The solution line of a SAT solver starts with “s ":
m s SATISFIABLE: The formula is satisfiable
m s UNSATISFIABLE: The formula is unsatisfiable
m s UNKNOWN: The solver cannot determine satisfiability

In case the formula is satisfiable, the solver emits a certificate:
m lines starting with “v "
m a list of integers ending with 0

meg. v-1240

In case the formula is unsatisfiable, then most solvers support
emitting a proof of unsatisfiability to a separate file

SAT and SMT Solvers in Practice 3/35

CaDiCal: download and install

Most SAT solvers are implemented in C/C++

CaDiCal is one of the strongest SAT solvers. As the name
suggests it is based on CDCL. Recommended for Linux and
macOS users.

obtain CaDiCalL:

m git clone
https://github.com/arminbiere/cadical.git

m cd cadical
m ./configure; make

to run: ./build/cadical formula.cnf

SAT and SMT Solvers in Practice

4/35

Kissat: download and install

Most SAT solvers are implemented in C/C++

Kissat is successor of CaDiCal and it is written in C.
Recommended for Linux and macOS users.

obtain Kissat:

m git clone
https://github.com/arminbiere/kissat.git

m cd kissat
m ./configure; make

to run: ./build/kissat formula.cnf

SAT and SMT Solvers in Practice 4/35

SAT4J: download and install

SAT4] is a SAT solver in Java. It is also based on CDCL.
Recommended for windows users.

obtain SAT4J:

m git clone
https://github.com/marijnheule/sat-examples.git

m cd sat-examples

to run: java -jar org.sat4j.core-2.3.1.jar formula.cnf

SAT and SMT Solvers in Practice 5/ 35

UBCSAT: download and install

UBCSAT is a collection of local search SAT solvers.

obtain UBCSAT:

m download and unzip
http://ubcsat.dtompkins.com/downloads/
ubcsat-beta-12-bl8.tar.gz

m cd ubcsat-beta-12-b18
m make clean; make

to run: ./ubcsat -alg ddfw -i formula.cnf

there are many LS algorithms to choose from (-alg)
./ubcsat -ha (shows the available algorithms)

SAT and SMT Solvers in Practice

6/ 35

http://ubcsat.dtompkins.com/downloads/ubcsat-beta-12-b18.tar.gz
http://ubcsat.dtompkins.com/downloads/ubcsat-beta-12-b18.tar.gz

YalSAT: download and install

YalSAT: yet another local search SAT solver:

obtain YalSAT:

m git clone
https://github.com/arminbiere/yalsat.git

m cd yalsat
m ./configure.sh; make

to run: ./yalsat formula.cnf

A powerful local search solver from the author of CaDiCal and
Kissat

SAT and SMT Solvers in Practice 7/35

Many SAT solvers

Many SAT solvers have been developed

Lots of them participate in the annual SAT competition
m All code of participants in open source
m Each solver is run on hundreds of benchmarks
m Large timeout 5000 seconds

For details and downloading more solvers visit
http://satcompetition.org/

SAT and SMT Solvers in Practice 8 /35

http://satcompetition.org/

Demo: SAT Solving

SAT and SMT Solvers in Practice 9/35

Graph coloring

Given a graph G(V,E), can the vertices be colored
with k colors such that for each edge (v,w) € E,
the vertices v and w are colored differently.

28
>
G

SAT and SMT Solvers in Practice 10 / 35

Graph coloring encoding

Variables Range Meaning
Xy pellnel ode v has color 1
i n r
’ vel{l,... |V}
Clauses Range Meaning

(X VX V- Vx) vell, ..., |V} v is colored

se{l,...,c—1} v has at most

(Xu,s V%o 1) te{s+1,...,c} one color

v and w have a

(Xu,i V Xowsi) (v,w) € E different color

SAT and SMT Solvers in Practice 11/ 35

#include <stdio.h>
#include <stdlib.h>

int main (int argc, charsx argv) {
FILEx graph = fopen (argv[1l, "r");
int i, j, a, b, nVertex, nEdge, nColor = atoi (argv[2]);
fscanf (graph, " p edge %i %i ", &nVertex, &nEdge);

printf ("p cnf %i %i\n", nVertex * nColor, nVertex + nEdge * nColor);

for (i = @; i < nVertex; i++) {
for (j = 1; j <= nColor; j++)
printf ("%i ", i % nColor + j);
printf ("e\n"); }

while (1) {
int tmp = fscanf (graph, " e %i %i ", &a, &b);
if (tmp == @ || tmp == EOF) break;

for (j = 1; j <= nColor; j++)
printf ("-%i -%i @\n", (a-1) * nColor + j, (b-1) * nColor + j);

Demo: Encode, Decode

SAT and SMT Solvers in Practice 13 /35

Unsatisfiable cores

An unsatisfiable core of an unsatisfiable formula F is a subset
of F that is unsatisfiable.

An minimal unsatisfiable core of an unsatisfiable formula such
that the removal of any clause makes the formula satisfiable.

Extracting a minimal unsatisfiable core from a formula has
many applications, but the computational costs could be high.

m maxSAT
m diagnosis
m formal verification

SAT and SMT Solvers in Practice 14 /35

Proofs

A proof of unsatisfiability is a certificate that a given formula
is unsatisfiable.

Various proof producing methods exists (another lecture).

Proof checking tools cannot only validate a proof but also
produce additional information about the formula:

m unsatisfiable core
m optimized proof

DRAT-trim is a tool that validates proofs and produces such
information

SAT and SMT Solvers in Practice 15 / 35

Demo: Core Extraction

SAT and SMT Solvers in Practice 16 / 35

StarExec

StarExec is a cross community logic solving service
m Great to evaluate solvers/heuristics in parallel
m Also used to run the SAT/SMT competitions

Register at https://www.starexec.org/
m select SAT as your community

SAT and SMT Solvers in Practice 17 / 35

https://www.starexec.org/

Demo: StarExec

SAT and SMT Solvers in Practice 18 / 35

Tools for making SAT-based modeling easier

PySAT is a Python toolkit that makes it easier for users to call
SAT solvers and build encodings using Python:
m https://pysathq.github.io/

m SAT solver is still written in C, C4++
m Interface includes several encodings for linear constraints:

® At-most-one constraints
® Cardinality constraints
® AIGER circuits to CNF

m Well documented
m Active development

SAT and SMT Solvers in Practice 19 / 35

https://pysathq.github.io/

Demo: PySAT

SAT and SMT Solvers in Practice 20 / 35

Satisfiability Modulo Theories (SMT)

' conflicts !
. lemmas
_________ | propagations |

SAT and SMT Solvers in Practice 21/ 35

SMT at Microsoft: Test Input Generation

Path Condition

Run Test and Monitor Execution

Path

Test
Inputs

New input t

23

seed

Constraint
System

Unexplored path

{#} 1 Programmer

Microsoft Z3 Theorem Prover Wins Award

Microsoft Research's Z3 theorem prover has been awarded the 2015 ACM SIGPLAN Programming
Languages Software Award. Z3banner.

Jun 24, 2015

SAT and SMT Solvers in Practice 22 / 35

SMT at Amazon Web Services: Provable Security

Automated reasoning versus machine learning: How AWS
provides secure access control without data

“ VIDEO EXCLUSIVE BY BETSY AMY-VOGT

SAT and SMT Solvers in Practice 23 /35

SMT-LIB: SMT solver input format (I)

http://smtlib.cs.uiowa.edu/

Language has similarities with functional languages and it is
more readable than CNF. Theories:

m Arrays,

m Bitvectors,

m Boolean predicates,
m Floating point,

m Ints,

m Reals

SAT and SMT Solvers in Practice 24 /35

http://smtlib.cs.uiowa.edu/

(set-logic QF_UF)
(declare-const p Bool)
(assert Cand p (not p)))
(check-sat)

(exit)

(set-logic QF_LIA)

(declare-const x Int)
(declare-const y Int)

(ossert (= (- xy) G+ x (- y) 1))
{check-sat)

(exit)

SMT Solvers

m Z3 (Microsoft):
https://github.com/Z3Prover/z3/wiki

m CVC5 (Stanford): https://cvch.github.io/
m Yices (SRI): http://yices.csl.sri.com/
m Bitwuzla (Stanford): https://bitwuzla.github.io/

SAT and SMT Solvers in Practice 27 / 35

https://github.com/Z3Prover/z3/wiki
https://cvc5.github.io/
http://yices.csl.sri.com/
https://bitwuzla.github.io/

SMT Solvers

We recommend the use of Z3:

m Tutorial:
https://theory.stanford.edu/~nikolaj/
programmingz3.html

m APlIs for Python, C++, Java
m MIT License: https://github.com/Z3Prover/z3
m Most used and cited SMT solver (>9,500 citations)

SAT and SMT Solvers in Practice 27 / 35

https://theory.stanford.edu/~nikolaj/programmingz3.html
https://theory.stanford.edu/~nikolaj/programmingz3.html
https://github.com/Z3Prover/z3

Proving program equivalence in SMT

1 int power3(int in) 1 int power3 new (int in)
2 { 2 {
3 int i, out.a; 3 int out.b;
4 out_.a = in; 4
for (i = 0; 1 < 2; i++4) 5 out.b = (in * in) * in;
6 out_.a = out.a * in; 6
7 return out.a; 7 return out_b;
s } 8 }

©q =(outO_a = in0_a) A (outl_a = outO_a x in0_a)A\
(out2_a = outl_a x in0_a)
@ =out0_b = (in0_b x in0_b) x in0_b

To show these programs are equivalent, we must show the following
formula is valid: in0_a =in0_b A\ @q N\ @, — out2_a = outO_b

SAT and SMT Solvers in Practice 28 /35

Demo: Program equivalence with SMT solving (BV)

© 0N O U A WN R

e e s =
W N U A WNRS

SAT and SMT Solvers in Practice

(declare-fun out@_a () (_ BitVec 128))
(declare-fun outl_a () (_ BitVec 128))
(declare-fun in@_a () (_ BitVec 128))
(declare-fun out2_a () (_ BitVec 128))
(declare-fun out@_b () (_ BitVec 128))
(declare-fun in@_b () (_ BitVec 128))
(define-fun phi_a () Bool

(and (= out@_a in@_a) ; outd_a = in0_a

(and (= outl_a (bvmul out@_a in@_a)) ; outl_a = out@_a * in@_a
(= out2_a (bvmul outl_a in@_a))))) ; out2_a = outl_a x ind_a

(define-fun phi_b () Bool

(= out@_b (bvmul (bvmul in@_b in@_b) in@_b))) ; out@_b = in@_b % in@_b * in@_b
(define—fun phi_input () Bool

(= in@_a in@_b))
(define-fun phi_output () Bool

(= out2_a out@_b))
(assert (not (=> (and phi_input phi_a phi_b) phi_output)))
(check-sat)

29 /35

Demo: Program equivalence with SMT solving (Int)

1 (declare-fun
2 (declare-fun
3 (declare-fun
4 (declare-fun
5 (declare-fun
6 (declare-fun
7

8

9
10
11
12
13
14
15
16
17
18 (check-sat)

outd_a () (Int))
outl_a () (Int))
in@_a () (Int))
out2_a () (Int))
outd_b () (Int))
in@_b () (Int))

(define-fun phi_a () Bool
(and (= out@_a in@_a) ; outd_a

= 1in0_a

(and (= outl_a (* out@_a in@_a)) ; outl_a = out@_a * in0d_a
(= out2_a (* outl_a in@_a))))) ; out2_a = outl_a * in@_a

(define-fun phi_b () Bool
(= out@_b (x (x in@_b in@_b) in@_b))) ; outd_b = in0_b * ind_b * in0d_b
(define-fun phi_input () Bool
(= in@_a in@_b))
(define-fun phi_output () Bool
(= out2_a out@_b))
(assert (not (=> (and phi_input phi_a phi_b) phi_output)))

SAT and SMT Solvers in Practice

30/

35

Demo: Program equivalence with SMT solving (UF)

© 0N U A WN R

e e e I e e = =
VW ~NOU A WNRS

SAT and SMT Solvers in Practice 31/

(declare-fun out@_a () (_ BitVec 128))
(declare-fun outl_a () (_ BitVec 128))
(declare-fun in@_a () (_ BitVec 128))
(declare-fun out2_a () (_ BitVec 128))
(declare-fun out@_b () (_ BitVec 128))
(declare-fun in@_b () (_ BitVec 128))
(declare-fun f ((_ BitVec 128) (_ BitVec 128)) (_ BitVec 128))
(define-fun phi_a () Bool

(and (= out@_a in@_a) ; outd_a = in0_a

(and (= outl_a (f out0_a in@_a)) ; outl_a = outf_a * in0d_a
(= out2_a (f outl_a in@_a))))) ; out2_a = outl_a * in@_a

(define-fun phi_b () Bool

(= out@_b (f (f in@_b in@_b) in@_b))) ; outd_b = ind_b * in@_b * in0_b
(define-fun phi_input () Bool

(= in@_a in@_b))
(define-fun phi_output () Bool

(= out2_a outo_b))
(assert (not (=> (and phi_input phi_a phi_b) phi_output)))
(check-sat)

35

Graph coloring encoding in SMT

S,

BN

Variables:

m Integer variables x; for each node
Constraints:

Bl <x;<c

m X # X for (xi,%;) € E

SAT and SMT Solvers in Practice 32 /35

from z3 import *
Lmport sys

with open(sys.argv[1]) as f:
content = f.readlines()

nodes=int({content[@].split(Q[2]1)
edges=int(content[@].split(Q[3])
s = Solver()

variables = []

for id in range(1l,nodes+1):
variables.append(Int('x'+str(id)))

s.add(And(1 <= variables[id-1], variables[id-1] <= int(sys.argv[2])))

for line in content:
1f line[@]=="p"':

continue
else:
edge=line.split()
s.add((variables[int(edge[1])-1])!=(variables[int(edge[2])-1]))
s.check()

print(s.model())

Demo: Encoding in SMT

SAT and SMT Solvers in Practice 34 / 35

(set-option :produce-unsat-cores true)
(set-logic QF_UF)
(declare-const p Bool) (declare-const q Bool) (declare-const r Bool)

(declare-const s Bool) (declare-const t Bool)
(assert (! (=> p q) :named PQ))
(assert (! (=> q r) :named QR))
(assert (! (= r s) :named RS))
Cassert (! (== s t) :named ST))

(assert (! (not (=> q s)) :named NQS))
(check-sat)

({get-unsat-core)

(exit)

	Introduction

