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The Right Representation is Crucial

What makes some problems hard and others easy?
Does the representation enable efficient reasoning?

The famous pigeonhole principle
» Hard for many automated reasoning approaches
» Easy for a little kid given the right representation

source: pecanpartnership.co.uk/2016,/01/05/beware-pigeon-hole-
overcoming-stereotypes-build-collaborative-culture
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Encoding problems into SAT

Architectural 3D Layout
[VSMM '07]
Henriette Bier

Edge-matching Puzzles
[LaSh '08]

Graceful Graphs
[AAAI '10]
Toby Walsh

Clique-Width
[SAT '13, TOCL '15]
Stefan Szeider

Firewall Verification
[SSS '16]
Mohamed Gouda

Open Knight Tours
Moshe Vardi
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Van der Waerden numbers
[EJoC '07]

Software Model Synthesis
[ICGI '10, ESE '13]
Sicco Verwer

Conway's Game of Life
[EJoC '13]
Willem van der Poel

Connect the Pairs
Donald Knuth

Pythagorean Triples
[SAT '16, CACM '17]
Victor Marek

Collatz conjecture [Open]
Emre Yolcu

Scott Aaronson
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Common Constraints
Tseitin Transformation
Representing Integers
Cardinality Constraints

Hamiltonian Cycles
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Common Constraints
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Common Constraints: Consistency and Arc-Consistency

» Let us consider an encoding of a constraint C with a
correspondence between assignments of the variables in C
with Boolean assignments of the variables in the encoding

» The encoding is consistent if whenever is partial
assignment inconsistent w.r.t. C (i.e., cannot be extended
to a solution of C), unit propagation results in a conflict
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Common Constraints: Consistency and Arc-Consistency

» Let us consider an encoding of a constraint C with a
correspondence between assignments of the variables in C
with Boolean assignments of the variables in the encoding

» The encoding is consistent if whenever is partial
assignment inconsistent w.r.t. C (i.e., cannot be extended
to a solution of C), unit propagation results in a conflict

» The encoding is arc-consistent if
1. it is consistent, and
2. unit propagation discards values that cannot be assigned

» These are good properties for encodings: SAT solvers are
very good at unit propagation!
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Common Constraints: AtMostOne
E.g. the ATMOSTONE constraint X1 + X3 + ... +x, < 1:

» Consistency = if there are two variables x; assigned to
true then unit propagation should give a conflict

» Arc-consistency = Consistency + if there is one x;
assigned to true then all others x; should be assigned to

false by unit propagation
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Common Constraints: AtMostOne
E.g. the ATMOSTONE constraint X1 + X3 + ... +x, < 1:

» Consistency = if there are two variables x; assigned to
true then unit propagation should give a conflict

» Arc-consistency = Consistency + if there is one x;
assigned to true then all others x; should be assigned to

false by unit propagation

The direct encoding requires n(n — 1)/2 binary clauses:

N\ ®VX)

1<i<j<n

Is it possible to use fewer clauses?
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Common Constraints: Compact AtMostOne

Given a set of Boolean variables x1,...,x;,, how to encode
ATMOSTONE (X1, ...,Xn)

into SAT using a linear number of binary clauses?
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Common Constraints: Compact AtMostOne

Given a set of Boolean variables x1,...,x;,, how to encode
ATMOSTONE (X1, ...,Xn)

into SAT using a linear number of binary clauses?

Use auxiliary variables: Apply the direct encoding if n < 4
otherwise replace ATMOSTONE (x1,...,X,) by

ATMOSTONE (X1,X2,X3,5) /\ ATMOSTONE (Y, X4y ..., Xp)
resulting in 3n — 6 clauses and (n — 3)/2 new variables

Note: ATMOSTONE (X1,X2,X3,J) =

ATMOSTONE (X],Xz,Xg) AN (i] \/y) A\ (iz \/y) AN (ig \/y) =

ATMOSTONE (x1,%2,%3) N\ (X1 VX2V x3) =y
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Common Constraints: Non-Consistent AtLeastOne

Given a set of Boolean variables xi,...,X,, how to encode
Xi 4t Xy 21
into SAT?

Hint: This is easy...
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Common Constraints: Non-Consistent AtLeastOne

Given a set of Boolean variables xi,...,X,, how to encode
Xi 4t Xy 21
into SAT?

Hint: This is easy...
(X1 VxaV---Vx,)

Example

The following encoding of x; + X2 + X3 + x4 > 1 is not
consistent (using auxiliary variables y and z):

(YVzVx)AYVzVx) ANGQVzVx3) ANGVZVxy)
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Common Constraints: Exclusive OR

Given a set of Boolean variables xi,...,X,, how to encode
XOR(X9y.vvyXn)
into SAT using a linear number of binary clauses?

The direct encoding requires 2! clauses of length n:

N\ VRV V)

even #—
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Common Constraints: Exclusive OR

Given a set of Boolean variables xi,...,X,, how to encode
XOR(X9y.vvyXn)
into SAT using a linear number of binary clauses?

The direct encoding requires 2! clauses of length n:

N\ VRV V)

even #—

Make it compact: XOR (x1,%2,%3,Y) /A XOR (y, X4y ..., Xn)
Note: XOR (x1,%2,%3,Y) =y <> XOR (x1, X2, %3)

Tradeoff: more variables but fewer clauses!
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Common Constraints: Linear versus Pooled

Details regarding splitting can impact the performance

Linear encoding with cutoff k:
» XOR (X], .o ,Xk,g) A\ XOR (y,Xk+1, .o ,Xn)

Pooled encoding with cutoff k:
» XOR (X1y.-+y X1, g) /A XOR (Xks1y -+ -y Xy Y)

| always use the pooled encoding, e.g. for matrix
multiplication instances [SAT'19], as it appears more effective
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Common Constraints: Impact on Matrix Multiplication
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AtMostOne: Satisfiability Equivalence

Are these two encoding of ATMOSTONE(x1, ;) equivalent?

Fi (direct encoding) | F, (split encoding)
X1 VX, X1 Vy
7V %

Question: Is Fy equivalent to F,?

Note: F; « F, is valid if =F; A F, and F; /A —F; are
unsatisfiable.
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AtMostOne: Satisfiability Equivalence

Are these two encoding of ATMOSTONE(x1,X;) equivalent?

Fi (direct encoding) | F, (split encoding)
7_(] V iz f] V Yy
yVx,

Is =F; /A F, unsatisfiable?

Note: =F; = x1 A xy
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AtMostOne: Satisfiability Equivalence

Are these two encoding of ATMOSTONE(x1,X;) equivalent?

Fi (direct encoding) | F, (split encoding)
7_(] V iz f] V Yy
yVx,

Is —=F; /A F, unsatisfiable? yes!

Note: =F; = x1 A xy
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AtMostOne: Satisfiability Equivalence

Are these two encoding of ATMOSTONE(x1,%;) equivalent?

F1 (direct encoding) | F, (split encoding)
X1 VX, X1 Vy
gV %

Is F; /A —F, unsatisfiable?

Note: =F, = (X Vy) A (Y Vx2) = (x1 AY) V (y/Axz)
= (X] \/y) AN (X] \/Xz) AN (g\/XZ)
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AtMostOne: Satisfiability Equivalence

Are these two encoding of ATMOSTONE(x1,%;) equivalent?

F1 (direct encoding) | F, (split encoding)
X1 VX, X1 Vy
gV %

Is F1 /A —F, unsatisfiable? no!

Note: =F, = (X Vy) A (Y Vx2) = (x1 AY) V (y/Axz)
= (X] \/y) AN (X] \/Xz) AN (‘g\/XZ)
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AtMostOne: Satisfiability Equivalence

Are these two encoding of ATMOSTONE(x1,X2) equivalent?

F1 (direct encoding) | F, (split encoding)
X1 VX, X1 Vy
gVx

F; and F, are equisatisfiable:
> F; is satisfiable iff F, is satisfiable.

Note: Equisatisfiability is weaker than equivalence but useful if
all we want we want to do is determine satisfiability.
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Tseitin Transformation
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Tseitin Transformation: Negation Normal Form

The set of propositional formulas in negation normal form
(NNF) is generated inductively as follows:

» Each propositional variable p and the negation P of a
propositional variable are in negation normal form

» If A and B are in negation normal form, then so are A /A B
and AV B

Example ((p/\ qNAT)V (r A (]3\/@)) AV (pAL)
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Tseitin Transformation: Negation Normal Form

The set of propositional formulas in negation normal form
(NNF) is generated inductively as follows:

» Each propositional variable p and the negation P of a
propositional variable are in negation normal form

» If A and B are in negation normal form, then so are A /A B
and AV B

Example ((p/\ qNAT)V (r A (ﬁ\/ﬁ))) AV (pAL)

Propositional formulas can be converted into NNF using:
»A—-B=AVB

» (AVB)=(AAB)

» (AAB)=(AVB)

»A=A
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Tseitin Transformation: Avoid Exponential Blowup
What is the complexity of transformation NNF into CNF?

» AA(BVC)=(AAB)V(AAC)
» AV(BAC)=(AVB)A(AVC)
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Tseitin Transformation: Avoid Exponential Blowup
What is the complexity of transformation NNF into CNF?

» ANBVC)=AAB)V(AACQC)

» A V(BAC)=(AVB)A(AVC(C)
In some cases, converting NNF to CNF can have an
exponential explosion on the size of the formula.

If we convert the NNF (x1 Ayq)V (x2 Ayz) V...V (xn AYn)
using the above distributive laws into CNF:

(x1Vx V.. Vx )A (Y Ve Ve Y )AL A (Y VYR Ve VYY)

» How can we avoid the exponential blowup? In this case,
the equivalent formula would have 2™ clauses!

marijn@cmu.edu 16 / 45



Tseitin Transformation: Avoid Exponential Blowup
What is the complexity of transformation NNF into CNF?

» AA(BVC)=(AAB)V(AACQC)

» AV(BAC)=(AVB)A(AVC)

In some cases, converting NNF to CNF can have an
exponential explosion on the size of the formula.

If we convert the NNF (x1 Ayq)V (x2 Ayz) V...V (xn AYn)
using the above distributive laws into CNF:
(x1Vx V.. Vx )A (Y Ve Ve Y )AL A (Y VYR Ve VYY)

» How can we avoid the exponential blowup? In this case,
the equivalent formula would have 2™ clauses!

Tseitin's transformation converts a formula F into an
equisatisfiable CNF formula that is linear in the size of F!

» Key idea: introduce auxiliary variables to represent

subformulas, and define those variables using CNF clauses
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Tseitin: Small Example

Consider the formula F=pV (q /A1)
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Tseitin: Small Example

Consider the formula F=pV (q /A1)
We can add the definition d <> (g A )

Replacing (q /A1) by d results in CNF p V' d
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Tseitin: Small Example

Consider the formula F=pV (q /A1)
We can add the definition d <> (g A )
Replacing (q /A1) by d results in CNF p V' d

The clauses representing the definition are:
(~dV QA (mdVT)A(AdV —qV—T)
An equisatisfiable formula of F in CNF is:
pPpVAA(—AVGA(—dVT)A(AV—qV—T)

Satisfying the resulting formula satisfies F on original variables
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Tseitin: A Linear-Size Transformation

Why is the Tseitin transformation interesting?
» At most a linear number of definitions
» Definitions can be easily converted into clauses
» Easily obtain a satisfying assignment for original formula
» Resulting in an efficient transformation into CNF
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Tseitin: Implementation and Optimizations

Implementation:
» Convert the formula into NNF (not necessary, good practice)
» Generate the definitions from left to right
» OR definition: d x1Vx Ve Vx =
(x1VxaV-- Vi VAA X VAA VA A A XV d)
» AND definition: d < x Axg A=+ Axy = _
X VXV Vi VA A VA A (VA A AxeVd)
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Tseitin: Implementation and Optimizations

Implementation:
» Convert the formula into NNF (not necessary, good practice)
» Generate the definitions from left to right
» OR definition: d x1Vx Ve Vx =
(x1VxaV-- Vi VAA X VAA VA A A XV d)
» AND definition: d < x Axg A=+ Axy = _
X VXV Vi VA A VA A (VA A AxeVd)

Optimizations:
» Reuse definitions when possible

» Avoid definitions by interpreting an NNF formula as a
CNF formula: e.g. pV (g/\—1)V —s
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Tseitin: Larger Example without Optimization

Convert the following NNF into CNF:
(PAGATIVIEAGBVA))AGV (pAL)

Which results in the following definitions:
> di o p/ANgAT
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Tseitin: Larger Example without Optimization

Convert the following NNF into CNF:
(PAGATIVEABVA))ABGV (pAL)

Which results in the following definitions:
> di o p/ANgAT
>» d,—-pVq
> d; o rAd;
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Tseitin: Larger Example without Optimization

Convert the following NNF into CNF:
(PAGATIV EAEVI)AGV (pAL)
Which results in the following definitions:
> di o p/ANgAT
> d;, & ﬁva
> d; = rAd
> d4 — d] V d3
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Tseitin: Larger Example without Optimization

Convert the following NNF into CNF:
(PAGATIVEABVA))ABGV (pAL)

Which results in the following definitions:
> di o p/ANgAT
>» d,—-pVq
> d; o rAd;
» dy— dyVd;
> ds =@ p/At
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Tseitin: Larger Example without Optimization

Convert the following NNF into CNF:
(PAGATIVEABVA))ABGV (pAL)

Which results in the following definitions:
di @ pAgAT

d—pVq

d; orAd

ds &~ dyVd;

ds & p /At

d¢ & sV ds

vVvvyyVvyyvVyy
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Tseitin: Larger Example without Optimization

Convert the following NNF into CNF:
(PAGATIVEABVA))ABGV (pAL)

Which results in the following definitions:
di @ pAgAT

d—pVq

d; orAd

ds &~ dyVd;

ds & p /At

d¢ & sV ds

d; < ds A\ dg

vVvVvVvyVvyVvyYvVvyy
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Tseitin: Larger Example with Optimization

Convert the following NNF into CNF:
(PAGATIV (FAEVE)ABY (pAD)

Which results in the following definitions:
> di o> p/AgAT
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Tseitin: Larger Example with Optimization
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Tseitin: Larger Example with Optimization

Convert the following NNF into CNF:
(PAGATIV (FAEVE)ABY (pAD)

Which results in the following definitions:
> di o> p/AgAT
> d, = —pV—q
> d; = r/Ad;
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Tseitin: Larger Example with Optimization

Convert the following NNF into CNF:
(PAGADV FAPVE))AGV (pAL)
Which results in the following definitions:
> di o> p/AgAT
> d, = —pV—q
> d3 LAY d,
> d4 —Pp At
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Tseitin: Larger Example with Optimization

Convert the following NNF into CNF:
(PAGATIV (FAEVE)AGY (pAL)

Which results in the following definitions:
> di o> p/AgAT
> d, = —pV—q
> d; = r/Ad;
> dy o p At

Final result: (d; V' d;3) /A (5 dg4) plus definition clauses

marijn@cmu.edu
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Tseitin Transformation: Automated Tools

» Using automated tools to encode to CNF:
limboole: http://fmv. jku.at/limboole

» Tseitin's encoding may add many redundant
variables/clauses!

» Using limboole for the pigeon hole problem (n = 3)
creates a formula with 40 variables and 98 clauses

» After unit propagation the formula has 12 variables and 28
clauses

» Original CNF formula only has 6 variables and 9 clauses
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Representing Integers
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Representing Integers: Direct Encoding

Each number i is represented by a Boolean variable: d;
At least one number is true: doV ---V d,
At most one number is true: /\;_; d; V d;

Expressing in a clause that an integer has a specific value
V requires one literal.

vvyyvyy

» For example, “if the number is 1, then do x”, is encoded
as d; V x.

» Typically effective when reasoning about a small range of
integers.
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Representing Integers: Order Encoding

Order encoding:

» Variables represent that a number is larger or equal: 0>

» Requires a linear number of binary clauses: 0>; V 041

» Expressing in a clause that an integer has a specific value
v requires two literals.

» For example, “if the number is 1, then do x", is encoded
as 0>1 V 0>, V x.

» Allows the solver to reason (and produce clauses) that
cover multiple cases.
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Representing Integers: Binary Encoding

Binary encoding:
» Use [log, n] auxiliary variables b; to represent n in binary

» All non-occurring numbers < 2M°£2™1 need to be blocked.
For example, if we have the numbers 0, 1, and 2, then the
number 3 needs to be blocked: (—byV —by)

» Expressing in a clause that an integer has a specific value
v requires [log, n] literals.

» For example, “if the number is 1, then do x", is encoded
as —by V by V x.

» Typically effective when reasoning about a large range of
integers.
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Cardinality Constraints
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Cardinality Constraints: AtMostOne

Recall ATMOSTONE constraints:
» ATMOSTONE: X1 + %) +x3+x4 <1
» Clauses for the naive (or direct) encoding:

(x1 — X2) X1 VX,
(X] — ig) X1V X3
(x1 — X4) X1V X4

> Complexity: () or O(n?) clauses
This can be reduced to a linear number using auxiliary variables

What about the general case for cardinality constraints?
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Cardinality Constraints: AtMostK

ATMOSTK constraints:
» General constraint: x; 4+ - +x, < k
» Example constraint: x; +X2 + X3+ x4 < 2
» Clauses for the naive encoding:

(X]/\Xz—)ig) (f]\/fz\/fg,)
(x1 A%y — X4) (X VX2V Xy)
(XQ /\'X3 —%'ig) (352\/’§% \/3@ﬂ

> Complexity: (,};) or O(n*) clauses

)
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Cardinality Constraints: AtMostK

ATMOSTK constraints:
» General constraint: x; 4+ - +x, < k
» Example constraint: x; +X2 + X3+ x4 < 2
» Clauses for the naive encoding:

(X]/\Xz—)ig) (f]\/fz\/fg,)
(x1 A%y — X4) (X VX2V Xy)
(Xz/\X3 — §4) (fz\/fg \/7_(4)

> Complexity: (,};) or O(n*) clauses

)

Can we build an encoding that is arc-consistent and uses a
polynomial number of clauses for at-most-k constraints?
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Cardinality Constraints: AtMostK

ATMOSTK constraints:
» General constraint: x; 4+ - +x, < k
» Example constraint: x; +X2 + X3+ x4 < 2
» Clauses for the naive encoding:

(X]/\Xz—)ig) (f]\/fz\/)_(_:,)
(x1 A%y — X4) (X VX2V Xy)
(Xz/\X3 — §4) (iz\/fg\/ﬁ)

> Complexity: (,};) or O(n*) clauses

)

Can we build an encoding that is arc-consistent and uses a
polynomial number of clauses for at-most-k constraints?

Yes! With O(n - k) auxiliary variables, we need O(n - k) clauses!
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Cardinality Constraints: Sinz Encoding

Introduce auxiliary variables s;; with the following meaning:
the sum of the first j literals is larger or equal to 1

@_,@_>@->->@ Constraint: Syi1n

@—'@—' $2,3)/ > (52,4) ¢ « ¢ Ind case: ¥j+1 V gi,j V Si41,j+1

/

@—> 1,24 51,3 A 51,4 4« Implication: Si; V 841

v
®

) (8) (x) Base case: X; \V sy
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Cardinality Constraints: Sinz Encoding

Introduce auxiliary variables s;; with the following meaning:
the sum of the first j literals is larger or equal to 1

@_.@_>@->->@ Constraint: Syi1n

@—’@" $2,3)/ > (52,4) ¢ « ¢ Ind case: i)ur] V gi,j V Si41,j+1
@—> 1,24 51,3 A 51,4 4« Implication: Si; V 841

v
®

x2) (u) (a) () Base case: X;V sy

» Arc-consistent using O(n - k) variables and clauses

» More details in paper: “Towards an Optimal CNF
Encoding of Boolean Cardinality Constraints”, CP2005
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Cardinality Constraints: Totalizer encoding (1)

What is another example of an at-most-k encoding for
L+...1 <k?

Totalizer encoding is based on a tree structure and also only
needs O(n - k) clauses/variables.

(O : 01,02,03,04,05 : 5)

(A:ai,a2:2) (B :b1,bg,bs:3)
(C l1 1) (D lz 1) (E : lg 1) (F f17f2 2)
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Cardinality Constraints: Totalizer encoding (2)
(O : 01,02,03,04,05 : 5)

(A:a1,a2:2) (B :bi,b2,bs:3)

N
7

(G:la:1) (H:1l5:1)

Use auxiliary variables to count the sum of the subtree:
> fi=lL+1l5=1
> H=hL+1l5=2

Note that only f; or f; will be assigned to 1.
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Cardinality Constraints: Totalizer encoding (3)

(O : 01,02, 03,04,05 : 5)

(A:a1,a2:2) (B :bi,b2,b3:3)

N
7

Use auxiliary variables to count the sum of the subtree:
>» =L+ +2xf=1
> by=L+f+2xf=2
> by=L+fi+2xf,=3
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Cardinality Constraints: Totalizer encoding (4)

(O : 01,02,03,04,05 : 5)

(A:ai,a2:2) (B : b1,b2, b3 : 3)
(C:l1:1) (D:l2:1) (B:l3:1) (F: f1,f2:2)

(G:la:1) (H:ls:1)

Any parent node P, counting up to np, has two children L and
R counting up to np and ny respectively s.t. N + ng = np.
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Hamiltonian Cycles
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Hamiltonian Cycles: Two Constraints

Hamiltonian Cycle Problem (HCP):
Does there exist a cycle that visits all vertices exactly once?
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Hamiltonian Cycles: Two Constraints

Hamiltonian Cycle Problem (HCP):
Does there exist a cycle that visits all vertices exactly once?

Two constraints:

» Exactly two edges per vertex: easy cardinality constraints
» Exactly one cycle: hard to be compact and arc-consistent

» One option is to ignore the constraint: lazy encoding
» Various encodings use O(|V|3). Too large for many graphs
> For large graphs we need encodings that are quasi-linear in |E]
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Hamiltonian Cycles: Lazy Encoding

Hamiltonian Cycle Problem (HCP):
Does there exist a cycle that visits all vertices exactly once?

Only encode the two-edges-per-vertex constraint

If a solution has multiple cycles: block the smallest one
» Use incremental SAT to keep conflict clauses
» SMT is based on a similar approach
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Hamiltonian Cycles: Encodings Quasi-Linear in |E|

Key elements:
» Each vertex have an index in the range {1,...,|V|}.
» Selected edges are directed.
» Each vertex has one incoming and one outgoing edge.

» For each directed edge (u,v): the index of v is the
successor of the index of uw — except for the starting vertex.
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Hamiltonian Cycles: Encodings Quasi-Linear in |E|

Key elements:
» Each vertex have an index in the range {1,...,|V|}.
» Selected edges are directed.
» Each vertex has one incoming and one outgoing edge.

» For each directed edge (u,v): the index of v is the
successor of the index of uw — except for the starting vertex.

How to implement the successor property?
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Hamiltonian Cycles: Binary Adder Encoding [Zhou 2020]

Each index is a binary number. If edge variable e, is assigned
to true then the index of v is the successor of the index of wu.

Example

Let [V| =7, thus k = [log, 7] = 3. For vertex v, variables v,
v4, and vg denote the least, middle, and most significant bit,
respectively. For an edge variable e, ,, we use the constraints:

Cu,vy — (uZ &> VZ)

(euy AU2) — (Ug & vaq)
(euw Auz) — (ug » vq)
(euy AU2) = (ug < vg)
(ewy AUg) — (ug > vg)
(ew,y Auz Aug) — (ug +» vg)
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Hamiltonian Cycles: Binary Adder Encoding [Zhou 2020]

Each index is a binary number. If edge variable e, is assigned
to true then the index of v is the successor of the index of wu.

Example

Let [V| =7, thus k = [log, 7] = 3. For vertex v, variables v,
v4, and vg denote the least, middle, and most significant bit,
respectively. For an edge variable e, ,, we use the constraints:

Cu,vy — (uZ <+>V2)

(eu,y AU2) — (ug & vy)
(eu,v /\uZ) — (LL4 <_"»\}4)
(ewv AU2) — (ug ¢ vg) e
(ewy AUg) — (ug > vg)
(euy AUz Aug) — (ug +» vg) Uy — Vo = Wy — Uy

This encoding can quickly refute odd cycles
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Hamiltonian Cycles: Linear-Feedback Shift Register

A k-bit Linear-Feedback Shift Register (LFSR) loops through
{1,...,2% — 1} by shifting all bits one position to the left and
placing the parity of some bits in the vacated position.

Example

An example LFSR of 16 bits is x17 @ X13 D X14 D X16, Which
has 2'® — 1 = 65, 535 states. The figure below shows an
illustration of this LFSR with state 10010111001011001.
The next state is 00101110010110011.

16 14 13 11 1

|1|0|0|1|0|1|1|1|0|0|1|0|1|1|0|0|1}—‘
1

S
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Hamiltonian Cycles: LFSR Encoding [Johnson 2018]

Enforcing the successor property using LFSR is compact and
has been used to efficiently find Hamiltonian cycles in Erin and

Stedman triples.

Example

Let |[V| =7, thus k = [log,(7 + 1)] = 3. We use 3-bit LFSR
X2 @ x3. The bit-vector variables of vertex v are vy, vy, and
v73. For an edge variable e, ,, we add the constraints:

Cupy — (V7,1 — (u7,2 o U«7,3)
eu,v — (V7,2 — u7,1)
eu,v — (V7,3 — uv7,2)
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Hamiltonian Cycles: LFSR Encoding [Johnson 2018]

Enforcing the successor property using LFSR is compact and
has been used to efficiently find Hamiltonian cycles in Erin and

Stedman triples.

Example

Let |[V| =7, thus k = [log,(7 + 1)] = 3. We use 3-bit LFSR
X2 @ x3. The bit-vector variables of vertex v are vy, vy, and
v73. For an edge variable e, ,, we add the constraints:

3 21
euy — (V71 & (U7 «» uy3) | olol1
eu,v — (V7,2 — u7,1) 0
eu,v — (V7,3 — uv7,2)

This encoding is compact and has lots of propagation
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Hamiltonian Cycles: Chinese Remainder Encoding [H '21]

Can we get the best all three worlds?
» Incremental SAT: Only partially encode the hard constraint
» Binary adder: refute some cycles quickly
» LFSR: few and short clauses, no auxiliary variables
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Hamiltonian Cycles: Chinese Remainder Encoding [H '21]

Can we get the best all three worlds?
» Incremental SAT: Only partially encode the hard constraint
» Binary adder: refute some cycles quickly
» LFSR: few and short clauses, no auxiliary variables

Chinese remainder encoding:
» Block all subcycles except one of length 0 (mod m)
» Pick m (can be smaller than [V]) with small prime factors
» Enforce 0 (mod p;) for each prime factor p; of m
» Use LFSR for primes > 2 and binary adder for p; = 2
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Hamiltonian Cycles: Flinders HCP Challenge Graphs

Evaluation on reasonably large instances from the Flinders
HCP Challenge Graphs suite

» Runtime (s) of CaDiCalL on binary adder and LFSR
» Smallest k such that 2% (or 2% — 1) is larger than [V|

graph # \% |E| adder (2¢)  LFSR (2 —1)
424 2466 4240 > 3600 > 3600
446 2557 4368 > 3600 > 3600
470 2740 4509 2500.61 > 3600
491 2844 4267 173.46 245.92
506 2064 4447 78.29 244.48
522 3060 4591 84.51 611.46
526 3108 4663 160.73 544.97
529 3132 4699 69.69 275.13
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Hamiltonian Cycles: Chinese Remainder Results

Evaluation with CaDiCalL on various cycle lengths (m)
X . First solution consists of multiple cycles
v . First solution consists of a single cycle

graph # 2 6 12 60 105 420

424 9.81 X 665.18 X 340.11 X 307.71 X 49411 v/ 488.70 /
446 13.24 X 334.62 X 169.52 X 380.47 X 573.38 v 72223/
470  17.08 X 166.16 X 152.31 X 933.36 X 501.91 X 840.89 v/
491 0.06 X 2204Xx T7.47/ 3445 12336 13522/
506 011 x 31.75x 19.24/ 3348/ 2873/ 63.20/
522 063X 566X 3295/ 13340+ 30.40/ 67.03/
526 0.05Xx 2416 X 7167 3437/ 3469 X 158.69 v/
529 040 ¥ 1790 X 60.19/ 48.09/ 4233/ 365.58/
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Hamiltonian Cycles: Chinese Remainder Results

Evaluation with CaDiCalL on various cycle lengths (m)

X . First solution consists of multiple cycles

v . First solution consists of a single cycle

graph # 2 6 12 60 105 420
424 9.81 X 665.18 X 340.11 x 307.71 X 494.11 v 488.70 v/
446  13.24 X 334.62 X 169.52 X 380.47 X 573.38 v/ 72223/
470  17.08 X 166.16 X 152.31 X 933.36 X 501.91 X 840.89 v/
491 0.06 X 2204x 747/ 3445v 12336 13522/
506 011 x 3175Xx 19.24 v/ 3348v 2873/ 6320/
522 063X 566X 3295v 13340+ 3040/ 67.03/
526 005X 2416Xx 7167 3437/ 3469 X 158.69/
529 040 x 1790 X 60.19v 48.09v 4233/ 36558/

Trusting a no Ham. cycle result requires verifying the encoding
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Further reading
More details about cardinality encodings can be found in:
» Sinz's encoding:
Carsten Sinz. Towards an Optimal CNF Encoding of Boolean

Cardinality Constraints. CP 2005. pp. 827-831
http://www.carstensinz.de/papers/CP-2005.pdf

» Totalizer encoding:
Olivier Bailleux, Yacine Boufkhad. Efficient CNF Encoding of
Boolean Cardinality Constraints. CP 2003. pp. 108-122
https://tinyurl.com/y6ph76au

» Modulo Totalizer encoding:
Toru Ogawa, Yangyang Liu, Ryuzo Hasegawa, Miyuki Koshimura,
Hiroshi Fujita. Modulo Based CNF Encoding of Cardinality
Constraints and Its Application to MaxSAT Solvers. ICTAI 2013.
pp. 9-17 https://ieeexplore.ieee.org/document/6735224
» Cardinality networks:
Roberto Asin, Robert Nieuwenhuis, Albert Oliveras, Enric
Rodriguez-Carbonell. Cardinality Networks and Their Applications.
SAT 2009. pp. 167-180 https://tinyurl.com/yxXwrxzxo
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