Representations for Automated Reasoning

Marijn Heule

**Carnegie
Mellon University**

<http://www.cs.cmu.edu/~mheule/15816-f24/> Automated Reasoning and Satisfiability September 4, 2024

The Right Representation is Crucial

What makes some problems hard and others easy? Does the representation enable efficient reasoning?

The famous pigeonhole principle

▶ Hard for many automated reasoning approaches

 \triangleright Easy for a little kid given the right representation

source: pecanpartnership.co.uk/2016/01/05/beware-pigeon-holeovercoming-stereotypes-build-collaborative-culture

marijn@cmu.edu 2 / 45

Encoding problems into SAT

Architectural 3D Layout [VSMM '07] Henriette Bier

Edge-matching Puzzles 5000 [LaSh '08]

Graceful Graphs [AAAI '10] Toby Walsh

Firewall Verification [SSS '16] Mohamed Gouda

Open Knight Tours Moshe Vardi

Van der Waerden numbers [EJoC '07]

Software Model Synthesis [ICGI '10, ESE '13] Sicco Verwer

Conway's Game of Life [EJoC '13] Willem van der Poel

Connect the Pairs Donald Knuth

Pythagorean Triples [SAT '16, CACM '17] Victor Marek

Collatz conjecture [Open]
Collatz conjecture [Open] Emre Yolcu Scott Aaronson

[Common Constraints](#page-4-0)

[Tseitin Transformation](#page-24-0)

[Representing Integers](#page-49-0)

[Cardinality Constraints](#page-53-0)

[Hamiltonian Cycles](#page-64-0)

marijn@cmu.edu 4 / 45

[Common Constraints](#page-4-0)

[Tseitin Transformation](#page-24-0)

[Representing Integers](#page-49-0)

[Cardinality Constraints](#page-53-0)

[Hamiltonian Cycles](#page-64-0)

marijn@cmu.edu 5 / 45

Common Constraints: Consistency and Arc-Consistency

- \blacktriangleright Let us consider an encoding of a constraint C with a correspondence between assignments of the variables in C with Boolean assignments of the variables in the encoding
- \blacktriangleright The encoding is consistent if whenever is partial assignment inconsistent w.r.t. C (i.e., cannot be extended to a solution of C), unit propagation results in a conflict

Common Constraints: Consistency and Arc-Consistency

- \blacktriangleright Let us consider an encoding of a constraint C with a correspondence between assignments of the variables in C with Boolean assignments of the variables in the encoding
- \blacktriangleright The encoding is consistent if whenever is partial assignment inconsistent w.r.t. C (i.e., cannot be extended to a solution of C), unit propagation results in a conflict
- \blacktriangleright The encoding is arc-consistent if
	- 1. it is consistent, and
	- 2. unit propagation discards values that cannot be assigned
- ▶ These are good properties for encodings: SAT solvers are very good at unit propagation!

Common Constraints: AtMostOne

E.g. the ATMOSTONE constraint $x_1 + x_2 + ... + x_n \leq 1$:

- ▶ Consistency \equiv if there are two variables x_i assigned to true then unit propagation should give a conflict
- ▶ Arc-consistency \equiv Consistency $+$ if there is one x_i assigned to *true* then all others x_i should be assigned to false by unit propagation

Common Constraints: AtMostOne

E.g. the ATMOSTONE constraint $x_1 + x_2 + ... + x_n \leq 1$:

- ▶ Consistency \equiv if there are two variables x_i assigned to true then unit propagation should give a conflict
- ▶ Arc-consistency \equiv Consistency + if there is one x_i assigned to *true* then all others x_i should be assigned to false by unit propagation

The direct encoding requires $n(n - 1)/2$ binary clauses:

$$
\bigwedge_{1\leq i < j \leq n} (\overline{x}_i \vee \overline{x}_j)
$$

Is it possible to use fewer clauses?

marijn@cmu.edu 7 / 45

Common Constraints: Compact AtMostOne

Given a set of Boolean variables x_1, \ldots, x_n , how to encode ATMOSTONE (x_1, \ldots, x_n)

into SAT using a linear number of binary clauses?

Common Constraints: Compact AtMostOne

Given a set of Boolean variables x_1, \ldots, x_n , how to encode ATMOSTONE (x_1, \ldots, x_n)

into SAT using a linear number of binary clauses?

Use auxiliary variables: Apply the direct encoding if $n \leq 4$ otherwise replace ATMOSTONE (x_1, \ldots, x_n) by

ATMOSTONE $(x_1, x_2, x_3, \overline{y}) \wedge$ ATMOSTONE $(y, x_4, ..., x_n)$

resulting in $3n - 6$ clauses and $(n - 3)/2$ new variables

Note: ATMOSTONE $(x_1, x_2, x_3, \overline{y}) \equiv$ ATMOSTONE $(x_1, x_2, x_3) \wedge (\overline{x}_1 \vee \overline{y}) \wedge (\overline{x}_2 \vee \overline{y}) \wedge (\overline{x}_3 \vee \overline{y}) \equiv$ ATMOSTONE $(x_1, x_2, x_3) \wedge (x_1 \vee x_2 \vee x_3) \rightarrow y$ marijn@cmu.edu 8 / 45

Common Constraints: Non-Consistent AtLeastOne

Given a set of Boolean variables x_1, \ldots, x_n , how to encode

$$
x_1+\cdots+x_n\geq 1
$$

into SAT?

Hint: This is easy...

Common Constraints: Non-Consistent AtLeastOne

Given a set of Boolean variables x_1, \ldots, x_n , how to encode

$$
x_1+\cdots+x_n\geq 1
$$

into SAT?

Hint: This is easy...

$$
(x_1\vee x_2\vee\cdots\vee x_n)
$$

Common Constraints: Non-Consistent AtLeastOne

Given a set of Boolean variables x_1, \ldots, x_n , how to encode

$$
x_1+\cdots+x_n\geq 1
$$

into SAT?

Hint: This is easy...

$$
(x_1 \vee x_2 \vee \cdots \vee x_n)
$$

Example

The following encoding of $x_1 + x_2 + x_3 + x_4 \geq 1$ is not consistent (using auxiliary variables y and z):

$$
(y\vee z\vee x_1)\wedge (y\vee \overline{z}\vee x_2)\wedge (\overline{y}\vee z\vee x_3)\wedge (\overline{y}\vee \overline{z}\vee x_4)
$$

marijn@cmu.edu 9 / 45

Common Constraints: Exclusive OR

Given a set of Boolean variables x_1, \ldots, x_n , how to encode $XOR(x_1, \ldots, x_n)$

into SAT using a linear number of binary clauses?

The direct encoding requires 2^{n-1} clauses of length n :

$$
\bigwedge_{\text{even} \# \neg} (\overline{x}_1 \vee \overline{x}_2 \vee \dots \vee \overline{x}_n)
$$

Common Constraints: Exclusive OR

Given a set of Boolean variables x_1, \ldots, x_n , how to encode $XOR(x_1, \ldots, x_n)$

into SAT using a linear number of binary clauses?

The direct encoding requires 2^{n-1} clauses of length n :

$$
\bigwedge_{\text{even }\#\neg} (\overline{x}_1 \vee \overline{x}_2 \vee \dots \vee \overline{x}_n)
$$

Make it compact: XOR $(x_1, x_2, x_3, \overline{y}) \wedge XOR$ (y, x_4, \ldots, x_n) Note: XOR $(x_1, x_2, x_3, \overline{y}) \equiv y \leftrightarrow XOR (x_1, x_2, x_3)$

Tradeoff: more variables but fewer clauses!

marijn@cmu.edu 10 / 45

Common Constraints: Linear versus Pooled

Details regarding splitting can impact the performance

Linear encoding with cutoff k:

▶ XOR $(x_1, \ldots, x_k, \overline{y}) \wedge XOR$ $(y, x_{k+1}, \ldots, x_n)$

Pooled encoding with cutoff k:

▶ XOR
$$
(x_1, \ldots, x_k, \overline{y}) \land XOR (x_{k+1}, \ldots, x_n, y)
$$

I always use the pooled encoding, e.g. for matrix multiplication instances [SAT'19], as it appears more effective

Common Constraints: Impact on Matrix Multiplication

Are these two encoding of $ATMOSTONE(x_1, x_2)$ equivalent?

Question: Is F_1 equivalent to F_2 ?

Note: $F_1 \leftrightarrow F_2$ is valid if $\neg F_1 \wedge F_2$ and $F_1 \wedge \neg F_2$ are unsatisfiable.

Are these two encoding of $ATMOSTONE(x_1, x_2)$ equivalent?

Is \neg F₁ \land F₂ unsatisfiable?

Note: $\neg F_1 \equiv x_1 \wedge x_2$

Are these two encoding of $ATMOSTONE(x_1, x_2)$ equivalent?

Is $\neg F_1 \wedge F_2$ unsatisfiable? yes!

Note: $\neg F_1 \equiv x_1 \wedge x_2$

Are these two encoding of $ATMOSTONE(x_1, x_2)$ equivalent?

Is $F_1 \wedge \neg F_2$ unsatisfiable?

Note:
$$
\neg F_2 \equiv \overline{(\overline{x}_1 \vee y) \wedge (\overline{y} \vee \overline{x}_2)} \equiv (x_1 \wedge \overline{y}) \vee (y \wedge x_2)
$$

$$
\equiv (x_1 \vee y) \wedge (x_1 \vee x_2) \wedge (\overline{y} \vee x_2)
$$

Are these two encoding of $ATMOSTONE(x_1, x_2)$ equivalent?

Is $F_1 \wedge \neg F_2$ unsatisfiable? no!

Note:
$$
\neg F_2 \equiv \overline{(\overline{x}_1 \vee y) \wedge (\overline{y} \vee \overline{x}_2)} \equiv (x_1 \wedge \overline{y}) \vee (y \wedge x_2)
$$

$$
\equiv (x_1 \vee y) \wedge (x_1 \vee x_2) \wedge (\overline{y} \vee x_2)
$$

Are these two encoding of $ATMOSTONE(x_1, x_2)$ equivalent?

 F_1 and F_2 are equisatisfiable:

 \blacktriangleright F₁ is satisfiable iff F₂ is satisfiable.

Note: Equisatisfiability is weaker than equivalence but useful if all we want we want to do is determine satisfiability.

[Common Constraints](#page-4-0)

[Tseitin Transformation](#page-24-0)

[Representing Integers](#page-49-0)

[Cardinality Constraints](#page-53-0)

[Hamiltonian Cycles](#page-64-0)

marijn@cmu.edu 14 / 45

Tseitin Transformation: Negation Normal Form

The set of propositional formulas in negation normal form (NNF) is generated inductively as follows:

- \blacktriangleright Each propositional variable p and the negation \bar{p} of a propositional variable are in negation normal form
- ▶ If A and B are in negation normal form, then so are $A \wedge B$ and $A \vee B$

Example $((p \wedge q \wedge \overline{r}) \vee (r \wedge (\overline{p} \vee \overline{q}))) \wedge (\overline{s} \vee (p \wedge t))$

Tseitin Transformation: Negation Normal Form

The set of propositional formulas in negation normal form (NNF) is generated inductively as follows:

- \blacktriangleright Each propositional variable p and the negation \bar{p} of a propositional variable are in negation normal form
- ▶ If A and B are in negation normal form, then so are $A \wedge B$ and $A \vee B$

Example $(p \wedge q \wedge \overline{r}) \vee (r \wedge (\overline{p} \vee \overline{q}))) \wedge (\overline{s} \vee (p \wedge t))$

Propositional formulas can be converted into NNF using:

►
$$
\overline{A} \rightarrow \overline{B} \equiv \overline{A} \vee \overline{B}
$$

\n► $\overline{(A \vee B)} \equiv (\overline{A} \wedge \overline{B})$
\n► $\overline{(A \wedge B)} \equiv (\overline{A} \vee \overline{B})$
\n► $\overline{\overline{A}} \equiv A$

marijn@cmu.edu 15 / 45

Tseitin Transformation: Avoid Exponential Blowup

What is the complexity of transformation NNF into CNF?

$$
\blacktriangleright A \wedge (B \vee C) \equiv (A \wedge B) \vee (A \wedge C)
$$

$$
\blacktriangleright A \lor (B \land C) \equiv (A \lor B) \land (A \lor C)
$$

Tseitin Transformation: Avoid Exponential Blowup

What is the complexity of transformation NNF into CNF?

$$
\blacktriangleright A \land (B \lor C) \equiv (A \land B) \lor (A \land C)
$$

 \triangleright A \vee (B \wedge C) \equiv (A \vee B) \wedge (A \vee C)

In some cases, converting NNF to CNF can have an exponential explosion on the size of the formula.

If we convert the NNF $(x_1 \wedge y_1) \vee (x_2 \wedge y_2) \vee \ldots \vee (x_n \wedge y_n)$ using the above distributive laws into CNF:

 $(x_1 \vee x_2 \vee \ldots \vee x_n) \wedge (y_1 \vee x_2 \vee \ldots \vee x_n) \wedge \ldots \wedge (y_1 \vee y_2 \vee \ldots \vee y_n)$

 \blacktriangleright How can we avoid the exponential blowup? In this case, the equivalent formula would have 2^n clauses!

Tseitin Transformation: Avoid Exponential Blowup

What is the complexity of transformation NNF into CNF?

$$
\blacktriangleright A \land (B \lor C) \equiv (A \land B) \lor (A \land C)
$$

 \triangleright A \vee (B \wedge C) \equiv (A \vee B) \wedge (A \vee C)

In some cases, converting NNF to CNF can have an exponential explosion on the size of the formula.

If we convert the NNF $(x_1 \wedge y_1) \vee (x_2 \wedge y_2) \vee \ldots \vee (x_n \wedge y_n)$ using the above distributive laws into CNF:

 $(x_1 \vee x_2 \vee \ldots \vee x_n) \wedge (y_1 \vee x_2 \vee \ldots \vee x_n) \wedge \ldots \wedge (y_1 \vee y_2 \vee \ldots \vee y_n)$

 \blacktriangleright How can we avoid the exponential blowup? In this case, the equivalent formula would have 2^n clauses!

Tseitin's transformation converts a formula F into an equisatisfiable CNF formula that is linear in the size of F!

▶ Key idea: introduce auxiliary variables to represent subformulas, and define those variables using CNF clauses marijn@cmu.edu 16 / 45

Tseitin: Small Example

Consider the formula $F = p \vee (q \wedge r)$

Tseitin: Small Example

Consider the formula $F = p \vee (q \wedge r)$

```
We can add the definition d \leftrightarrow (q \wedge r)
```

```
Replacing (q \wedge r) by d results in CNF p \vee d
```
Tseitin: Small Example

Consider the formula $F = p \vee (q \wedge r)$

We can add the definition $d \leftrightarrow (q \wedge r)$

Replacing $(q \wedge r)$ by d results in CNF $p \vee d$

The clauses representing the definition are:

$$
(\neg d \vee q) \wedge (\neg d \vee r) \wedge (d \vee \neg q \vee \neg r)
$$

An equisatisfiable formula of F in CNF is:

$$
(p\vee d)\wedge (\neg d\vee q)\wedge (\neg d\vee r)\wedge (d\vee \neg q\vee \neg r)
$$

Satisfying the resulting formula satisfies F on original variables

marijn@cmu.edu 17 / 45

Why is the Tseitin transformation interesting?

- \triangleright At most a linear number of definitions
- ▶ Definitions can be easily converted into clauses
- \triangleright Easily obtain a satisfying assignment for original formula
- ▶ Resulting in an efficient transformation into CNF

Tseitin: Implementation and Optimizations

Implementation:

- \triangleright Convert the formula into NNF (not necessary, good practice)
- \triangleright Generate the definitions from left to right
- ▶ OR definition: $d \leftrightarrow x_1 \lor x_2 \lor \cdots \lor x_k \equiv$ $(x_1 \vee x_2 \vee \cdots \vee x_k \vee \overline{d}) \wedge (\overline{x}_1 \vee d) \wedge (\overline{x}_2 \vee d) \wedge \cdots \wedge (\overline{x}_k \vee d)$
- ▶ AND definition: $d \leftrightarrow x_1 \land x_2 \land \cdots \land x_k \equiv$ $(\overline{x}_1\vee \overline{x}_2\vee \cdots \vee \overline{x}_k\vee d)\wedge (x_1\vee \overline{d})\wedge (x_2\vee \overline{d})\wedge \cdots \wedge (x_k\vee \overline{d})$

Tseitin: Implementation and Optimizations

Implementation:

- \triangleright Convert the formula into NNF (not necessary, good practice)
- \triangleright Generate the definitions from left to right
- ▶ OR definition: $d \leftrightarrow x_1 \lor x_2 \lor \cdots \lor x_k \equiv$ $(x_1 \vee x_2 \vee \cdots \vee x_k \vee \overline{d}) \wedge (\overline{x}_1 \vee d) \wedge (\overline{x}_2 \vee d) \wedge \cdots \wedge (\overline{x}_k \vee d)$
- ▶ AND definition: $d \leftrightarrow x_1 \land x_2 \land \cdots \land x_k \equiv$ $(\overline{x}_1\vee \overline{x}_2\vee \cdots \vee \overline{x}_k\vee d)\wedge (x_1\vee \overline{d})\wedge (x_2\vee \overline{d})\wedge \cdots \wedge (x_k\vee \overline{d})$

Optimizations:

- \blacktriangleright Reuse definitions when possible
- ▶ Avoid definitions by interpreting an NNF formula as a CNF formula: e.g. $p \vee (q \wedge \neg r) \vee \neg s$
Convert the following NNF into CNF:

 $((p \land q \land \overline{r}) \lor (r \land (\overline{p} \lor \overline{q}))) \land (\overline{s} \lor (p \land t))$

Which results in the following definitions:

 \blacktriangleright d₁ \leftrightarrow p \land q $\land \bar{\tau}$

Convert the following NNF into CNF:

 $((p \land q \land \overline{r}) \lor (r \land (\overline{p} \lor \overline{q}))) \land (\overline{s} \lor (p \land t))$

$$
\begin{array}{ll}\blacktriangleright & d_1 \leftrightarrow p \land q \land \overline{r} \\ \blacktriangleright & d_2 \leftrightarrow \overline{p} \lor \overline{q}\end{array}
$$

Convert the following NNF into CNF:

 $((p \land q \land \overline{r}) \lor (r \land (\overline{p} \lor \overline{q}))) \land (\overline{s} \lor (p \land t))$

►
$$
d_1 \leftrightarrow p \land q \land \overline{r}
$$

\n► $d_2 \leftrightarrow \overline{p} \lor \overline{q}$
\n► $d_3 \leftrightarrow r \land d_2$

Convert the following NNF into CNF:

 $((p \land q \land \overline{r}) \lor (r \land (\overline{p} \lor \overline{q}))) \land (\overline{s} \lor (p \land t))$

\n- ▶
$$
d_1 \leftrightarrow p \land q \land \bar{r}
$$
\n- ▶ $d_2 \leftrightarrow \bar{p} \lor \bar{q}$
\n- ▶ $d_3 \leftrightarrow r \land d_2$
\n- ▶ $d_4 \leftrightarrow d_1 \lor d_3$
\n

Convert the following NNF into CNF:

 $((p \land q \land \overline{r}) \lor (r \land (\overline{p} \lor \overline{q}))) \land (\overline{s} \lor (p \land t))$

\n- $$
d_1 \leftrightarrow p \land q \land \bar{r}
$$
\n- $d_2 \leftrightarrow \bar{p} \lor \bar{q}$
\n- $d_3 \leftrightarrow r \land d_2$
\n- $d_4 \leftrightarrow d_1 \lor d_3$
\n- $d_5 \leftrightarrow p \land t$
\n

Convert the following NNF into CNF:

 $((p \land q \land \overline{r}) \lor (r \land (\overline{p} \lor \overline{q}))) \land (\overline{s} \lor (p \land t))$

\n- ▶
$$
d_1 \leftrightarrow p \land q \land \bar{r}
$$
\n- ▶ $d_2 \leftrightarrow \bar{p} \lor \bar{q}$
\n- ▶ $d_3 \leftrightarrow r \land d_2$
\n- ▶ $d_4 \leftrightarrow d_1 \lor d_3$
\n- ▶ $d_5 \leftrightarrow p \land t$
\n

$$
\blacktriangleright d_6 \leftrightarrow \overline{s} \vee d_5
$$

Convert the following NNF into CNF:

 $((p \land q \land \overline{r}) \lor (r \land (\overline{p} \lor \overline{q}))) \land (\overline{s} \lor (p \land t))$

Which results in the following definitions:

$$
\blacktriangleright \ d_1 \leftrightarrow p \land q \land \overline{r}
$$

$$
\blacktriangleright \ d_2 \leftrightarrow \overline{p} \vee \overline{q}
$$

$$
\blacktriangleright \; d_3 \leftrightarrow r \wedge d_2
$$

$$
\blacktriangleright d_4 \leftrightarrow d_1 \vee d_3
$$

$$
\blacktriangleright d_5 \leftrightarrow p \wedge t
$$

$$
\blacktriangleright \, d_6 \leftrightarrow \overline{s} \vee d_5
$$

$$
\blacktriangleright \; d_7 \leftrightarrow d_4 \wedge d_6
$$

marijn@cmu.edu 20 / 45

Convert the following NNF into CNF:

 $((p \wedge q \wedge \overline{r}) \vee (r \wedge (\overline{p} \vee \overline{q}))) \wedge (\overline{s} \vee (p \wedge t))$

Which results in the following definitions:

 \blacktriangleright d₁ \leftrightarrow p \land q $\land \bar{\tau}$

Convert the following NNF into CNF:

 $((p \wedge q \wedge \overline{r}) \vee (r \wedge (\overline{p} \vee \overline{q}))) \wedge (\overline{s} \vee (p \wedge t))$

$$
\begin{array}{c} \blacktriangleright \ d_1 \leftrightarrow p \land q \land \bar{r} \\ \blacktriangleright \ d_2 \leftrightarrow \neg p \lor \neg q \end{array}
$$

Convert the following NNF into CNF:

 $((p \wedge q \wedge \overline{r}) \vee (r \wedge (\overline{p} \vee \overline{q}))) \wedge (\overline{s} \vee (p \wedge t))$

►
$$
d_1 \leftrightarrow p \land q \land \overline{r}
$$

\n► $d_2 \leftrightarrow \neg p \lor \neg q$
\n► $d_3 \leftrightarrow r \land d_2$

Convert the following NNF into CNF:

 $((p \wedge q \wedge \overline{r}) \vee (r \wedge (\overline{p} \vee \overline{q}))) \wedge (\overline{s} \vee (p \wedge t))$

\n- ▶
$$
d_1 \leftrightarrow p \land q \land \bar{r}
$$
\n- ▶ $d_2 \leftrightarrow \neg p \lor \neg q$
\n- ▶ $d_3 \leftrightarrow r \land d_2$
\n- ▶ $d_4 \leftrightarrow p \land t$
\n

Convert the following NNF into CNF:

 $((p \wedge q \wedge \overline{r}) \vee (r \wedge (\overline{p} \vee \overline{q}))) \wedge (\overline{s} \vee (p \wedge t))$

Which results in the following definitions:

\n- ▶
$$
d_1 \leftrightarrow p \land q \land \bar{r}
$$
\n- ▶ $d_2 \leftrightarrow \neg p \lor \neg q$
\n- ▶ $d_3 \leftrightarrow r \land d_2$
\n- ▶ $d_4 \leftrightarrow p \land t$
\n

Final result: $(d_1 \vee d_3) \wedge (\overline{s} \vee d_4)$ plus definition clauses

marijn@cmu.edu 21 / 45

Tseitin Transformation: Automated Tools

- ▶ Using automated tools to encode to CNF: limboole: <http://fmv.jku.at/limboole>
- ▶ Tseitin's encoding may add many redundant variables/clauses!
- \triangleright Using limboole for the pigeon hole problem $(n = 3)$ creates a formula with 40 variables and 98 clauses
- \triangleright After unit propagation the formula has 12 variables and 28 clauses
- ▶ Original CNF formula only has 6 variables and 9 clauses

[Common Constraints](#page-4-0)

[Tseitin Transformation](#page-24-0)

[Representing Integers](#page-49-0)

[Cardinality Constraints](#page-53-0)

[Hamiltonian Cycles](#page-64-0)

marijn@cmu.edu 23 / 45

Representing Integers: Direct Encoding

- \blacktriangleright Each number i is represented by a Boolean variable: d_i
- ▶ At least one number is true: $d_0 \vee \cdots \vee d_n$
- ▶ At most one number is true: $\bigwedge_{i < j} \overline{d}_i \vee \overline{d}_j$
- \triangleright Expressing in a clause that an integer has a specific value v requires one literal.
- \triangleright For example, "if the number is 1, then do x", is encoded as $d_1 \vee x$.
- ▶ Typically effective when reasoning about a small range of integers.

Representing Integers: Order Encoding

Order encoding:

- ▶ Variables represent that a number is larger or equal: $0_{\geq i}$
- ▶ Requires a linear number of binary clauses: $0_{\geq i} \vee \overline{0}_{\geq i+1}$
- \triangleright Expressing in a clause that an integer has a specific value v requires two literals.
- ▶ For example, "if the number is 1, then do x ", is encoded as $\overline{0}_{\geq 1} \vee 0_{\geq 2} \vee x$.
- ▶ Allows the solver to reason (and produce clauses) that cover multiple cases.

Representing Integers: Binary Encoding

Binary encoding:

- \triangleright Use $\lceil \log_2 n \rceil$ auxiliary variables b_i to represent n in binary
- All non-occurring numbers $\leq 2^{\lceil \log_2 n \rceil}$ need to be blocked. For example, if we have the numbers 0, 1, and 2, then the number 3 needs to be blocked: $(\neg b_0 \lor \neg b_1)$
- ▶ Expressing in a clause that an integer has a specific value ν requires $\lceil \log_2 n \rceil$ literals.
- \triangleright For example, "if the number is 1, then do x", is encoded as $\neg b_0 \vee b_1 \vee x$.
- ▶ Typically effective when reasoning about a large range of integers.

[Common Constraints](#page-4-0)

[Tseitin Transformation](#page-24-0)

[Representing Integers](#page-49-0)

[Cardinality Constraints](#page-53-0)

[Hamiltonian Cycles](#page-64-0)

marijn@cmu.edu 27 / 45

Cardinality Constraints: AtMostOne

Recall ATMOSTONE constraints:

- \triangleright ATMOSTONE: $x_1 + x_2 + x_3 + x_4 \leq 1$
- \blacktriangleright Clauses for the naive (or direct) encoding:

$$
\begin{array}{c}\n(x_1 \to \overline{x}_2) \\
(x_1 \to \overline{x}_3) \\
(x_1 \to \overline{x}_4) \\
\dots\n\end{array}\n\begin{array}{c}\n\overline{x}_1 \vee \overline{x}_2 \\
\overline{x}_1 \vee \overline{x}_3 \\
\overline{x}_1 \vee \overline{x}_4 \\
\dots\n\end{array}
$$

 \blacktriangleright Complexity: $\binom{n}{2}$ $\binom{n}{2}$ or $\mathcal{O}(n^2)$ clauses

This can be reduced to a linear number using auxiliary variables

What about the general case for cardinality constraints?

Cardinality Constraints: AtMostK

ATMOSTK constraints:

- ▶ General constraint: $x_1 + \cdots + x_n \leq k$
- ▶ Example constraint: $x_1 + x_2 + x_3 + x_4 < 2$

 \blacktriangleright Clauses for the naive encoding:

$$
\begin{array}{c}\n(x_1 \wedge x_2 \rightarrow \overline{x}_3) \\
(x_1 \wedge x_2 \rightarrow \overline{x}_4) \\
(x_2 \wedge x_3 \rightarrow \overline{x}_4) \\
\vdots \\
\vdots \\
\end{array}\n\qquad\n\left(\begin{array}{c}\n(\overline{x}_1 \vee \overline{x}_2 \vee \overline{x}_3) \\
(\overline{x}_1 \vee \overline{x}_2 \vee \overline{x}_4) \\
(\overline{x}_2 \vee \overline{x}_3 \vee \overline{x}_4) \\
\vdots \\
\vdots\n\end{array}\right)
$$

▶ Complexity: $\binom{n}{k+1}$ $\binom{n}{k+1}$ or $\mathcal{O}(n^k)$ clauses

Cardinality Constraints: AtMostK

ATMOSTK constraints:

▶ General constraint: $x_1 + \cdots + x_n \leq k$

▶ Example constraint: $x_1 + x_2 + x_3 + x_4 < 2$

 \blacktriangleright Clauses for the naive encoding:

$$
\begin{array}{c}\n(x_1 \wedge x_2 \rightarrow \overline{x}_3) \\
(x_1 \wedge x_2 \rightarrow \overline{x}_4) \\
(x_2 \wedge x_3 \rightarrow \overline{x}_4) \\
\dots\n\end{array}\n\qquad\n\left(\n\begin{array}{c}\n(\overline{x}_1 \vee \overline{x}_2 \vee \overline{x}_3) \\
(\overline{x}_1 \vee \overline{x}_2 \vee \overline{x}_4) \\
(\overline{x}_2 \vee \overline{x}_3 \vee \overline{x}_4) \\
\dots\n\end{array}\n\right)
$$

▶ Complexity: $\binom{n}{k+1}$ $\binom{n}{k+1}$ or $\mathcal{O}(n^k)$ clauses

Can we build an encoding that is arc-consistent and uses a polynomial number of clauses for at-most-k constraints?

Cardinality Constraints: AtMostK

ATMOSTK constraints:

▶ General constraint: $x_1 + \cdots + x_n \leq k$

▶ Example constraint: $x_1 + x_2 + x_3 + x_4 < 2$

 \blacktriangleright Clauses for the naive encoding:

$$
\begin{array}{c}\n(x_1 \wedge x_2 \rightarrow \overline{x}_3) \\
(x_1 \wedge x_2 \rightarrow \overline{x}_4) \\
(x_2 \wedge x_3 \rightarrow \overline{x}_4) \\
\dots\n\end{array}\n\qquad\n\left(\n\begin{array}{c}\n(\overline{x}_1 \vee \overline{x}_2 \vee \overline{x}_3) \\
(\overline{x}_1 \vee \overline{x}_2 \vee \overline{x}_4) \\
(\overline{x}_2 \vee \overline{x}_3 \vee \overline{x}_4) \\
\dots\n\end{array}\n\right)
$$

▶ Complexity: $\binom{n}{k+1}$ $\binom{n}{k+1}$ or $\mathcal{O}(n^k)$ clauses

Can we build an encoding that is arc-consistent and uses a polynomial number of clauses for at-most-k constraints?

Yes! With $O(n \cdot k)$ auxiliary variables, we need $O(n \cdot k)$ clauses!

marijn@cmu.edu 29 / 45

Cardinality Constraints: Sinz Encoding

Introduce auxiliary variables $s_{i,j}$ with the following meaning: the sum of the first j literals is larger or equal to i

Cardinality Constraints: Sinz Encoding

Introduce auxiliary variables $s_{i,j}$ with the following meaning: the sum of the first j literals is larger or equal to i

Arc-consistent using $\mathcal{O}(n \cdot k)$ variables and clauses

▶ More details in paper: "Towards an Optimal CNF Encoding of Boolean Cardinality Constraints", CP2005

Cardinality Constraints: Totalizer encoding (1)

What is another example of an at-most-k encoding for $l_1 + ... l_5 \leq k$?

Totalizer encoding is based on a tree structure and also only needs $O(n \cdot k)$ clauses/variables.

Cardinality Constraints: Totalizer encoding (2)

Use auxiliary variables to count the sum of the subtree:

$$
\blacktriangleright f_1 \equiv l_4 + l_5 = 1
$$

$$
\blacktriangleright f_2 \equiv l_4 + l_5 = 2
$$

Note that only f_1 or f_2 will be assigned to 1.

marijn@cmu.edu 32 / 45

Cardinality Constraints: Totalizer encoding (3)

Use auxiliary variables to count the sum of the subtree:

\n- $$
b_1 \equiv l_3 + f_1 + 2 \times f_2 = 1
$$
\n- $b_2 \equiv l_3 + f_1 + 2 \times f_2 = 2$
\n- $b_3 \equiv l_3 + f_1 + 2 \times f_2 = 3$
\n

marijn@cmu.edu 33 / 45

Cardinality Constraints: Totalizer encoding (4)

Any parent node P, counting up to n_P , has two children L and R counting up to n_1 and n_R respectively s.t. $n_1 + n_R = n_P$.

marijn@cmu.edu 34 / 45

[Common Constraints](#page-4-0)

[Tseitin Transformation](#page-24-0)

[Representing Integers](#page-49-0)

[Cardinality Constraints](#page-53-0)

[Hamiltonian Cycles](#page-64-0)

marijn@cmu.edu 35 / 45

Hamiltonian Cycles: Two Constraints

Hamiltonian Cycle Problem (HCP): Does there exist a cycle that visits all vertices exactly once?

Hamiltonian Cycles: Two Constraints

Hamiltonian Cycle Problem (HCP): Does there exist a cycle that visits all vertices exactly once?

Two constraints:

- ▶ Exactly two edges per vertex: easy cardinality constraints
- ▶ Exactly one cycle: hard to be compact and arc-consistent
	- ▶ One option is to ignore the constraint: lazy encoding
	- \triangleright Various encodings use $O(|V|^3)$. Too large for many graphs
	- \triangleright For large graphs we need encodings that are quasi-linear in $|E|$

Hamiltonian Cycles: Lazy Encoding

Hamiltonian Cycle Problem (HCP): Does there exist a cycle that visits all vertices exactly once?

Only encode the two-edges-per-vertex constraint

If a solution has multiple cycles: block the smallest one

- ▶ Use incremental SAT to keep conflict clauses
- ▶ SMT is based on a similar approach

marijn@cmu.edu 37 / 45

Hamiltonian Cycles: Encodings Quasi-Linear in |E|

Key elements:

- \blacktriangleright Each vertex have an index in the range $\{1,\ldots,|V|\}$.
- ▶ Selected edges are directed.
- \blacktriangleright Each vertex has one incoming and one outgoing edge.
- \triangleright For each directed edge (u, v) : the index of v is the successor of the index of u — except for the starting vertex.

Hamiltonian Cycles: Encodings Quasi-Linear in |E|

Key elements:

- \blacktriangleright Each vertex have an index in the range $\{1,\ldots,|V|\}$.
- ▶ Selected edges are directed.
- \blacktriangleright Each vertex has one incoming and one outgoing edge.
- \triangleright For each directed edge (u, v) : the index of v is the successor of the index of u — except for the starting vertex.

How to implement the successor property?

marijn@cmu.edu 38 / 45

Hamiltonian Cycles: Binary Adder Encoding [Zhou 2020]

Each index is a binary number. If edge variable $e_{\mu,\nu}$ is assigned to true then the index of v is the successor of the index of u.

Example

Let $|V| = 7$, thus $k = \lceil \log_2 7 \rceil = 3$. For vertex v, variables v_2 , v_4 , and v_8 denote the least, middle, and most significant bit, respectively. For an edge variable $e_{\mu,\nu}$, we use the constraints:

$$
e_{u,v} \rightarrow (u_2 \nleftrightarrow v_2)
$$

\n
$$
(e_{u,v} \wedge \overline{u}_2) \rightarrow (u_4 \leftrightarrow v_4)
$$

\n
$$
(e_{u,v} \wedge u_2) \rightarrow (u_4 \nleftrightarrow v_4)
$$

\n
$$
(e_{u,v} \wedge \overline{u}_2) \rightarrow (u_8 \leftrightarrow v_8)
$$

\n
$$
(e_{u,v} \wedge \overline{u}_4) \rightarrow (u_8 \leftrightarrow v_8)
$$

\n
$$
(e_{u,v} \wedge u_2 \wedge u_4) \rightarrow (u_8 \nleftrightarrow v_8)
$$

marijn@cmu.edu 39 / 45

Hamiltonian Cycles: Binary Adder Encoding [Zhou 2020]

Each index is a binary number. If edge variable $e_{\mu,\nu}$ is assigned to true then the index of v is the successor of the index of u.

Example

Let $|V| = 7$, thus $k = \lceil \log_2 7 \rceil = 3$. For vertex v, variables v_2 , v_4 , and v_8 denote the least, middle, and most significant bit, respectively. For an edge variable $e_{\mu\nu}$, we use the constraints:

$$
e_{u,v} \rightarrow (u_2 \leftrightarrow v_2)
$$
\n
$$
(e_{u,v} \land \overline{u}_2) \rightarrow (u_4 \leftrightarrow v_4)
$$
\n
$$
(e_{u,v} \land u_2) \rightarrow (u_4 \leftrightarrow v_4)
$$
\n
$$
(e_{u,v} \land \overline{u}_2) \rightarrow (u_8 \leftrightarrow v_8)
$$
\n
$$
(e_{u,v} \land \overline{u}_4) \rightarrow (u_8 \leftrightarrow v_8)
$$
\n
$$
(e_{u,v} \land u_2 \land u_4) \rightarrow (u_8 \leftrightarrow v_8)
$$
\n
$$
u_2 \rightarrow \neg v_2 \rightarrow w_2 \rightarrow \neg u_2
$$

This encoding can quickly refute odd cycles

marijn@cmu.edu 39 / 45
Hamiltonian Cycles: Linear-Feedback Shift Register

A k-bit Linear-Feedback Shift Register (LFSR) loops through $\{1, \ldots, 2^k - 1\}$ by shifting all bits one position to the left and placing the parity of some bits in the vacated position.

Example

An example LFSR of 16 bits is $x_{11} \oplus x_{13} \oplus x_{14} \oplus x_{16}$, which has $2^{16}-1=65,535$ states. The figure below shows an i Illustration of this LFSR with state 100101110010101001 . The next state is 00101110010110011.

Hamiltonian Cycles: LFSR Encoding [Johnson 2018]

Enforcing the successor property using LFSR is compact and has been used to efficiently find Hamiltonian cycles in Erin and Stedman triples.

Example

Let $|V| = 7$, thus $k = \lceil \log_2(7 + 1) \rceil = 3$. We use 3-bit LFSR $x_2 \oplus x_3$. The bit-vector variables of vertex v are $v_{7,1}$, $v_{7,2}$, and $v_{7,3}$. For an edge variable $e_{\mu,\nu}$, we add the constraints:

$$
\begin{array}{lcl} e_{u,v} & \rightarrow & (\nu_{7,1} \leftrightarrow (u_{7,2} \nleftrightarrow u_{7,3}) \\ e_{u,v} & \rightarrow & (\nu_{7,2} \leftrightarrow u_{7,1}) \\ e_{u,v} & \rightarrow & (\nu_{7,3} \leftrightarrow u_{7,2}) \end{array}
$$

marijn@cmu.edu 41 / 45

Hamiltonian Cycles: LFSR Encoding [Johnson 2018]

Enforcing the successor property using LFSR is compact and has been used to efficiently find Hamiltonian cycles in Erin and Stedman triples.

Example

Let $|V| = 7$, thus $k = \lceil \log_2(7 + 1) \rceil = 3$. We use 3-bit LFSR $x_2 \oplus x_3$. The bit-vector variables of vertex v are $v_{7,1}$, $v_{7,2}$, and $v_{7,3}$. For an edge variable $e_{\mu,\nu}$, we add the constraints:

$$
e_{u,v} \rightarrow (v_{7,1} \leftrightarrow (u_{7,2} \leftrightarrow u_{7,3})
$$
\n
$$
e_{u,v} \rightarrow (v_{7,2} \leftrightarrow u_{7,1})
$$
\n
$$
e_{u,v} \rightarrow (v_{7,3} \leftrightarrow u_{7,2})
$$
\n\n1

This encoding is compact and has lots of propagation

marijn@cmu.edu 41 / 45

 Ω

Hamiltonian Cycles: Chinese Remainder Encoding [H '21]

Can we get the best all three worlds?

- \blacktriangleright Incremental SAT: Only partially encode the hard constraint
- ▶ Binary adder: refute some cycles quickly
- \blacktriangleright LFSR: few and short clauses, no auxiliary variables

Hamiltonian Cycles: Chinese Remainder Encoding [H '21]

Can we get the best all three worlds?

- ▶ Incremental SAT: Only partially encode the hard constraint
- ▶ Binary adder: refute some cycles quickly
- \blacktriangleright LFSR: few and short clauses, no auxiliary variables

Chinese remainder encoding:

- \blacktriangleright Block all subcycles except one of length 0 (mod m)
- \triangleright Pick m (can be smaller than $|V|$) with small prime factors
- \triangleright Enforce 0 (mod p_i) for each prime factor p_i of m
- \triangleright Use LFSR for primes > 2 and binary adder for $p_i = 2$

Hamiltonian Cycles: Flinders HCP Challenge Graphs

Evaluation on reasonably large instances from the Flinders HCP Challenge Graphs suite

- ▶ Runtime (s) of CaDiCaL on binary adder and LFSR
- ▶ Smallest k such that 2^{k} (or $2^{k} 1$) is larger than $|V|$

Hamiltonian Cycles: Chinese Remainder Results

Evaluation with CaDiCaL on various cycle lengths (m)

- χ : First solution consists of multiple cycles
- \checkmark : First solution consists of a single cycle

Hamiltonian Cycles: Chinese Remainder Results

Evaluation with CaDiCaL on various cycle lengths (m)

- χ : First solution consists of multiple cycles
- \checkmark : First solution consists of a single cycle

Trusting a no Ham. cycle result requires verifying the encoding

marijn@cmu.edu 44 / 45

Further reading

More details about cardinality encodings can be found in:

▶ Sinz's encoding: Carsten Sinz. Towards an Optimal CNF Encoding of Boolean Cardinality Constraints. CP 2005. pp. 827-831 <http://www.carstensinz.de/papers/CP-2005.pdf>

▶ Totalizer encoding: Olivier Bailleux, Yacine Boufkhad. Efficient CNF Encoding of Boolean Cardinality Constraints. CP 2003. pp. 108-122 <https://tinyurl.com/y6ph76au>

▶ Modulo Totalizer encoding: Toru Ogawa, Yangyang Liu, Ryuzo Hasegawa, Miyuki Koshimura, Hiroshi Fujita. Modulo Based CNF Encoding of Cardinality Constraints and Its Application to MaxSAT Solvers. ICTAI 2013. pp. 9-17 <https://ieeexplore.ieee.org/document/6735224>

 \blacktriangleright Cardinality networks: Roberto Asin, Robert Nieuwenhuis, Albert Oliveras, Enric Rodriguez-Carbonell. Cardinality Networks and Their Applications. SAT 2009. pp. 167-180 <https://tinyurl.com/yxwrxzxo>