
Representations for Automated Reasoning

Marijn Heule

http://www.cs.cmu.edu/~mheule/15816-f24/

Automated Reasoning and Satisfiability
September 4, 2024

marijn@cmu.edu 1 / 45

http://www.cs.cmu.edu/~mheule/15816-f24/

The Right Representation is Crucial

What makes some problems hard and others easy?

Does the representation enable efficient reasoning?

The famous pigeonhole principle

▶ Hard for many automated reasoning approaches

▶ Easy for a little kid given the right representation

source: pecanpartnership.co.uk/2016/01/05/beware-pigeon-hole-
overcoming-stereotypes-build-collaborative-culture

marijn@cmu.edu 2 / 45

Encoding problems into SAT

Architectural 3D Layout
[VSMM ’07]
Henriette Bier

Edge-matching Puzzles
[LaSh ’08]

Graceful Graphs
[AAAI ’10]
Toby Walsh

Clique-Width
[SAT ’13, TOCL ’15]
Stefan Szeider

Firewall Verification
[SSS ’16]
Mohamed Gouda

Open Knight Tours
Moshe Vardi

00

10001000

20002000

30003000

40004000

50005000

60006000

70007000

00 1010 2020 3030 4040 5050 6060 7070 8080 9090 100100

Van der Waerden numbers
[EJoC ’07]

Software Model Synthesis
[ICGI ’10, ESE ’13]
Sicco Verwer

Conway’s Game of Life
[EJoC ’13]
Willem van der Poel

Connect the Pairs
Donald Knuth

Pythagorean Triples
[SAT ’16, CACM ’17]
Victor Marek

Collatz conjecture [Open]
Emre Yolcu
Scott Aaronson

marijn@cmu.edu 3 / 45

Common Constraints

Tseitin Transformation

Representing Integers

Cardinality Constraints

Hamiltonian Cycles

marijn@cmu.edu 4 / 45

Common Constraints

Tseitin Transformation

Representing Integers

Cardinality Constraints

Hamiltonian Cycles

marijn@cmu.edu 5 / 45

Common Constraints: Consistency and Arc-Consistency

▶ Let us consider an encoding of a constraint C with a
correspondence between assignments of the variables in C
with Boolean assignments of the variables in the encoding

▶ The encoding is consistent if whenever is partial
assignment inconsistent w.r.t. C (i.e., cannot be extended
to a solution of C), unit propagation results in a conflict

▶ The encoding is arc-consistent if
1. it is consistent, and
2. unit propagation discards values that cannot be assigned

▶ These are good properties for encodings: SAT solvers are
very good at unit propagation!

marijn@cmu.edu 6 / 45

Common Constraints: Consistency and Arc-Consistency

▶ Let us consider an encoding of a constraint C with a
correspondence between assignments of the variables in C
with Boolean assignments of the variables in the encoding

▶ The encoding is consistent if whenever is partial
assignment inconsistent w.r.t. C (i.e., cannot be extended
to a solution of C), unit propagation results in a conflict

▶ The encoding is arc-consistent if
1. it is consistent, and
2. unit propagation discards values that cannot be assigned

▶ These are good properties for encodings: SAT solvers are
very good at unit propagation!

marijn@cmu.edu 6 / 45

Common Constraints: AtMostOne

E.g. the AtMostOne constraint x1 + x2 + . . .+ xn ≤ 1:

▶ Consistency ≡ if there are two variables xi assigned to
true then unit propagation should give a conflict

▶ Arc-consistency ≡ Consistency + if there is one xi
assigned to true then all others xj should be assigned to
false by unit propagation

The direct encoding requires n(n− 1)/2 binary clauses:∧
1≤i<j≤n

(xi ∨ xj)

Is it possible to use fewer clauses?

marijn@cmu.edu 7 / 45

Common Constraints: AtMostOne

E.g. the AtMostOne constraint x1 + x2 + . . .+ xn ≤ 1:

▶ Consistency ≡ if there are two variables xi assigned to
true then unit propagation should give a conflict

▶ Arc-consistency ≡ Consistency + if there is one xi
assigned to true then all others xj should be assigned to
false by unit propagation

The direct encoding requires n(n− 1)/2 binary clauses:∧
1≤i<j≤n

(xi ∨ xj)

Is it possible to use fewer clauses?

marijn@cmu.edu 7 / 45

Common Constraints: Compact AtMostOne

Given a set of Boolean variables x1, . . . , xn, how to encode

AtMostOne (x1, . . . , xn)

into SAT using a linear number of binary clauses?

Use auxiliary variables: Apply the direct encoding if n ≤ 4
otherwise replace AtMostOne (x1, . . . , xn) by

AtMostOne (x1, x2, x3, y) ∧ AtMostOne (y, x4, . . . , xn)

resulting in 3n− 6 clauses and (n− 3)/2 new variables

Note: AtMostOne (x1, x2, x3, y) ≡
AtMostOne (x1, x2, x3) ∧ (x1 ∨ y)∧ (x2 ∨ y)∧ (x3 ∨ y) ≡
AtMostOne (x1, x2, x3) ∧ (x1 ∨ x2 ∨ x3) → y

marijn@cmu.edu 8 / 45

Common Constraints: Compact AtMostOne

Given a set of Boolean variables x1, . . . , xn, how to encode

AtMostOne (x1, . . . , xn)

into SAT using a linear number of binary clauses?

Use auxiliary variables: Apply the direct encoding if n ≤ 4
otherwise replace AtMostOne (x1, . . . , xn) by

AtMostOne (x1, x2, x3, y) ∧ AtMostOne (y, x4, . . . , xn)

resulting in 3n− 6 clauses and (n− 3)/2 new variables

Note: AtMostOne (x1, x2, x3, y) ≡
AtMostOne (x1, x2, x3) ∧ (x1 ∨ y)∧ (x2 ∨ y)∧ (x3 ∨ y) ≡
AtMostOne (x1, x2, x3) ∧ (x1 ∨ x2 ∨ x3) → y

marijn@cmu.edu 8 / 45

Common Constraints: Non-Consistent AtLeastOne

Given a set of Boolean variables x1, . . . , xn, how to encode

x1 + · · ·+ xn ≥ 1

into SAT?

Hint: This is easy...

(x1 ∨ x2 ∨ · · ·∨ xn)

Example

The following encoding of x1 + x2 + x3 + x4 ≥ 1 is not
consistent (using auxiliary variables y and z):

(y∨ z∨ x1)∧ (y∨ z∨ x2)∧ (y∨ z∨ x3)∧ (y∨ z∨ x4)

marijn@cmu.edu 9 / 45

Common Constraints: Non-Consistent AtLeastOne

Given a set of Boolean variables x1, . . . , xn, how to encode

x1 + · · ·+ xn ≥ 1

into SAT?

Hint: This is easy...

(x1 ∨ x2 ∨ · · ·∨ xn)

Example

The following encoding of x1 + x2 + x3 + x4 ≥ 1 is not
consistent (using auxiliary variables y and z):

(y∨ z∨ x1)∧ (y∨ z∨ x2)∧ (y∨ z∨ x3)∧ (y∨ z∨ x4)

marijn@cmu.edu 9 / 45

Common Constraints: Non-Consistent AtLeastOne

Given a set of Boolean variables x1, . . . , xn, how to encode

x1 + · · ·+ xn ≥ 1

into SAT?

Hint: This is easy...

(x1 ∨ x2 ∨ · · ·∨ xn)

Example

The following encoding of x1 + x2 + x3 + x4 ≥ 1 is not
consistent (using auxiliary variables y and z):

(y∨ z∨ x1)∧ (y∨ z∨ x2)∧ (y∨ z∨ x3)∧ (y∨ z∨ x4)

marijn@cmu.edu 9 / 45

Common Constraints: Exclusive OR

Given a set of Boolean variables x1, . . . , xn, how to encode

XOR(x1, . . . , xn)

into SAT using a linear number of binary clauses?

The direct encoding requires 2n−1 clauses of length n:∧
even #¬

(x1 ∨ x2 ∨ · · ·∨ xn)

Make it compact: XOR (x1, x2, x3, y) ∧ XOR (y, x4, . . . , xn)

Note: XOR (x1, x2, x3, y) ≡ y ↔ XOR (x1, x2, x3)

Tradeoff: more variables but fewer clauses!

marijn@cmu.edu 10 / 45

Common Constraints: Exclusive OR

Given a set of Boolean variables x1, . . . , xn, how to encode

XOR(x1, . . . , xn)

into SAT using a linear number of binary clauses?

The direct encoding requires 2n−1 clauses of length n:∧
even #¬

(x1 ∨ x2 ∨ · · ·∨ xn)

Make it compact: XOR (x1, x2, x3, y) ∧ XOR (y, x4, . . . , xn)

Note: XOR (x1, x2, x3, y) ≡ y ↔ XOR (x1, x2, x3)

Tradeoff: more variables but fewer clauses!

marijn@cmu.edu 10 / 45

Common Constraints: Linear versus Pooled

Details regarding splitting can impact the performance

Linear encoding with cutoff k:

▶ XOR (x1, . . . , xk, y) ∧ XOR (y, xk+1, . . . , xn)

Pooled encoding with cutoff k:

▶ XOR (x1, . . . , xk, y) ∧ XOR (xk+1, . . . , xn, y)

I always use the pooled encoding, e.g. for matrix
multiplication instances [SAT’19], as it appears more effective

marijn@cmu.edu 11 / 45

Common Constraints: Impact on Matrix Multiplication

0 200 400 600 800 1,000
0

200

400

600

800

1,000

local search runtime

so
lv
ed

in
st
an
ce
s

Pooled, 6-cut Pooled, 8-cut
Pooled, 7-cut Pooled, 5-cut
Linear, 5-cut Linear, 8-cut
Pooled, 4-cut Linear, 7-cut
Linear, 6-cut Linear, 3-cut
Pooled, 3-cut Linear, 4-cut

marijn@cmu.edu 12 / 45

AtMostOne: Satisfiability Equivalence

Are these two encoding of AtMostOne(x1, x2) equivalent?

F1 (direct encoding) F2 (split encoding)
x1 ∨ x2 x1 ∨ y

y∨ x2

Question: Is F1 equivalent to F2?

Note: F1 ↔ F2 is valid if ¬F1 ∧ F2 and F1 ∧ ¬F2 are
unsatisfiable.

marijn@cmu.edu 13 / 45

AtMostOne: Satisfiability Equivalence

Are these two encoding of AtMostOne(x1, x2) equivalent?

F1 (direct encoding) F2 (split encoding)
x1 ∨ x2 x1 ∨ y

y∨ x2

Is ¬F1 ∧ F2 unsatisfiable?

Note: ¬F1 ≡ x1 ∧ x2

marijn@cmu.edu 13 / 45

AtMostOne: Satisfiability Equivalence

Are these two encoding of AtMostOne(x1, x2) equivalent?

F1 (direct encoding) F2 (split encoding)
x1 ∨ x2 x1 ∨ y

y∨ x2

Is ¬F1 ∧ F2 unsatisfiable? yes!

Note: ¬F1 ≡ x1 ∧ x2

marijn@cmu.edu 13 / 45

AtMostOne: Satisfiability Equivalence

Are these two encoding of AtMostOne(x1, x2) equivalent?

F1 (direct encoding) F2 (split encoding)
x1 ∨ x2 x1 ∨ y

y∨ x2

Is F1 ∧ ¬F2 unsatisfiable?

Note: ¬F2 ≡ (x1 ∨ y)∧ (y∨ x2) ≡ (x1 ∧ y)∨ (y∧ x2)
≡ (x1 ∨ y)∧ (x1 ∨ x2)∧ (y∨ x2)

marijn@cmu.edu 13 / 45

AtMostOne: Satisfiability Equivalence

Are these two encoding of AtMostOne(x1, x2) equivalent?

F1 (direct encoding) F2 (split encoding)
x1 ∨ x2 x1 ∨ y

y∨ x2

Is F1 ∧ ¬F2 unsatisfiable? no!

Note: ¬F2 ≡ (x1 ∨ y)∧ (y∨ x2) ≡ (x1 ∧ y)∨ (y∧ x2)
≡ (x1 ∨ y)∧ (x1 ∨ x2)∧ (y∨ x2)

marijn@cmu.edu 13 / 45

AtMostOne: Satisfiability Equivalence

Are these two encoding of AtMostOne(x1, x2) equivalent?

F1 (direct encoding) F2 (split encoding)
x1 ∨ x2 x1 ∨ y

y∨ x2

F1 and F2 are equisatisfiable:

▶ F1 is satisfiable iff F2 is satisfiable.

Note: Equisatisfiability is weaker than equivalence but useful if
all we want we want to do is determine satisfiability.

marijn@cmu.edu 13 / 45

Common Constraints

Tseitin Transformation

Representing Integers

Cardinality Constraints

Hamiltonian Cycles

marijn@cmu.edu 14 / 45

Tseitin Transformation: Negation Normal Form

The set of propositional formulas in negation normal form
(NNF) is generated inductively as follows:

▶ Each propositional variable p and the negation p of a
propositional variable are in negation normal form

▶ If A and B are in negation normal form, then so are A∧B
and A∨ B

Example
(
(p∧ q∧ r)∨ (r∧ (p∨ q))

)
∧ (s∨ (p∧ t))

Propositional formulas can be converted into NNF using:

▶ A → B ≡ A∨ B

▶ (A∨ B) ≡ (A∧ B)

▶ (A∧ B) ≡ (A∨ B)

▶ A ≡ A

marijn@cmu.edu 15 / 45

Tseitin Transformation: Negation Normal Form

The set of propositional formulas in negation normal form
(NNF) is generated inductively as follows:

▶ Each propositional variable p and the negation p of a
propositional variable are in negation normal form

▶ If A and B are in negation normal form, then so are A∧B
and A∨ B

Example
(
(p∧ q∧ r)∨ (r∧ (p∨ q))

)
∧ (s∨ (p∧ t))

Propositional formulas can be converted into NNF using:

▶ A → B ≡ A∨ B

▶ (A∨ B) ≡ (A∧ B)

▶ (A∧ B) ≡ (A∨ B)

▶ A ≡ A

marijn@cmu.edu 15 / 45

Tseitin Transformation: Avoid Exponential Blowup
What is the complexity of transformation NNF into CNF?

▶ A∧ (B∨ C) ≡ (A∧ B)∨ (A∧ C)

▶ A∨ (B∧ C) ≡ (A∨ B)∧ (A∨ C)

In some cases, converting NNF to CNF can have an
exponential explosion on the size of the formula.

If we convert the NNF (x1 ∧ y1)∨ (x2 ∧ y2)∨ . . .∨ (xn ∧ yn)
using the above distributive laws into CNF:

(x1∨x2∨. . .∨xn)∧(y1∨x2∨. . .∨xn)∧. . .∧(y1∨y2∨. . .∨yn)

▶ How can we avoid the exponential blowup? In this case,
the equivalent formula would have 2n clauses!

Tseitin’s transformation converts a formula F into an
equisatisfiable CNF formula that is linear in the size of F!

▶ Key idea: introduce auxiliary variables to represent
subformulas, and define those variables using CNF clauses

marijn@cmu.edu 16 / 45

Tseitin Transformation: Avoid Exponential Blowup
What is the complexity of transformation NNF into CNF?

▶ A∧ (B∨ C) ≡ (A∧ B)∨ (A∧ C)

▶ A∨ (B∧ C) ≡ (A∨ B)∧ (A∨ C)

In some cases, converting NNF to CNF can have an
exponential explosion on the size of the formula.

If we convert the NNF (x1 ∧ y1)∨ (x2 ∧ y2)∨ . . .∨ (xn ∧ yn)
using the above distributive laws into CNF:

(x1∨x2∨. . .∨xn)∧(y1∨x2∨. . .∨xn)∧. . .∧(y1∨y2∨. . .∨yn)

▶ How can we avoid the exponential blowup? In this case,
the equivalent formula would have 2n clauses!

Tseitin’s transformation converts a formula F into an
equisatisfiable CNF formula that is linear in the size of F!

▶ Key idea: introduce auxiliary variables to represent
subformulas, and define those variables using CNF clauses

marijn@cmu.edu 16 / 45

Tseitin Transformation: Avoid Exponential Blowup
What is the complexity of transformation NNF into CNF?

▶ A∧ (B∨ C) ≡ (A∧ B)∨ (A∧ C)

▶ A∨ (B∧ C) ≡ (A∨ B)∧ (A∨ C)

In some cases, converting NNF to CNF can have an
exponential explosion on the size of the formula.

If we convert the NNF (x1 ∧ y1)∨ (x2 ∧ y2)∨ . . .∨ (xn ∧ yn)
using the above distributive laws into CNF:

(x1∨x2∨. . .∨xn)∧(y1∨x2∨. . .∨xn)∧. . .∧(y1∨y2∨. . .∨yn)

▶ How can we avoid the exponential blowup? In this case,
the equivalent formula would have 2n clauses!

Tseitin’s transformation converts a formula F into an
equisatisfiable CNF formula that is linear in the size of F!

▶ Key idea: introduce auxiliary variables to represent
subformulas, and define those variables using CNF clauses

marijn@cmu.edu 16 / 45

Tseitin: Small Example

Consider the formula F = p∨ (q∧ r)

We can add the definition d ↔ (q∧ r)

Replacing (q∧ r) by d results in CNF p∨ d

The clauses representing the definition are:

(¬d∨ q)∧ (¬d∨ r)∧ (d∨ ¬q∨ ¬r)

An equisatisfiable formula of F in CNF is:

(p∨ d)∧ (¬d∨ q)∧ (¬d∨ r)∧ (d∨ ¬q∨ ¬r)

Satisfying the resulting formula satisfies F on original variables

marijn@cmu.edu 17 / 45

Tseitin: Small Example

Consider the formula F = p∨ (q∧ r)

We can add the definition d ↔ (q∧ r)

Replacing (q∧ r) by d results in CNF p∨ d

The clauses representing the definition are:

(¬d∨ q)∧ (¬d∨ r)∧ (d∨ ¬q∨ ¬r)

An equisatisfiable formula of F in CNF is:

(p∨ d)∧ (¬d∨ q)∧ (¬d∨ r)∧ (d∨ ¬q∨ ¬r)

Satisfying the resulting formula satisfies F on original variables

marijn@cmu.edu 17 / 45

Tseitin: Small Example

Consider the formula F = p∨ (q∧ r)

We can add the definition d ↔ (q∧ r)

Replacing (q∧ r) by d results in CNF p∨ d

The clauses representing the definition are:

(¬d∨ q)∧ (¬d∨ r)∧ (d∨ ¬q∨ ¬r)

An equisatisfiable formula of F in CNF is:

(p∨ d)∧ (¬d∨ q)∧ (¬d∨ r)∧ (d∨ ¬q∨ ¬r)

Satisfying the resulting formula satisfies F on original variables

marijn@cmu.edu 17 / 45

Tseitin: A Linear-Size Transformation

Why is the Tseitin transformation interesting?

▶ At most a linear number of definitions

▶ Definitions can be easily converted into clauses

▶ Easily obtain a satisfying assignment for original formula

▶ Resulting in an efficient transformation into CNF

marijn@cmu.edu 18 / 45

Tseitin: Implementation and Optimizations

Implementation:

▶ Convert the formula into NNF (not necessary, good practice)

▶ Generate the definitions from left to right

▶ OR definition: d ↔ x1 ∨ x2 ∨ · · ·∨ xk ≡
(x1∨x2∨ · · ·∨xk∨d)∧(x1∨d)∧(x2∨d)∧ · · ·∧(xk∨d)

▶ AND definition: d ↔ x1 ∧ x2 ∧ · · ·∧ xk ≡
(x1∨x2∨ · · ·∨xk∨d)∧(x1∨d)∧(x2∨d)∧ · · ·∧(xk∨d)

Optimizations:

▶ Reuse definitions when possible

▶ Avoid definitions by interpreting an NNF formula as a
CNF formula: e.g. p∨ (q∧ ¬r)∨ ¬s

marijn@cmu.edu 19 / 45

Tseitin: Implementation and Optimizations

Implementation:

▶ Convert the formula into NNF (not necessary, good practice)

▶ Generate the definitions from left to right

▶ OR definition: d ↔ x1 ∨ x2 ∨ · · ·∨ xk ≡
(x1∨x2∨ · · ·∨xk∨d)∧(x1∨d)∧(x2∨d)∧ · · ·∧(xk∨d)

▶ AND definition: d ↔ x1 ∧ x2 ∧ · · ·∧ xk ≡
(x1∨x2∨ · · ·∨xk∨d)∧(x1∨d)∧(x2∨d)∧ · · ·∧(xk∨d)

Optimizations:

▶ Reuse definitions when possible

▶ Avoid definitions by interpreting an NNF formula as a
CNF formula: e.g. p∨ (q∧ ¬r)∨ ¬s

marijn@cmu.edu 19 / 45

Tseitin: Larger Example without Optimization

Convert the following NNF into CNF:(
(p∧ q∧ r)∨ (r∧ (p∨ q))

)
∧ (s∨ (p∧ t))

Which results in the following definitions:

▶ d1 ↔ p∧ q∧ r

▶ d2 ↔ p∨ q

▶ d3 ↔ r∧ d2

▶ d4 ↔ d1 ∨ d3

▶ d5 ↔ p∧ t

▶ d6 ↔ s∨ d5

▶ d7 ↔ d4 ∧ d6

marijn@cmu.edu 20 / 45

Tseitin: Larger Example without Optimization

Convert the following NNF into CNF:(
(p∧ q∧ r)∨ (r∧ (p∨ q))

)
∧ (s∨ (p∧ t))

Which results in the following definitions:

▶ d1 ↔ p∧ q∧ r

▶ d2 ↔ p∨ q

▶ d3 ↔ r∧ d2

▶ d4 ↔ d1 ∨ d3

▶ d5 ↔ p∧ t

▶ d6 ↔ s∨ d5

▶ d7 ↔ d4 ∧ d6

marijn@cmu.edu 20 / 45

Tseitin: Larger Example without Optimization

Convert the following NNF into CNF:(
(p∧ q∧ r)∨ (r∧ (p∨ q))

)
∧ (s∨ (p∧ t))

Which results in the following definitions:

▶ d1 ↔ p∧ q∧ r

▶ d2 ↔ p∨ q

▶ d3 ↔ r∧ d2

▶ d4 ↔ d1 ∨ d3

▶ d5 ↔ p∧ t

▶ d6 ↔ s∨ d5

▶ d7 ↔ d4 ∧ d6

marijn@cmu.edu 20 / 45

Tseitin: Larger Example without Optimization

Convert the following NNF into CNF:(
(p∧ q∧ r)∨ (r∧ (p∨ q))

)
∧ (s∨ (p∧ t))

Which results in the following definitions:

▶ d1 ↔ p∧ q∧ r

▶ d2 ↔ p∨ q

▶ d3 ↔ r∧ d2

▶ d4 ↔ d1 ∨ d3

▶ d5 ↔ p∧ t

▶ d6 ↔ s∨ d5

▶ d7 ↔ d4 ∧ d6

marijn@cmu.edu 20 / 45

Tseitin: Larger Example without Optimization

Convert the following NNF into CNF:(
(p∧ q∧ r)∨ (r∧ (p∨ q))

)
∧ (s∨ (p∧ t))

Which results in the following definitions:

▶ d1 ↔ p∧ q∧ r

▶ d2 ↔ p∨ q

▶ d3 ↔ r∧ d2

▶ d4 ↔ d1 ∨ d3

▶ d5 ↔ p∧ t

▶ d6 ↔ s∨ d5

▶ d7 ↔ d4 ∧ d6

marijn@cmu.edu 20 / 45

Tseitin: Larger Example without Optimization

Convert the following NNF into CNF:(
(p∧ q∧ r)∨ (r∧ (p∨ q))

)
∧ (s∨ (p∧ t))

Which results in the following definitions:

▶ d1 ↔ p∧ q∧ r

▶ d2 ↔ p∨ q

▶ d3 ↔ r∧ d2

▶ d4 ↔ d1 ∨ d3

▶ d5 ↔ p∧ t

▶ d6 ↔ s∨ d5

▶ d7 ↔ d4 ∧ d6

marijn@cmu.edu 20 / 45

Tseitin: Larger Example without Optimization

Convert the following NNF into CNF:(
(p∧ q∧ r)∨ (r∧ (p∨ q))

)
∧ (s∨ (p∧ t))

Which results in the following definitions:

▶ d1 ↔ p∧ q∧ r

▶ d2 ↔ p∨ q

▶ d3 ↔ r∧ d2

▶ d4 ↔ d1 ∨ d3

▶ d5 ↔ p∧ t

▶ d6 ↔ s∨ d5

▶ d7 ↔ d4 ∧ d6

marijn@cmu.edu 20 / 45

Tseitin: Larger Example with Optimization

Convert the following NNF into CNF:(
(p∧ q∧ r)∨ (r∧ (p∨ q))

)
∧ (s∨ (p∧ t))

Which results in the following definitions:

▶ d1 ↔ p∧ q∧ r

▶ d2 ↔ ¬p∨ ¬q

▶ d3 ↔ r∧ d2

▶ d4 ↔ p∧ t

Final result: (d1 ∨ d3)∧ (s∨ d4) plus definition clauses

marijn@cmu.edu 21 / 45

Tseitin: Larger Example with Optimization

Convert the following NNF into CNF:(
(p∧ q∧ r)∨ (r∧ (p∨ q))

)
∧ (s∨ (p∧ t))

Which results in the following definitions:

▶ d1 ↔ p∧ q∧ r

▶ d2 ↔ ¬p∨ ¬q

▶ d3 ↔ r∧ d2

▶ d4 ↔ p∧ t

Final result: (d1 ∨ d3)∧ (s∨ d4) plus definition clauses

marijn@cmu.edu 21 / 45

Tseitin: Larger Example with Optimization

Convert the following NNF into CNF:(
(p∧ q∧ r)∨ (r∧ (p∨ q))

)
∧ (s∨ (p∧ t))

Which results in the following definitions:

▶ d1 ↔ p∧ q∧ r

▶ d2 ↔ ¬p∨ ¬q

▶ d3 ↔ r∧ d2

▶ d4 ↔ p∧ t

Final result: (d1 ∨ d3)∧ (s∨ d4) plus definition clauses

marijn@cmu.edu 21 / 45

Tseitin: Larger Example with Optimization

Convert the following NNF into CNF:(
(p∧ q∧ r)∨ (r∧ (p∨ q))

)
∧ (s∨ (p∧ t))

Which results in the following definitions:

▶ d1 ↔ p∧ q∧ r

▶ d2 ↔ ¬p∨ ¬q

▶ d3 ↔ r∧ d2

▶ d4 ↔ p∧ t

Final result: (d1 ∨ d3)∧ (s∨ d4) plus definition clauses

marijn@cmu.edu 21 / 45

Tseitin: Larger Example with Optimization

Convert the following NNF into CNF:(
(p∧ q∧ r)∨ (r∧ (p∨ q))

)
∧ (s∨ (p∧ t))

Which results in the following definitions:

▶ d1 ↔ p∧ q∧ r

▶ d2 ↔ ¬p∨ ¬q

▶ d3 ↔ r∧ d2

▶ d4 ↔ p∧ t

Final result: (d1 ∨ d3)∧ (s∨ d4) plus definition clauses

marijn@cmu.edu 21 / 45

Tseitin Transformation: Automated Tools

▶ Using automated tools to encode to CNF:
limboole: http://fmv.jku.at/limboole

▶ Tseitin’s encoding may add many redundant
variables/clauses!

▶ Using limboole for the pigeon hole problem (n = 3)
creates a formula with 40 variables and 98 clauses

▶ After unit propagation the formula has 12 variables and 28
clauses

▶ Original CNF formula only has 6 variables and 9 clauses

marijn@cmu.edu 22 / 45

http://fmv.jku.at/limboole

Common Constraints

Tseitin Transformation

Representing Integers

Cardinality Constraints

Hamiltonian Cycles

marijn@cmu.edu 23 / 45

Representing Integers: Direct Encoding

▶ Each number i is represented by a Boolean variable: di

▶ At least one number is true: d0 ∨ · · ·∨ dn

▶ At most one number is true:
∧

i<j di ∨ dj

▶ Expressing in a clause that an integer has a specific value
v requires one literal.

▶ For example, “if the number is 1, then do x”, is encoded
as d1 ∨ x.

▶ Typically effective when reasoning about a small range of
integers.

marijn@cmu.edu 24 / 45

Representing Integers: Order Encoding

Order encoding:

▶ Variables represent that a number is larger or equal: o≥i

▶ Requires a linear number of binary clauses: o≥i ∨ o≥i+1

▶ Expressing in a clause that an integer has a specific value
v requires two literals.

▶ For example, “if the number is 1, then do x”, is encoded
as o≥1 ∨ o≥2 ∨ x.

▶ Allows the solver to reason (and produce clauses) that
cover multiple cases.

marijn@cmu.edu 25 / 45

Representing Integers: Binary Encoding

Binary encoding:

▶ Use ⌈log2 n⌉ auxiliary variables bi to represent n in binary

▶ All non-occurring numbers ≤ 2⌈log2 n⌉ need to be blocked.
For example, if we have the numbers 0, 1, and 2, then the
number 3 needs to be blocked: (¬b0 ∨ ¬b1)

▶ Expressing in a clause that an integer has a specific value
v requires ⌈log2 n⌉ literals.

▶ For example, “if the number is 1, then do x”, is encoded
as ¬b0 ∨ b1 ∨ x.

▶ Typically effective when reasoning about a large range of
integers.

marijn@cmu.edu 26 / 45

Common Constraints

Tseitin Transformation

Representing Integers

Cardinality Constraints

Hamiltonian Cycles

marijn@cmu.edu 27 / 45

Cardinality Constraints: AtMostOne

Recall AtMostOne constraints:

▶ AtMostOne: x1 + x2 + x3 + x4 ≤ 1

▶ Clauses for the naive (or direct) encoding:

(x1 → x2)
(x1 → x3)
(x1 → x4)

. . .

x1 ∨ x2
x1 ∨ x3
x1 ∨ x4
. . .

▶ Complexity:
(
n
2

)
or O(n2) clauses

This can be reduced to a linear number using auxiliary variables

What about the general case for cardinality constraints?

marijn@cmu.edu 28 / 45

Cardinality Constraints: AtMostK

AtMostK constraints:

▶ General constraint: x1 + · · ·+ xn ≤ k

▶ Example constraint: x1 + x2 + x3 + x4 ≤ 2

▶ Clauses for the naive encoding:

(x1 ∧ x2 → x3)
(x1 ∧ x2 → x4)
(x2 ∧ x3 → x4)

. . .

(x1 ∨ x2 ∨ x3)
(x1 ∨ x2 ∨ x4)
(x2 ∨ x3 ∨ x4)

. . .

▶ Complexity:
(

n
k+1

)
or O(nk) clauses

Can we build an encoding that is arc-consistent and uses a
polynomial number of clauses for at-most-k constraints?

Yes! With O(n · k) auxiliary variables, we need O(n · k) clauses!

marijn@cmu.edu 29 / 45

Cardinality Constraints: AtMostK

AtMostK constraints:

▶ General constraint: x1 + · · ·+ xn ≤ k

▶ Example constraint: x1 + x2 + x3 + x4 ≤ 2

▶ Clauses for the naive encoding:

(x1 ∧ x2 → x3)
(x1 ∧ x2 → x4)
(x2 ∧ x3 → x4)

. . .

(x1 ∨ x2 ∨ x3)
(x1 ∨ x2 ∨ x4)
(x2 ∨ x3 ∨ x4)

. . .

▶ Complexity:
(

n
k+1

)
or O(nk) clauses

Can we build an encoding that is arc-consistent and uses a
polynomial number of clauses for at-most-k constraints?

Yes! With O(n · k) auxiliary variables, we need O(n · k) clauses!

marijn@cmu.edu 29 / 45

Cardinality Constraints: AtMostK

AtMostK constraints:

▶ General constraint: x1 + · · ·+ xn ≤ k

▶ Example constraint: x1 + x2 + x3 + x4 ≤ 2

▶ Clauses for the naive encoding:

(x1 ∧ x2 → x3)
(x1 ∧ x2 → x4)
(x2 ∧ x3 → x4)

. . .

(x1 ∨ x2 ∨ x3)
(x1 ∨ x2 ∨ x4)
(x2 ∨ x3 ∨ x4)

. . .

▶ Complexity:
(

n
k+1

)
or O(nk) clauses

Can we build an encoding that is arc-consistent and uses a
polynomial number of clauses for at-most-k constraints?

Yes! With O(n · k) auxiliary variables, we need O(n · k) clauses!
marijn@cmu.edu 29 / 45

Cardinality Constraints: Sinz Encoding

Introduce auxiliary variables si,j with the following meaning:
the sum of the first j literals is larger or equal to i

x1

s1,1

s2,1

s3,1

x2

s1,2

s2,2

s3,2

x3

s1,3

s2,3

s3,3

x4

s1,4

s2,4

s3,4

. . .

. . .

. . .

. . . Constraint: sk+1,n

Ind case: xj+1 ∨ si,j ∨ si+1,j+1

Implication: si,j ∨ si,j+1

Base case: xj ∨ s1,j

▶ Arc-consistent using O(n · k) variables and clauses

▶ More details in paper: “Towards an Optimal CNF
Encoding of Boolean Cardinality Constraints”, CP2005

marijn@cmu.edu 30 / 45

Cardinality Constraints: Sinz Encoding

Introduce auxiliary variables si,j with the following meaning:
the sum of the first j literals is larger or equal to i

x1

s1,1

s2,1

s3,1

x2

s1,2

s2,2

s3,2

x3

s1,3

s2,3

s3,3

x4

s1,4

s2,4

s3,4

. . .

. . .

. . .

. . . Constraint: sk+1,n

Ind case: xj+1 ∨ si,j ∨ si+1,j+1

Implication: si,j ∨ si,j+1

Base case: xj ∨ s1,j

▶ Arc-consistent using O(n · k) variables and clauses

▶ More details in paper: “Towards an Optimal CNF
Encoding of Boolean Cardinality Constraints”, CP2005

marijn@cmu.edu 30 / 45

Cardinality Constraints: Totalizer encoding (1)

What is another example of an at-most-k encoding for
l1 + . . . l5 ≤ k?

Totalizer encoding is based on a tree structure and also only
needs O(n · k) clauses/variables.

marijn@cmu.edu 31 / 45

Cardinality Constraints: Totalizer encoding (2)

Use auxiliary variables to count the sum of the subtree:

▶ f1 ≡ l4 + l5 = 1

▶ f2 ≡ l4 + l5 = 2

Note that only f1 or f2 will be assigned to 1.

marijn@cmu.edu 32 / 45

Cardinality Constraints: Totalizer encoding (3)

Use auxiliary variables to count the sum of the subtree:

▶ b1 ≡ l3 + f1 + 2× f2 = 1

▶ b2 ≡ l3 + f1 + 2× f2 = 2

▶ b3 ≡ l3 + f1 + 2× f2 = 3

marijn@cmu.edu 33 / 45

Cardinality Constraints: Totalizer encoding (4)

Any parent node P, counting up to nP, has two children L and
R counting up to nL and nR respectively s.t. nL + nR = nP.

marijn@cmu.edu 34 / 45

Common Constraints

Tseitin Transformation

Representing Integers

Cardinality Constraints

Hamiltonian Cycles

marijn@cmu.edu 35 / 45

Hamiltonian Cycles: Two Constraints

Hamiltonian Cycle Problem (HCP):
Does there exist a cycle that visits all vertices exactly once?

Two constraints:

▶ Exactly two edges per vertex: easy cardinality constraints
▶ Exactly one cycle: hard to be compact and arc-consistent

▶ One option is to ignore the constraint: lazy encoding
▶ Various encodings use O(|V |3). Too large for many graphs
▶ For large graphs we need encodings that are quasi-linear in |E|

marijn@cmu.edu 36 / 45

Hamiltonian Cycles: Two Constraints

Hamiltonian Cycle Problem (HCP):
Does there exist a cycle that visits all vertices exactly once?

Two constraints:

▶ Exactly two edges per vertex: easy cardinality constraints
▶ Exactly one cycle: hard to be compact and arc-consistent

▶ One option is to ignore the constraint: lazy encoding
▶ Various encodings use O(|V |3). Too large for many graphs
▶ For large graphs we need encodings that are quasi-linear in |E|

marijn@cmu.edu 36 / 45

Hamiltonian Cycles: Lazy Encoding

Hamiltonian Cycle Problem (HCP):
Does there exist a cycle that visits all vertices exactly once?

Only encode the two-edges-per-vertex constraint

If a solution has multiple cycles: block the smallest one

▶ Use incremental SAT to keep conflict clauses

▶ SMT is based on a similar approach

marijn@cmu.edu 37 / 45

Hamiltonian Cycles: Encodings Quasi-Linear in |E|

1

2

5

7

3

6

4

Key elements:

▶ Each vertex have an index in the range {1, . . . , |V |}.

▶ Selected edges are directed.

▶ Each vertex has one incoming and one outgoing edge.

▶ For each directed edge (u, v): the index of v is the
successor of the index of u — except for the starting vertex.

How to implement the successor property?

marijn@cmu.edu 38 / 45

Hamiltonian Cycles: Encodings Quasi-Linear in |E|

1

2

5

7

3

6

4

Key elements:

▶ Each vertex have an index in the range {1, . . . , |V |}.

▶ Selected edges are directed.

▶ Each vertex has one incoming and one outgoing edge.

▶ For each directed edge (u, v): the index of v is the
successor of the index of u — except for the starting vertex.

How to implement the successor property?

marijn@cmu.edu 38 / 45

Hamiltonian Cycles: Binary Adder Encoding [Zhou 2020]

Each index is a binary number. If edge variable eu,v is assigned
to true then the index of v is the successor of the index of u.

Example

Let |V | = 7, thus k = ⌈log2 7⌉ = 3. For vertex v, variables v2,
v4, and v8 denote the least, middle, and most significant bit,
respectively. For an edge variable eu,v, we use the constraints:

eu,v → (u2 ↮ v2)

(eu,v ∧ u2) → (u4 ↔ v4)

(eu,v ∧ u2) → (u4 ↮ v4)

(eu,v ∧ u2) → (u8 ↔ v8)

(eu,v ∧ u4) → (u8 ↔ v8)

(eu,v ∧ u2 ∧ u4) → (u8 ↮ v8)

u v

w

u2 → ¬v2 → w2 → ¬u2

This encoding can quickly refute odd cycles

marijn@cmu.edu 39 / 45

Hamiltonian Cycles: Binary Adder Encoding [Zhou 2020]

Each index is a binary number. If edge variable eu,v is assigned
to true then the index of v is the successor of the index of u.

Example

Let |V | = 7, thus k = ⌈log2 7⌉ = 3. For vertex v, variables v2,
v4, and v8 denote the least, middle, and most significant bit,
respectively. For an edge variable eu,v, we use the constraints:

eu,v → (u2 ↮ v2)

(eu,v ∧ u2) → (u4 ↔ v4)

(eu,v ∧ u2) → (u4 ↮ v4)

(eu,v ∧ u2) → (u8 ↔ v8)

(eu,v ∧ u4) → (u8 ↔ v8)

(eu,v ∧ u2 ∧ u4) → (u8 ↮ v8)

u v

w

u2 → ¬v2 → w2 → ¬u2

This encoding can quickly refute odd cycles

marijn@cmu.edu 39 / 45

Hamiltonian Cycles: Linear-Feedback Shift Register

A k-bit Linear-Feedback Shift Register (LFSR) loops through
{1, . . . , 2k − 1} by shifting all bits one position to the left and
placing the parity of some bits in the vacated position.

Example

An example LFSR of 16 bits is x11 ⊕ x13 ⊕ x14 ⊕ x16, which
has 216 − 1 = 65, 535 states. The figure below shows an
illustration of this LFSR with state 10010111001011001.
The next state is 00101110010110011.

1

1

16

0 0

14

1

13

0 1

11

1 1 0 0 1 0 1 1 0 0 1

1

marijn@cmu.edu 40 / 45

Hamiltonian Cycles: LFSR Encoding [Johnson 2018]

Enforcing the successor property using LFSR is compact and
has been used to efficiently find Hamiltonian cycles in Erin and
Stedman triples.

Example

Let |V | = 7, thus k = ⌈log2(7+ 1)⌉ = 3. We use 3-bit LFSR
x2 ⊕ x3. The bit-vector variables of vertex v are v7,1, v7,2, and
v7,3. For an edge variable eu,v, we add the constraints:

eu,v → (v7,1 ↔ (u7,2 ↮ u7,3)

eu,v → (v7,2 ↔ u7,1)

eu,v → (v7,3 ↔ u7,2)
0

0

3

0

2

1

1

This encoding is compact and has lots of propagation

marijn@cmu.edu 41 / 45

Hamiltonian Cycles: LFSR Encoding [Johnson 2018]

Enforcing the successor property using LFSR is compact and
has been used to efficiently find Hamiltonian cycles in Erin and
Stedman triples.

Example

Let |V | = 7, thus k = ⌈log2(7+ 1)⌉ = 3. We use 3-bit LFSR
x2 ⊕ x3. The bit-vector variables of vertex v are v7,1, v7,2, and
v7,3. For an edge variable eu,v, we add the constraints:

eu,v → (v7,1 ↔ (u7,2 ↮ u7,3)

eu,v → (v7,2 ↔ u7,1)

eu,v → (v7,3 ↔ u7,2)
0

0

3

0

2

1

1

This encoding is compact and has lots of propagation

marijn@cmu.edu 41 / 45

Hamiltonian Cycles: Chinese Remainder Encoding [H ’21]

Can we get the best all three worlds?

▶ Incremental SAT: Only partially encode the hard constraint

▶ Binary adder: refute some cycles quickly

▶ LFSR: few and short clauses, no auxiliary variables

Chinese remainder encoding:

▶ Block all subcycles except one of length 0 (mod m)

▶ Pick m (can be smaller than |V |) with small prime factors

▶ Enforce 0 (mod pi) for each prime factor pi of m

▶ Use LFSR for primes > 2 and binary adder for pi = 2

marijn@cmu.edu 42 / 45

Hamiltonian Cycles: Chinese Remainder Encoding [H ’21]

Can we get the best all three worlds?

▶ Incremental SAT: Only partially encode the hard constraint

▶ Binary adder: refute some cycles quickly

▶ LFSR: few and short clauses, no auxiliary variables

Chinese remainder encoding:

▶ Block all subcycles except one of length 0 (mod m)

▶ Pick m (can be smaller than |V |) with small prime factors

▶ Enforce 0 (mod pi) for each prime factor pi of m

▶ Use LFSR for primes > 2 and binary adder for pi = 2

marijn@cmu.edu 42 / 45

Hamiltonian Cycles: Flinders HCP Challenge Graphs

Evaluation on reasonably large instances from the Flinders
HCP Challenge Graphs suite

▶ Runtime (s) of CaDiCaL on binary adder and LFSR

▶ Smallest k such that 2k (or 2k − 1) is larger than |V |

graph # |V | |E| adder (2k) LFSR (2k − 1)

424 2466 4240 > 3600 > 3600
446 2557 4368 > 3600 > 3600
470 2740 4509 2500.61 > 3600
491 2844 4267 173.46 245.92
506 2964 4447 78.29 244.48
522 3060 4591 84.51 611.46
526 3108 4663 160.73 544.97
529 3132 4699 69.69 275.13

marijn@cmu.edu 43 / 45

Hamiltonian Cycles: Chinese Remainder Results

Evaluation with CaDiCaL on various cycle lengths (m)

✗ : First solution consists of multiple cycles

✓ : First solution consists of a single cycle

graph # 2 6 12 60 105 420

424 9.81 ✗ 665.18 ✗ 340.11 ✗ 307.71 ✗ 494.11 ✓ 488.70 ✓
446 13.24 ✗ 334.62 ✗ 169.52 ✗ 380.47 ✗ 573.38 ✓ 722.23 ✓
470 17.08 ✗ 166.16 ✗ 152.31 ✗ 933.36 ✗ 501.91 ✗ 840.89 ✓
491 0.06 ✗ 22.04 ✗ 7.47 ✓ 34.45 ✓ 123.36 ✓ 135.22 ✓
506 0.11 ✗ 31.75 ✗ 19.24 ✓ 33.48 ✓ 28.73 ✓ 63.20 ✓
522 0.63 ✗ 5.66 ✗ 32.95 ✓ 133.40 ✓ 30.40 ✓ 67.03 ✓
526 0.05 ✗ 24.16 ✗ 71.67 ✓ 34.37 ✓ 34.69 ✗ 158.69 ✓
529 0.40 ✗ 17.90 ✗ 60.19 ✓ 48.09 ✓ 42.33 ✓ 365.58 ✓

Trusting a no Ham. cycle result requires verifying the encoding

marijn@cmu.edu 44 / 45

Hamiltonian Cycles: Chinese Remainder Results

Evaluation with CaDiCaL on various cycle lengths (m)

✗ : First solution consists of multiple cycles

✓ : First solution consists of a single cycle

graph # 2 6 12 60 105 420

424 9.81 ✗ 665.18 ✗ 340.11 ✗ 307.71 ✗ 494.11 ✓ 488.70 ✓
446 13.24 ✗ 334.62 ✗ 169.52 ✗ 380.47 ✗ 573.38 ✓ 722.23 ✓
470 17.08 ✗ 166.16 ✗ 152.31 ✗ 933.36 ✗ 501.91 ✗ 840.89 ✓
491 0.06 ✗ 22.04 ✗ 7.47 ✓ 34.45 ✓ 123.36 ✓ 135.22 ✓
506 0.11 ✗ 31.75 ✗ 19.24 ✓ 33.48 ✓ 28.73 ✓ 63.20 ✓
522 0.63 ✗ 5.66 ✗ 32.95 ✓ 133.40 ✓ 30.40 ✓ 67.03 ✓
526 0.05 ✗ 24.16 ✗ 71.67 ✓ 34.37 ✓ 34.69 ✗ 158.69 ✓
529 0.40 ✗ 17.90 ✗ 60.19 ✓ 48.09 ✓ 42.33 ✓ 365.58 ✓

Trusting a no Ham. cycle result requires verifying the encoding

marijn@cmu.edu 44 / 45

Further reading
More details about cardinality encodings can be found in:

▶ Sinz’s encoding:
Carsten Sinz. Towards an Optimal CNF Encoding of Boolean
Cardinality Constraints. CP 2005. pp. 827-831
http://www.carstensinz.de/papers/CP-2005.pdf

▶ Totalizer encoding:
Olivier Bailleux, Yacine Boufkhad. Efficient CNF Encoding of
Boolean Cardinality Constraints. CP 2003. pp. 108-122
https://tinyurl.com/y6ph76au

▶ Modulo Totalizer encoding:
Toru Ogawa, Yangyang Liu, Ryuzo Hasegawa, Miyuki Koshimura,
Hiroshi Fujita. Modulo Based CNF Encoding of Cardinality
Constraints and Its Application to MaxSAT Solvers. ICTAI 2013.
pp. 9-17 https://ieeexplore.ieee.org/document/6735224

▶ Cardinality networks:
Roberto Asin, Robert Nieuwenhuis, Albert Oliveras, Enric
Rodriguez-Carbonell. Cardinality Networks and Their Applications.
SAT 2009. pp. 167-180 https://tinyurl.com/yxwrxzxo

marijn@cmu.edu 45 / 45

http://www.carstensinz.de/papers/CP-2005.pdf
https://tinyurl.com/y6ph76au
https://ieeexplore.ieee.org/document/6735224
https://tinyurl.com/yxwrxzxo

	Common Constraints
	Tseitin Transformation
	Representing Integers
	Cardinality Constraints
	Hamiltonian Cycles

