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Certifying Satisfiability and Unsatisfiability

Certifying satisfiability of a formula is easy:

• Just consider a satisfying assignment:

xyz

(x∨ y)∧ (x∨ y)∧ (y∨ z)

• We can easily check that the assignment is satisfying:

Just check for every clause if it has a satisfied literal!

Certifying unsatisfiability is not so easy:

• If a formula has n variables, there are 2n possible assignments.

➥ Checking whether every assignment falsifies the formula is costly.

• More compact certificates of unsatisfiability are desirable.

➥ Proofs
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What Is a Proof in SAT?

In general, a proof is a string that

certifies the unsatisfiability of a formula.

• Proofs are efficiently (usually polynomial-time) checkable...

... but can be of exponential size with respect to a formula.

Example: Resolution proofs

• A resolution proof is a sequence C1, . . . , Cm of clauses.

• Every clause is either contained in the formula or derived from two
earlier clauses via the resolution rule:

C∨ x x∨D
C∨D

• Cm is the empty clause (containing no literals), denoted by ⊥.

• There exists a resolution proof for every unsatisfiable formula.
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Resolution Proofs

Example: Γ = (x∨ y∨ z)∧ (z)∧ (x∨ y)∧ (u∨ y)∧ (u)

Resolution proof:
(x∨ y∨ z), (z), (x∨ y), (x∨ y), (y), (u∨ y), (u), (u),⊥

u∨ y

x∨ y∨ z z

x∨ y x∨ y

y

u u
⊥

Drawbacks of resolution:

• For many seemingly simple formulas, there are only resolution
proofs of exponential size.

• State-of-the-art solving techniques are not succinctly expressible.
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Clausal Proofs

Reduce the size of the proof by only storing added clauses

Formula

≡ ≡ ≡ ≡

⊥

⊥

Proof

Clauses whose addition preserves satisfiability are redundant.

Checking redundancy should be efficient.

➥ Idea: Only add clauses that fulfill an efficiently checkable
redundancy criterion.
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Reverse Unit Propagation
Unit propagation (UP) satisfies unit clauses by assigning
their literal to true (until fixpoint or a conflict).

Let Γ be a formula. A clause C is implied by Γ via UP
(denoted by Γ ⊢

1
C) if UP on Γ ∧ ¬C results in a conflict.

Example

Γ = (a∨ b∨ c)∧ (a∨ b∨ c)∧ (b∨ c∨ d)∧ (b∨ c∨ d) ∧

(a∨ c∨ d)∧ (a∨ c∨ d)∧ (a∨ b∨ d)∧ (a∨ b∨ d)

clause (a∨ b)

units a∧ b

(a∨ c∨ d) (b∨ c∨ d)

(a∨ b∨ c) (a∨ b∨ c)

(a∨ b)
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Traditional Proofs vs. Interference-Based Proofs

In traditional proof systems, everything that is inferred, is
logically implied by the premises.

C∨ x x∨D
(RES)

C∨D
A A → B

(MP)
B

➥ Inference rules reason about the presence of facts.

• If certain premises are present, infer the conclusion.

Different approach: Allow not only implied conclusions.

• Require only that the addition of facts preserves satisfiability.

• Reason also about the absence of facts.

➥ This leads to interference-based proof systems.
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Early work on reasoning beyond resolution

The early SAT decision procedures used the Pure Literal rule
[Davis and Putnam 1960; Davis, Logemann and Loveland 1962]:

x /∈ Γ
(pure)

(x)

Extended Resolution (ER) [Tseitin 1966]

Combines resolution with the Extension rule:
x /∈ Γ x /∈ Γ

(ER)

(x∨ a∨ b)∧ (x∨ a)∧ (x∨ b)

Equivalently, adds the definition x := AND(a, b)

Can be considered the first interference-based proof system

Is very powerful: No known lower bounds
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Short Proofs of Pigeon Hole Formulas [Cook 1967]

Can n+1 pigeons be in n holes (at-most-one pigeon per hole)?

PHPn :=
∧

1≤ p≤n+1

(x1,p∨· · ·∨xn,p)∧
∧

1≤h≤n,

∧
1≤ p<q≤n+1

(xh,p∨xh,q)

Resolution proofs of PHPn are exponential [Haken 1985]

Cook constructed polynomial-sized ER proofs of PHPn

However, these proofs require introducing new variables:

Hard to find such proofs automatically

Existing ER approaches produce exponentially large proofs

How to get rid of this hurdle? First approach: blocked
clauses...
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Blocked Clauses [Kullmann 1999]

Definition (Blocked Clause)

A clause (C∨ x) is a blocked on x w.r.t. a CNF formula Γ if
for every clause (D∨ x) ∈ Γ , resolvent C∨D is a tautology.

Example

Consider the formula (a∨ b)∧ (a∨ b∨ c)∧ (a∨ c).
First clause is not blocked.
Second clause is blocked by both a and c.
Third clause is blocked by c

Theorem
Adding or removing a blocked clause preserves (un)satisfiability.
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Blocked Clause Addition and Blocked Clause Elimination

The Blocked Clause proof system (BC) combines the
resolution rule with the addition of blocked clauses.

BC generalizes ER [Kullmann 1999]

Recall x /∈ Γ x /∈ Γ
(ER)

(x∨ a∨ b)∧ (x∨ a)∧ (x∨ b)

The ER clauses are blocked on the literals x and x w.r.t. Γ

Blocked clause elimination used in preprocessing and inprocessing

Simulates many circuit optimization techniques

Removes redundant Pythagorean Triples
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DRAT: An Interference-Based Proof System

DRAT is a popular interference-based proof system

DRAT allows adding RATs (defined below) to a formula.
• It can be efficiently checked if a clause is a RAT.

• RATs are not necessarily implied by the formula.

• But RATs are redundant: their addition preserves satisfiability.

DRAT also allows clause deletion
• Initially introduced to check proofs more efficiently

• Clause deletion may introduce clause addition options (interference)

Definition (Resolution Asymmetric Tautology)

A clause (C∨ x) is a resolution asymmetric tautology (RAT)
on x w.r.t. a CNF formula Γ if for every clause (D∨ x) ∈ Γ ,
C∨D is implied by Γ via unit-propagation, i.e., Γ ⊢

1
C∨D.
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Proof Search in Strong Proof Systems
Existence of Short Proofs

Extended Resolution ’70

Frege Systems

Cutting Plane Method ’62

Resolution ’60 / CDCL ’97

Regular Resolution

Tree Resolution / DPLL ’62

Analytic Tableaux ’68

logical equivalence
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Cutting Plane Method ’62

Resolution ’60 / CDCL ’97

Regular Resolution

Tree Resolution / DPLL ’62

Analytic Tableaux ’68

logical equivalence

Finding Short Proofs

Propagation Redundancy ’17

Set PropagationRed. / SDCL ’17

ResolutionAsymmetric Taut. ’12

Blocked Clauses ’99

Extended Resolution ’70

satisfiability equivalence

Express solving techniques compactly
[Järvisalo, Heule, and Biere ’12]

Short proofs without new variables
[Heule, Kiesl, and Biere ’17A]
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Redundant Clauses

Strong proof systems allow adding many redundant clauses.

All Redundant Clauses

The new proof systems can give short proofs of formulas
that are considered hard.

Are stronger redundancy notions still efficiently checkable?
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Mutilated Chessboards: “A Tough Nut to Crack” [McCarthy]

Can a chessboard be fully covered with dominos after
removing two diagonally opposite corner squares?

Easy to refute based on the following two observations:

There are more white squares than black squares; and

A domino covers exactly one white and one black square.
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Without Loss of Satisfaction

One of the crucial techniques in SAT solvers is to generalize a
conflicting state and use it to constrain the problem.

1. 2.

The used proof system can have a big impact on the size:

1. Resolution can only reduce the 30 dominos to 14 (left); and

2. “Without loss of satisfaction” can reduce them to 2 (right).
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Mutilated Chessboards: An alternative proof
Satisfaction-Driven Clause Learning (SDCL) is a new solving
paradigm that finds proofs in the PR proof system [HKB ’17]

SDCL can detect that the above two patterns can be blocked

This reduces the number of explored states exponentially

We produced SPR proofs that are linear in the formula size
marijn@cmu.edu 21 / 33



Redundancy as an Implication

A formula ∆ is at least as satisfiable as a formula Γ if Γ ⊨ ∆.

Given a formula Γ and assignment α, we denote with Γ |α the
reduced formula after removing from Γ all clauses satisfied by
α and all literals falsified by α.

Theorem
A clause C is redundant w.r.t. a formula Γ iff there exists an
assignment α such that

Γ ∧ ¬C ⊨ (Γ ∧ C) |α

This is the strongest notion of redundancy. However,
entailment (⊨) cannot be checked in polynomial time
(assuming P ̸= NP), unless bounded.
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Checking Redundancy Using Unit Propagation

Unit propagation (UP) satisfies unit clauses by assigning
their literal to true (until fixpoint or a conflict).

Let Γ be a formula, C a clause, and α the smallest
assignment that falsifies C. C is implied by Γ via UP
(denoted by Γ ⊢

1
C) if UP on Γ |α results in a conflict.

Implied by UP is used in SAT solvers to determine
redundancy of learned clauses and therefore ⊢

1
is a natural

restriction of ⊨.

We bound Γ ∧ ¬C ⊨ (Γ ∧ C) |α by Γ ∧ ¬C ⊢
1
(Γ ∧ C) |α

Example:
Γ = (x∨ y∨ z)∧ (x∨ y∨ z)∧ (x∨ y∨ z)∧ (x∨ y∨ z)
and ∆ = (z). Observe that Γ ⊨ ∆, but that Γ ⊬1 ∆.
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Hand-crafted PR Proofs of Pigeon Hole Formulas

We manually constructed PR proofs of the famous pigeon hole
formulas and the two-pigeons-per-hole family.

The proofs consist only of binary and unit clauses.

Only original variables appear in the proof.

All proofs are linear in the size of the formula.

➥ The PR proofs are smaller than Cook’s ER proofs.

All resolution proofs of these formulas are exponential in size.
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Autarkies
A non-empty assignment α is an autarky for formula Γ if every
clause C ∈ Γ that is touched by α is also satisfied by α.

A pure literal and a satisfying assignment are autarkies.

Example

Consider the formula Γ := (x∨ y)∧ (x∨ y)∧ (y∨ z).
Assignment α1 = z is an autarky:
(x∨ y)∧ (x∨ y)∧ (y∨ z). Assignment α2 = xy z is an
autarky: (x∨ y)∧ (x∨ y)∧ (y∨ z).

Given an assignment α, Γ |α denotes a formula Γ without the
clauses satisfied by α and without the literals falsified by α.

Theorem ([Monien and Speckenmeyer 1985])

Let α be an autarky for formula Γ .
Then, Γ and Γ |α are satisfiability equivalent.

marijn@cmu.edu 26 / 33



Autarkies
A non-empty assignment α is an autarky for formula Γ if every
clause C ∈ Γ that is touched by α is also satisfied by α.

A pure literal and a satisfying assignment are autarkies.

Example

Consider the formula Γ := (x∨ y)∧ (x∨ y)∧ (y∨ z).
Assignment α1 = z is an autarky:
(x∨ y)∧ (x∨ y)∧ (y∨ z). Assignment α2 = xy z is an
autarky: (x∨ y)∧ (x∨ y)∧ (y∨ z).

Given an assignment α, Γ |α denotes a formula Γ without the
clauses satisfied by α and without the literals falsified by α.

Theorem ([Monien and Speckenmeyer 1985])

Let α be an autarky for formula Γ .
Then, Γ and Γ |α are satisfiability equivalent.

marijn@cmu.edu 26 / 33



Conditional Autarkies

An assignment α = αcon ∪ αaut is a conditional autarky for
formula Γ if αaut is an autarky for Γ |αcon.

Example

Consider the formula Γ := (x∨ y)∧ (x∨ y)∧ (y∨ z).
Let αcon = y and αaut = x, then α = αcon ∪ αaut = xy is a
conditional autarky for Γ :

αaut = x is an autarky for Γ |αcon = (x)∧ (z).

Let α = αcon ∪ αaut be a conditional autarky for formula Γ .
Then Γ and Γ ∧ (αcon → αaut) are satisfiability-equivalent.

In the above example, we could therefore learn (y∨ x).
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Finding Redundant Clauses: The Positive Reduct

Determining whether a clause C is PR w.r.t. a formula Γ is an
NP-complete problem.

How to find PR clauses? Encode it in SAT!

Theorem
Given formula Γ and assignment α. A satisfying assignment ω
of positive reduct p(Γ, α) is a conditional autarky of Γ .

Positive reducts are typically very easy to solve!

Key Idea: While solving a formula Γ , check whether the
positive reduct of Γ and the current assignment α is satisfiable.
In that case, prune the branch α.
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The Positive Reduct: An Example

Given a formula Γ and a clause C. Let α denote the smallest
assignment that falsifies C. The positive reduct of Γ and α,
denoted by p(Γ, α), is the formula that contains C and all
assigned(D,α) with D ∈ Γ and D is satisfied by α.

Example

Consider the formula Γ := (x∨ y)∧ (x∨ y)∧ (y∨ z).

Let C1 = (x), so α1 = x.
The positive reduct p(Γ, α1) = (x)∧ (x)∧ (x) is unsatisfiable.

Let C2 = (x∨ y), so α2 = xy.
The positive reduct p(Γ, α2) = (x∨ y)∧ (x∨ y)∧ (x∨ y) is
satisfiable.
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Pseudo-Code of CDCL (formula Γ)

1 α := ∅
2 forever do
3 α := Simplify (Γ, α)
4 if Γ |α contains a falsified clause then
5 C := AnalyzeConflict ()
6 if C is the empty clause then return unsatisfiable
7 Γ := Γ ∪ {C}
8 α := BackJump (C,α)

13 else
14 l := Decide ()
15 if l is undefined then return satisfiable
16 α := α ∪ {l}
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Pseudo-Code of SDCL (formula Γ)

1 α := ∅
2 forever do
3 α := Simplify (Γ, α)
4 if Γ |α contains a falsified clause then
5 C := AnalyzeConflict ()
6 if C is the empty clause then return unsatisfiable
7 Γ := Γ ∪ {C}
8 α := BackJump (C,α)
9 else if p(Γ, α) is satisfiable then

10 C := AnalyzeWitness ()
11 Γ := Γ ∪ {C}
12 α := BackJump (C,α)
13 else
14 l := Decide ()
15 if l is undefined then return satisfiable
16 α := α ∪ {l}
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Theoretical Challenges

What is the power of conditional autarky reasoning?

Can the new proof systems without new variables simulate old
ones, in particular Frege systems (or the other way around)?
What about cutting planes?

Can we design stronger proof systems that make it even easier
to compute short proofs?
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Practical Challenges

The current version of SDCL is just the beginning:

Which heuristics allow learning short PR clauses?

How to construct an AnalyzeWitness procedure?

Can the positive reduct be improved?

Can local search be used to find short proofs of unsatisfiability?

Constructing positive reducts (or similar formulas) efficiently:

Generating a positive reduct is more costly than solving them

Can we design data-structures to cheaply compute them?
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