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AI for Mathematics

Mathematics is the perfect playground to get AI right

▶ Symbolic AI offers essential logic-based reasoning

▶ Highly trustworthy results thanks to (formal) proofs
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50 Years of Successes in Computer-Aided Mathematics

1976 Four-Color Theorem

1998 Kepler Conjecture

2010 “God’s Number = 20”: Optimal Rubik’s cube strategy

2014 Boolean Erdős discrepancy problem

2016 Boolean Pythagorean triples problem

2018 Schur Number Five

2019 Keller’s Conjecture

2022 Packing Number of Square Grid

2023 Empty Hexagon in Every 30 Points
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Breakthrough in SAT Solving in the Last 30 Years

Satisfiability (SAT) problem: Can a Boolean formula be satisfied?

mid ’90s: formulas solvable with thousands of variables and clauses
now: formulas solvable with millions of variables and clauses

Edmund Clarke: “a key
technology of the 21st century”
[Biere, Heule, vanMaaren, Walsh ’09/’21]

Donald Knuth: “evidently a killer app,
because it is key to the solution of so

many other problems” [Knuth ’15]
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Naive SAT Solving: Truth Table

Γ := (p ∨ q)∧ (q ∨ r)∧ (r ∨ p)

p q r falsifies eval(Γ)
0 0 0 (q ∨ r) 0
0 0 1 — 1
0 1 0 (p ∨ q) 0
0 1 1 (p ∨ q) 0
1 0 0 (q ∨ r) 0
1 0 1 (r ∨ p) 0
1 1 0 — 1
1 1 1 (r ∨ p) 0
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Progress of SAT Solvers
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Satisfiability and Mathematics

Symbolic AI Proofs

Future and Challenges
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Schur’s Theorem [Schur 1916]

Will any coloring of the positive integers with red and blue
result in a monochromatic solution of a + b = c?

1 + 1 = 2 1 + 2 = 3 1 + 3 = 4
1 + 4 = 5 2 + 2 = 4 2 + 3 = 5

Theorem (Schur’s Theorem)

For every positive integer k, there exists a number S(k), such
that [1, S(k)] can be colored with k colors while avoiding a
monochromatic solution of a + b = c with a, b, c ≤ S(k), while
this is impossible for [1, S(k)+1].

S(1) = 1, S(2) = 4, S(3) = 13, S(4) = 44 [Baumert 1965].

We show that S(5) = 160 [Heule 2018]. Proof: 2 petabytes
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Pythagorean Triples Problem (I) [Ronald Graham, early 80’s]

Will any coloring of the positive integers with red and blue
result in a monochromatic Pythagorean Triple a2 + b2 = c2?

32 + 42 = 52 62 + 82 = 102 52 + 122 = 132 92 + 122 = 152

82 + 152 = 172 122 + 162 = 202 152 + 202 = 252 72 + 242 = 252

102 + 242 = 262 202 + 212 = 292 182 + 242 = 302 162 + 302 = 342

212 + 282 = 352 122 + 352 = 372 152 + 362 = 392 242 + 322 = 402

Best lower bound: a bi-coloring of [1, 7664] s.t. there is no
monochromatic Pythagorean Triple [Cooper & Overstreet 2015].

Myers conjectures that the answer is No [PhD thesis, 2015].
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Pythagorean Triples Problem (II) [Ronald Graham, early 80’s]

Will any coloring of the positive integers with red and blue
result in a monochromatic Pythagorean Triple a2 + b2 = c2?

A bi-coloring of [1, n] is encoded using Boolean variables pi
with i ∈ {1, 2, . . . , n} such that pi = 1 (= 0) means that i is
colored red (blue). For each Pythagorean Triple a2 + b2 = c2,
two clauses are added: (pa ∨ pb ∨ pc) and (pa ∨ pb ∨ pc).

Theorem ([Heule, Kullmann, and Marek (2016)])

[1, 7824] can be bi-colored s.t. there is no monochromatic
Pythagorean Triple. This is impossible for [1, 7825].

4 CPU years computation, but 2 days on cluster (800 cores)

200 terabytes proof, but validated with verified checker
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An Empty Hexagon in Every Set of 30 Points

Geometry and SAT: Shapes in point
sets without three points on a line

k-hole: empty k-point convex shape

▶ Every set of 5 points contains in a 4-hole [Klein ’32]

▶ Every set of 10 points contains in a 5-hole [Harborth ’78]
▶ 7-holes can always be avoided [Horton ’83]
▶ Every set of 30 points contains in a 6-hole (using SAT)

[Heule & Scheucher 2023]
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Orientation Variables and Realizability Constraints

No explicit coordinates of points

Instead for every triple a < b < c,
one orientation variable Oa,b,c to denote
whether point c is above the line ab

Not all assignments are realizable

▶ Constraints can eliminate many
unrealizable assignments

+

–

a
b

c

d

Hole variables Ha,b,c denote whether triangle abc is empty

▶ Defined using orientation variables

Many possible SAT encodings

▶ Big impact on performance

▶ Machine learning can help!
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Empty Hexagon Encoding

Given 6 points, how many empty triangles with these points
guarantee an empty hexagon (possibly among other points)?

If the points may not be in convex position: 10

If the points are in convex position:

▶ Requires assignment to four
orientation variables

▶ Includes info which points are
above/below the line a to f

a
b

c

d

e

f
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Empty Hexagon Encoding

Given 6 points, how many empty triangles with these points
guarantee an empty hexagon (possibly among other points)?

If the points may not be in convex position: 10

If the points are in convex position: 1

▶ Requires assignment to four
orientation variables

▶ Includes info which points are
above/below the line a to f

a
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e

f
b ′

13 / 25



Satisfiability and Mathematics

Symbolic AI Proofs

Future and Challenges
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Media: “The Largest Math Proof Ever”
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Proof-Producing Tools: Arbitrarily Complex Solvers

Proof-producing tools with verified checkers is a powerful idea:

▶ Don’t worry about correctness or completeness of tools;

▶ Facilitates making tools more complex and efficient; while

▶ Full confidence in results. [Heule, Hunt, Kaufmann, Wetzler ’17]

Formally verified checkers now also used in industry
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Mutilated Chessboards: “A Tough Nut to Crack” [McCarthy]

Can a chessboard be fully covered with dominos after
removing two diagonally opposite corner squares?

Easy to refute based on the following two observations:

▶ There are more white squares than black squares; and

▶ A domino covers exactly one white and one black square.
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Symbolic AI is Local Reasoning

The chessboard pattern argument is challenging to find, but
an alternative short argument can be found automatically...

Symbolic AI tools produce proofs that can be very different
compared to human-made proofs for the same problem
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Satisfiability and Mathematics

Symbolic AI Proofs

Future and Challenges
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Chromatic Number of the Plane (CNP)

The Hadwiger-Nelson problem (around 1950):
How many colors are required to color the plane such that each
pair of points that are exactly 1 apart are colored differently?

▶ The Moser Spindle graph shows the lower bound of 4

▶ A coloring of the plane showing the upper bound of 7
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CNP: First progress in decades

Recently enormous progress:

▶ Lower bound of 5 [DeGrey ’18]

based on a 1581-vertex graph

▶ This breakthrough started a
polymath project

▶ Improved bounds of the fractional
chromatic number of the plane

We found smaller graphs with SAT:

▶ 874 vertices on April 14, 2018

▶ 803 vertices on April 30, 2018

▶ 610 vertices on May 14, 2018
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Proof Minimization: 510 Vertices [Heule 2021]
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Beyond NP: The Collatz Conjecture

Resolving foundational algorithm questions

Col(n) =

{
n/2 if n is even
(3n + 1)/2 if n is odd

Does while(n > 1) n=Col(n); terminate?

Find a non-negative function fun(n) s.t.

∀n > 1 : fun(n) > fun(Col(n))
source: xkcd.com/710

Can we construct a function s.t. fun(n) > fun(Col(n)) holds?

fun(3) fun(5) fun(8) fun(4) fun(2) fun(1)
5 4 3 2 1 0
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Collatz Conjecture: Successes and Challenge

Success. Our tool proves termination of Farkas’ variant:

F(n) =


n−1

3 if n ≡ 1 (mod 3)
n
2 if n ≡ 0 or n ≡ 2 (mod 6)
3n+1

2 if n ≡ 3 or n ≡ 5 (mod 6)

Challenge ($500). An easier generalized Collatz problem is open:

H(n) =


3n
4 if n ≡ 0 (mod 4)

9n+1
8 if n ≡ 7 (mod 8)

⊥ otherwise

24 / 25



Collatz Conjecture: Successes and Challenge

Success. Our tool proves termination of Farkas’ variant:

F(n) =


n−1

3 if n ≡ 1 (mod 3)
n
2 if n ≡ 0 or n ≡ 2 (mod 6)
3n+1

2 if n ≡ 3 or n ≡ 5 (mod 6)

Challenge ($500). An easier generalized Collatz problem is open:

H(n) =


3n
4 if n ≡ 0 (mod 4)

9n+1
8 if n ≡ 7 (mod 8)

⊥ otherwise

24 / 25



Takeaways

Successes, Advances, and Trust:

▶ A performance boost of symbolic AI technology allows
solving challenges in mathematics

▶ Creative, but possibly gigantic proofs can be validated
using formally-verified checkers

▶ Future: combine symbolic AI and ML

Challenges ready for symbolic AI + ML?

▶ Chromatic number of the plane

▶ Optimal matrix multiplication

▶ Hadamard conjecture

▶ Collatz conjecture

▶ . . .
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