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ABSTRACT
Autonomous robots need to track targets. Target tracking
efficiency completely depends on the accuracy of the mo-
tion model and of the sensory information. Interestingly,
when multiple team members can actuate the target being
tracked, the motion can become highly discontinuous and
nonlinear. We have previously developed a successful track-
ing approach that switches among target motion models as
a function of one robot’s actions. In this paper, we report on
our recent tracking approach that can use a dynamic mul-
tiple motion model based on a team coordination plan. We
present the multi-target multi-model probabilistic tracking
algorithms in detail and present empirical results both in
simulation and in a human-robot Segway soccer team. The
team coordination plan allows the robot to much more ef-
fectively track mobile targets.

Categories and Subject Descriptors
I.2.9 [Artificial Intelligence]: Robotics—Sensors, Autonomous
vehicles, Kinematics and dynamics

General Terms
Algorithms, Experimentation, Human Factors

Keywords
multi-model, motion modelling, tracking, actuator

1. INTRODUCTION
Autonomous robot agents need to be able to track moving

objects. (e.g. [8]). When tracking is performed by a robot
executing specific tasks acting over the target being tracked,
such as a Segway RMP soccer robot grabbing and kicking a
ball, the motion model of the target becomes dependent on
the robot’s actions [6]. The robot’s tactic provides valuable
information in terms of the target behavior. A tactic-based
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motion modelling and tracking in such scenarios has been
introduced in [4].

However, for environments the Segway RMP soccer robot
operates in, all the players on the field can actuate over
the ball, namely grab and kick the ball according to the
rules, which makes the motion model of the ball even more
complex. When the robot is playing a game as a member
of a human-robot team, the team coordination knowledge
provides further information that can be incorporated into
the motion modelling and tracking process. Furthermore,
the approach in [4] does not perform well once incorrect
measurements originating from clutter or false alarms ex-
ist, which causes multiple hypothesis of the tracked target.
Recently, a hybrid approach for online joint detection and
tracking for multiple targets was proposed [7]. This ap-
proach does not assume the knowledge of true targets (with-
out clutter) is given. It first uses a deterministic clustering
method that searches for regions of interest (ROIs) based
on the observations and monitors these ROIs for target de-
tection, then performs multi-target tracking by Sequential
Monte Carlo (SMC) methods. In this paper, based on their
approach, we present an extension to the tactic-based track-
ing scheme introduced in [4] to solve a plan-dependent multi-
target multi-hypothesis tracking problem.

The paper is organized as follows. We first give a brief
description of the Segway RMP soccer robot. Next we show
the system dynamics. We introduce play-based motion mod-
elling for multiple targets and we incorporate the team co-
ordination knowledge into the motion modelling. We then
describe the multi-target multi-model tracking algorithm,
leading to our experimental results, related work, and con-
clusions.

2. SEGWAY RMP SOCCER ROBOT
The Segway platform is unique due to its combination

of wheel actuators and dynamic balancing. Segway RMP,
or Robot Mobility Platform, provides an extensible control
platform for robotics research [9].

In our previous work, we have developed a Segway RMP
robot base capable of playing Segway soccer. We briefly de-
scribe the two major components of the control architecture,
the sensor and the robot cognition, which are highly related
to our multi-model motion tracking.

2.1 Vision Sensor
The goal of vision is to provide as many valid estimates

of targets as possible. Tracking then fuses this information



to track the most interesting targets (the ball and the team
member, in this paper) of relevance to the robot. We do
not discuss the localization of the robot in the sense that
a lot of soccer tasks (known as tactics and plays in later
sections) can be done by the Segway RMP robot indepen-
dently of knowing where it is in the world. Also we use
global reference in this paper (global position and velocity)
which means it is relative to the reference point where the
robot starts to do dead reckoning.

Recently, we have equipped each robot with infrared sen-
sors to reliably detect the object which is in the catchable
area of the robot. Its measurement is a binary value indi-
cating whether or not an object is in that area. In most
cases, this is the blind area of the vision sensor. Therefore,
the infrared sensor is particularly useful when the robot is
grabbing the ball.

2.2 Robot Cognition
A control architecture, called Skills-Tactics-Plays, was pro-

posed in [3] to achieve the goals of responsive, adversarial
team control. The key component of STP is the division
between single robot behavior and team behavior.

A play, P , is a fixed team plan which consists of a set
of applicability conditions, termination conditions, and N
roles, one for each team member. Each role defines a se-
quence of tactics T1, T2, · · · and associated parameters to be
performed by that role in the ordered sequence. Assignment
of roles to team members is performed dynamically at run
time. Upon role assignment, each robot i is assigned its tac-
tic Ti to execute from the current step of the sequence for
that role.

A tactic, T , encapsulates a single robot behavior. Each
robot i executes its own tactic as created by the current play
P . A tactic Ti determines the skill state machine SSMi to
be executed by the robot i.

A skill, S, is a focused control policy for performing some
complex action. Each skill is a member of one, or more, skill
state machines SSM1, SSM2, · · · . Each skill S determines
what skill it transitions to S′ based upon the world state,
the time skill S has been executing for, and the executing
tactic for that robot.

We construct the robot cognition using a similar architec-
ture. Plays, tactics, and skills, form a hierarchy for team
control. Plays control the team behavior through tactics,
while tactics encapsulate individual robot behavior and in-
stantiate actions through sequences of skills. Skills imple-
ment the focused control policy for actually generating use-
ful actions. Figure 1 shows the SSMs and transitions for an
example tactic: CatchKickToTeammember, which contains
six skills. Each node in the figure is a skill and the edges
show the transition between skills.

Segway soccer is a team sport, and therefore the building
of our game strategy required not only execution of single
robot behavior , but also coordination with the team mem-
ber, the human player. The current coordination is simple
and basically based upon two fixed plays for offensive and
defensive situation respectively. Our offensive play is shown
as follows, in which the termination condition is either play
aborted or the situation changed (a turn-over of ball posses-
sion announced by the coach). There are two roles in this
play, one passes the ball to the other who positions down
field and waits for receiving a pass.

PLAY Naive Offense

S earch Ball

Aim at Ball

G rab Ball

Aim
at T eammemb er

Kick

S earch T eammate

ball is  c lose teammate  found

ball no t seen

ball seen

ball lo st

ball lo st

teammate  lost

Figure 1: Skill state machines (SSMs) for an exam-
ple tactic: CatchKickToTeammember.

APPLICABLE offense
DONE aborted !offense
ROLE 1

pass 2
none

ROLE 2
position_down_field
receive_pass
none

Our current coordination is purely observation based. Each
player assigns role from his own eyeshot without communica-
tion. For example, should the robot think the team member
is closer to the ball, the robot (ROLE 2) would choose to
position and receive the ball from its team member (ROLE
1). Furthermore, the robot knows which side gains posses-
sion of the ball from the referee announcement (whistle),
therefore it tells offensive from defensive situation clearly
and thus it has deterministic idea of which play the team is
using. The robot makes an assumption that its team mem-
ber is performing the same game play as itself. The robot
can infer what tactic the team member is executing from
the team play. For instance, after receiving the ball from the
team member, as a passer, the robot would assume the team
member go forward to a tactically advantageous position to
receive a pass. The predefined play for team coordination
provides useful information for motion modelling, which will
be further discussed in section 3.

3. PLAY-BASED MOTION MODELLING
In this section, we take a multi-target tracking problem

as a detailed example to show the extension of the tactic-
based motion modelling method in general when the team
coordination knowledge (play) is incorporated. First we give
an introduction of the environment and targets under the
Segway soccer setup. Second, we describe detailed motion
models for both the ball and the team member. Third, we
extend the tactic-based motion modelling to the play level
when both the ball and the team member are included into
the tracking. We show how we model the play-dependent in-
teractions between the team member, the robot and the ball
and set up a base for giving the multi-model tracking algo-
rithm in the next section. Although we present the Segway
soccer domain as an example, the formalism is general.

3.1 Tracking Scenario
Many tracking scenarios involve multiple moving targets.

In a Segway soccer game, we need to track the ball, the
human team member and the two opponents. Each team
is identified by their distinct color. The ball is orange. An
observation from the sensors might consist of multiple mea-



surements due to the moving objects and the clutter. Gen-
erally the clutter has similar color as the targets we are
interested in and it causes multiple hypothesis for the true
targets. Therefore, we construct two multi-target trackers in
the system, for the ball and the team member respectively.
We use two separate trackers instead of one because we can
differentiate the ball with the team member thanks to the
color-based vision system. We use multi-target tracker in-
stead of single target tracker because we can keep track of
the true target and the false positive at the same time with-
out losing any of them and perform ball(or team member)
recognition from a pool of tracked objects later.

3.2 State Space and Dynamics
Let xt = [xT

1,t,x
T
2,t, · · · ,xT

Kt,t]
T , denote a combined target

state vector for Kt unknown and time-varying number of
targets. The general parameterized system process for the
kth target xk,t at time t is given by:

xk,t = fk(xk,t−1,uk,t−1,vk,t−1) (1)

where fk is the parameterized state transition and mea-
surement functions for the kth target; x,u are the state and
input vectors; v is the process noise vectors of known statis-
tics. Given the number of targets at t − 1 and t, the state
transition can be represented as follows:

p(xt|xt−1, Kt, Kt−1)

=




p0(xKt,t)
∏Kt−1

k=1 p(xk,t|xk,t−1), if Kt = Kt−1 + 1∏Kt
k=1 p(xk,t|xk,t−1), if Kt = Kt−1∏Kt−1

k=1,k �=k∗ p(xk,t|xk,t−1), if Kt = Kt−1 − 1
0, otherwise

(2)
The prior p(xk,t|xk,t−1) can be evaluated from (1). The

function p0(xKt,t) is the initial distribution of a new target
state and k∗ is a target that vanishes at t. We assume at
most one target appears or vanishes in each time step. The
number of targets is obtained deterministically (see section
4.1 for the details).

3.3 Observation Model
We assume that measurements are independent of each

other and either originate from true targets or clutter. Fur-
thermore, each target generates at most one measurement
in each time step but may not be detected by the sensor.

Let zt = [zT
1,t, z

T
2,t, . . . , z

T
Mt,t] denote an observation vector

for Mt measurements. The observation equation for mod-
elling the cth measurement originating from the kth target
is given as:

zc,t = hk(xk,t,nc,t) (3)

where nc,t is a zero-mean observation noise with a known
covariance Σn. The measurement originating from a clutter
is modelled to be uniformly distributed within the entire vis-
ible region (observation volume V ) of the camera. We use
a deterministic method to perform measurement-to-target
association. Let αt denote the association vector which in-
dicate the measurement-to-target assignment, whose ith el-
ement αi,t is set to j if the ith measurement originates from
the jth target, or zero if it originates from clutter. Let NCt

denote the number of clutter points, and ΩD denote the
set of measurements indices corresponding to the detected
targets, the likelihood function for measurement zt can be

written as:

p(zt|xt, Kt, αt) = (
1

V
)NCt

∏
l∈ΩD

p(zl,t|xαl,t,t) (4)

where the likelihood function p(zl,t|xαl,t,t) is evaluated from
(3).

3.4 Ball Motion Modelling
In our Segway RMP soccer robot environment, we define

five models to model the ball motion (for the rest of this
paper, for simplicity, we use xt to represent the ball state,
and use x′

t to represent the team member state).

• Free-Ball, Robot-Grab-Ball, Robot-Kick-Ball. We use
the same models as Free-Ball, Grab-Ball and Kick-Ball
introduced in [4] respectively.

• Human-Grab-Ball. The ball is held by the team mem-
ber. we can infer the ball position similarly if we know
the team member position well.

• Human-Kick-Ball. The ball is kicked by the team
member and it is supposed to be either a pass to the
robot or a shoot at the goal .

In general, we will have n motion models m1, m2, · · · , mn.

3.5 Team Member Motion Modelling
We define four models to model the human team member’s

motion.

• Random Walk. The team member is wondering in the
field. So the state at the new time is the state at the
current time with some additive zero-mean (assumed
Gaussian) noise.

• Holding Ball. The team member is holding the ball
without moving and waiting for the robot to receive
the ball. Should the robot know the ball position well,
it can infer the team member position by the ball po-
sition in a similar way as Robot-Grab-Ball for ball mo-
tion modelling.

• Accelerating. The team member dashes and obtains a
velocity in a short time.

• Positioning. The team member is going to a prede-
fined tactical position with a constant speed. This
case happens mostly after the team member passing
the ball to the robot and moving down the field to-
ward opponent’s goal.

3.6 Play Based Model Transitions
Given the knowledge of the team coordination plan (the

play Pt−1 at time t− 1), the robot can infer what tactic the
team member is executing (T ′

t−1), which provides valuable
information about the motion model of the team member
(m′

t). Both the robot and the team member act over the
ball in a Segway soccer game. The motion model of the ball
(mt) is therefore affected by what tactic the robot (Tt−1)
and the team member (T ′

t−1) are executing.
From the previous subsection, we know that the model

index m determines the present model being used. For our
team member tracking example, m′

t = i, i = 1, · · · , 4. In our
approach, it is assumed that the team member motion model
index, m′

t, conditioned on the previous tactic executed T ′
t−1
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Figure 2: Play-Based motion modelling, where
m1, m2, · · · , mn are n models, Pa is the team play, vb

is the additional information. hi,j is the transition
probability from model mi to model mj given mi,
and 〈Pa, vb〉. Each layer in the graph is conditioned
on a particular combination of the play executed and
the additional information obtained.
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Figure 3: Object motion modelling based on the
play: Naive Offense. Each node is a model. Mod-
els transit to one another according to the prede-
fined probabilities (not shown in the figure). (a)
Ball motion model. (b) Human team member mo-
tion model.

by the team member, and other useful information v′
t (such

as ball state), is governed by an underlying Markov process,
such that, the conditioning parameter can branch at the
next time-step with probability.

p(m′
t = i|m′

t−1 = j, T ′
t−1, v′t) = h′

i,j (5)

where i, j = 1, · · · , Nm′ . Since T ′
t−1 can be determined by

Pt−1, we get

h′
i,j = p(m′

t = i|m′
t−1 = j, Pt−1, v′t) (6)

Since we can draw p(m′
t = i|m′

t−1 = j) in an Nm′ × Nm′
table, we can create a table for Equation 6 with a third axis
which is defined by the tuple 〈Pa, vb〉 as shown in Figure
2. Here the play Pa, is the primary factor that determines
whether mi transits to mj and what the transition probabil-
ity is, while the information vb determines the prior condi-
tion of the transition. Each layer in the graph is conditioned
on a particular combination of the tactic executed and the
additional information obtained.

For our ball tracking example, mt = i, i = 1, · · · , 5. Simi-
larly,

hi,j = p(mt = i|mt−1 = j, Tt−1, T ′
t−1, vt) (7)

where i, j = 1, · · · , Nm. Since Tt−1, T
′
t−1 can be determined

by Pt−1, we get

hi,j = p(mt = i|mt−1 = j, Pt−1, vt) (8)

Suppose the current team play is the Naive Offense in Sec-
tion 2.2, we can obtain the corresponding motion model
transitions for both the ball and the team member using
the play-based method (Figure 3).

4. MULTI-MODEL MOTION TRACKING
In this section, we first describe the clustering algorithm

we used to continuously monitor the appearance and disap-
pearance of regions of interest (ROIs) on the field. We then
use dynamic Bayesian networks to represent the whole sys-
tem. We give the detailed sequential Monte Carlo methods
of tracking in a multi-model multi-hypothesis scheme finally.

4.1 Clustering Algorithm
The idea of this algorithm is to group a set of ROIs, St =

{S(j)
t }Jt

j=1, within a buffer of observations Zt = {zt′}t
t−τ ,

where τ is the length of the sliding window [7]. If the cur-
rent targets are widely separated, the measurements origi-
nating from them will be clustered in the locations where the
targets had visited from t − τ to t. Therefore the distance
between two measurements within two successive time steps
can be taken as the clustering criteria. Let dc,l(t

′ +1, t′) de-
note the normalized distance between the cth and lth mea-
surements of zt′+1 and zt′ .

dc,l(t
′ + 1, t′) = eT

c,l(t
′ + 1, t′)Σ−1

e ec,l(t
′ + 1, t′) (9)

where c ∈ {1, . . . , Mt′+1} and l ∈ {1, . . . , Mt′}, ec,l(t
′ +

1, t′) = zc,t′+1 − zl,t′ and Σe = 2Σn. For all measurements
of zt′+1, we have a set of normalized distances {dc,l(t

′ +

1, t′)}Mt′+1
c=1 . The c∗th measurement zc∗,t′+1 will be grouped

with zl,t′ in the same cluster S
(j)
t if

dc∗,l(t
′ + 1, t′) = argmin{dc,l(t

′ + 1, t′)}Mt′+1
c=1 (10)

and

dc∗,l(t
′ + 1, t′) ≤ εz (11)

where εz is a threshold. If none of the measurements of
zt′+1 can be grouped with zl,t′ , the search procedure con-
tinues and uses zt′+b, 1 < b ≤ τ until (10) and (11) are both
satisfied. Meanwhile the algorithm propagates through time
to group other measurements in the remaining observations.
Since the detected regions obtained via (10) and (11) pos-
sibly arise from clutter points, another threshold is set to
examine the number of measurements in the region to elim-
inate the false positives. That is, if the number of measure-

ments in the jth region S
(j)
t is less than τmin, defined as the

minimum number of clustered measurements in a region re-
quired to identify a target, it is discarded; otherwise, the jth
region is classified as originating from a target. Once a set

of ROIs St = {S(j)
t }Jt

j=1 is obtained, it is necessary to deter-
mine which region belongs to which existing active track or a
new track deterministically. Let γt = [γ1,t, γ2,t, · · · , γKt,t, ]

T

denote the track-to-region association vector. γk,t is used to
indicate the association between the ROIs and the active
tracks. γk,t is evaluated as j if track k can be associated

with S
(j)
t , otherwise it is zero. Refer to [7] for more details

of the clustering algorithm.

4.2 DBN Representation
Following the play-based motion model given in the previ-

ous section, we can use dynamic Bayesian networks (DBNs)



to represent the whole system for team member and ball
tracking in a natural and compact way as shown in Figure
4 and Figure 5 respectively. In the two graphs, the system
state is represented by variables (play P , tactic T , infrared
sensor measurement s, ball state x, ball motion model in-
dex m, vision sensor measurement of ball z, team member
state x′, team member motion model index m′, vision sen-
sor measurement of team member z′), where each variable
takes on values in some space. The variables change over
time in discrete intervals, so that e.g. xt is the ball state at
time t.

Furthermore, the edges indicate dependencies between the
variables. For instance, in Figure 5 the ball motion model
index mt depends on mt−1, Tt−1, T

′
t−1, st and xt−1, hence

there are edges coming from the latter five variables to mt.
For the rest of this section, we give the ball-tracking algo-
rithm following Figure 5. The team-member-tracking algo-
rithm can be obtained similarly following Figure 4.

4.3 Importance Sampling Function
We use the sequential Monte Carlo method to track the

motion model m and the multi-target state x. Particle fil-
tering is a general purpose Monte Carlo scheme for tracking
in a dynamic system. It maintains the belief state at time

t as a set of particles p
(1)
t , p

(2)
t , · · · , p

(Ns)
t , where each p

(i)
t is

a full instantiation of the tracked variables {p(i)
t , w

(i)
t }, w

(i)
t

is the weight of particle p
(i)
t and Ns is the number of parti-

cles. In our case, p
(i)
t = 〈x(i)

t , m
(i)
t 〉. To make our notation

more concrete, a particular particle p
(i)
t , which is tracking

Kt multi-target state vector xt and motion model mt, is
given as [5]:

p
(i)
t =




m
(i)
1,t m

(i)
2,t · · · m

(i)
Kt,t

x
(i)
1,t x

(i)
2,t · · · x

(i)
Kt,t

y
(i)
1,t y

(i)
2,t · · · y

(i)
Kt,t

ẋ
(i)
1,t ẋ

(i)
2,t · · · ẋ

(i)
Kt,t

ẏ
(i)
1,t ẏ

(i)
2,t · · · ẏ

(i)
Kt,t


 (12)

We sample the ball motion model following the ball-tracking
DBN as below:

m
(i)
k,t ∼ p(mk,t|m(i)

k,t−1,x
(i)
k,t−1, st, Tt−1, T

′
t−1) (13)

Note that Tt−1 and T ′
t−1 are inferred deterministically from

Pt−1 instead of sampling. Conditioned on the ball motion

model m
(i)
k,t, we then use the importance function introduced

in [7] to sample ball state x
(i)
k,t:

x
(i)
k,t ∼

{
qD(xk,t|m(i)

k,t,x
(i)
k,t−1), k /∈ KSt

qDS(xk,t|m(i)
k,t,x

(i)
k,t−1, S

(j)
t ), k ∈ KSt

(14)

where k ∈ KSt are those tracks with γk,t = j and j ∈
ΩD, and qD(·) and qDS(·) are the proposal functions for xk,t

without and with an associated ROI S
(j)
t , given as follows,

repectively,

qD(xk,t|m(i)
k,t, x

(i)
k,t−1) = p(xk,t|m(i)

k,t,x
(i)
k,t−1) (15)

qDS(xk,t|m(i)
k,t,x

(i)
k,t−1, S

(j)
t ) =

µp(xk,t|m(i)
k,t,x

(i)
k,t−1) + (1 − µ)q(xk,t|m(i)

k,t,x
(i)
k,t−1, S

(j)
t ) (16)

where 0 ≤ µ ≤ 1 and q(·) is a uniform sampling from the

associated ROI S
(j)
t . If µ = 1, the importance sampling

x 'k -1

x 'k

z'k -1

z'k

m'k-1

m'k

Vis ion
Measure-
m ent

  StateTeammate
M o tio n
M o d el

x 'k+ 1 z'k +1m'k +1

P k-2

P k-1

Play

P k

T 'k-2

T'k-1

T eam -
m em ber
T ac tic

T'k

Figure 4: A dynamic Bayesian network for team
member tracking with a Segway RMP robot. Filled
circles represent deterministic variables which are
observable or are known as the tactic or the play
that the robot is executing.

function is reduced back to the dynamic prior. If µ = 0, all
particles are generated from the data-dependent importance
function. If 0 < µ < 1, this proposal combines the dynamic
prior and the current ROIs to generate representative par-
ticles.

4.4 Birth, Death and Update Moves
Assuming that there are Kb

t ROIs that cannot be associ-
ated with any existing track, we will initiate a new track in
each time step from one of these regions instead of initiating
Kb

t tracks simultaneously in order to fit the birth move with
the assumed system process model in (2). When an existing
track cannot be associated with a region at a given time, the
target being tracked by the tracker may have disappeared
or temporarily experience a short period of data loss. Thus
we may remove the track for the target only if it has failed
to associate with any ROI with τd time steps. Refer to [7]
for the detailed algorithm of birth move and death move.

In the update move, there is no change in terms of the
number of ROIs. We only need to update the target states

with a common value of number of targets K
(i)
t = K

(i)
t−1,

using the sequential importance sampling method as follows:

[{x(i)
t , m

(i)
t , w

(i)
t }Ns

i=1] = SIS[{x(i)
t−1, m

(i)
t−1, w

(i)
t−1}Ns

i=1, zt, st, Tt−1, T
′
t−1]

01 for i = 1 : Ns

02 for k = 1 : Kt

03 draw m
(i)
k,t ∼ p(mk,t|m(i)

k,t−1,x
(i)
k,t−1, st, Tt−1, T

′
t−1).

04 if track k has corresponding ROI S
(j)
t

05 draw x
(i)
k,t ∼ qDS(xk,t|m(i)

k,t, x
(i)
k,t−1, S

(j)
t )

06 else
07 draw x

(i)
k,t ∼ qD(xk,t|m(i)

k,t,x
(i)
k,t−1)

08 end if
09 end for
10 set w

(i)
t = w

(i)
t−1 · p(zt|xt, Kt, αt)

11 end for
12 Calculate total weight: w =

∑
[{wi

t}Ns
i=1]

13 for i = 1 : Ns

14 Normalize: wi
t = wi

t/w
15 end for
16 Resample.

The inputs of the algorithm are samples drawn from the

previous posterior 〈x(i)
t−1, m

(i)
t−1, w

(i)
t−1〉, the present vision and

infrared sensory measurement zt, st, the robot’s tactic Tt−1,
and the team member’s tactic T ′

t−1. The outputs are the
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Figure 5: A dynamic Bayesian network for ball
tracking with a Segway RMP robot.

Table 1: The average RMS error of position estima-
tion and velocity estimation from human trackers
and ball trackers.

Motion Single Multiple

Model Model Model

Human Position Est RMS (m) 0.0030 0.0014

Human Velocity Est RMS (m/s) 0.42 0.025

Ball Position Est RMS (m) 0.0028 0.0017

Ball Velocity Est RMS (m/s) 0.4218 0.0597

updated weighted samples 〈x(i)
t , m

(i)
t , w

(i)
t 〉. In the sampling

algorithm, first, a new ball motion model index, m
(i)
t , is

sampled according to (13) at line 03. Then given the model
index, and previous ball state, a new ball state is sampled
according to (14) at line 05/07. According to (4), the im-
portance weight of each sample is given by the likelihood of
the vision measurement given the predicted new ball state
at line 12. Finally, each weight is normalized and the sam-
ples are resampled. Then we can estimate the ball state

based on the mean of all the x
(i)
t . Though we are trying to

eliminate the clutter from the beginning of tracking (clus-
tering algorithm), due to the property of the multi-target
tracker, further recognition process might be done in order
to figure out which tracked target is the true ball. Similarly
the state of the team member x′

t can be obtained from the
team member tracker.

5. EXPERIMENTAL RESULTS
From previous work we knew the initial speed and accu-

racy of the ball velocity after a kick motion. We profiled
the system and measurement noise as well. In this section,
we evaluate the effectiveness of our tracking system in both
simulated and real-world tests.

5.1 Simulation Experiments
Because it is difficult to know the ground truth of the

target’s position and velocity in the real robot test, we do the
simulation experiments to evaluate the precision of tracking.

Experiments are done following the Naive Offense play,
in which the robot acts as the receiver and the human team
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Figure 6: Ball velocity estimation.

member acts as the passer. Noises are simulated according
to the model we profiled in previous work. In the beginning,
the team member holds the ball. After a fixed amount of
time, the ball is kicked towards the robot, and the team
member moves forward to a predefined location.

We implement both a single model tracker and a play-
based multi-model tracker for the ball and the team member.
We simulate the experiment for 50 runs, and then compare
the performance of the two trackers with different implemen-
tations. The average RMS error of position estimation and
velocity estimation are shown in Table 1. The results show
that the play-based multi-model scheme performs much bet-
ter than the single model especially in terms of velocity es-
timation. Because with the play-based motion model, when
the ball is being kicked, most particles evolving using the
transition model determined by the play will change its mo-

tion model m
(i)
t from Free-Ball to Human-Kick-Ball, and a

velocity will be added to the ball accordingly.
Figure 6 show the ball velocity estimation during a short

term for a given simulation test. The left graph shows the
x-component of the velocity (vx) estimation through single
model tracking and through play-based multi-model track-
ing. The right graph shows the y-component of the velocity
(vy) estimation. The dotted line with x-mark represents the
true value, the solid line with circle represents the veloc-
ity estimation through play-based multi-model tracking, the
solid line with cross represents the the velocity estimation
through single model tracking. We note that the velocity
estimation with multi-model trackers approximate the true
velocity in terms vx and vy much more consistently than
with single model trackers, since the former tracker switches
model effectively responding to the actual change happened
on the tracked target.

5.2 Multi-Target Tracking Test
In this test, one Segway RMP robot is tracking one or

more balls on the field with SearchBall tactic. We would like
to compare solely the target detection performance between
the proposed method and the IMM tracker. A scenario with
Kt (0 ≤ Kt ≤ 3) balls appearing and disappearing at dif-
ferent times and there are a set of false positives at fixed
position in the surroundings.

When estimating the number of targets, 3600 particles
are used in the proposed method. Figures 7-8 summarize
the results. In both figures, the dots show the number of
measurements at a given time. The dotted line represents
the number of the targets tracked by the IMM tracker. The
dashdotted line represents the number of targets tracked by
the multi-model multi-target tracker proposed in this pa-
per. The crosses show the true number of the targets at any



0 2 4 6 8 10 12 14 16
0

0.5

1

1.5

2

2.5

3

time (sec)

nu
m

be
r 

of
 ta

rg
et

s

measurement#
IMM #
true target#
pf #

Figure 7: A comparison of the target detection per-
formance between the proposed method and the
IMM tracker when only one target exists with sur-
rounding clutters.
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Figure 8: A comparison of the target detection per-
formance between the proposed method and the
IMM tracker when multiple targets exist with sur-
rounding clutters.

given time. As shown in the figure, the IMM tracker is sen-
sitive to the number of measurements, while our approach
is more robust and consistent to high clutter density. Since
the detection is basically performed on the clustering of the
observations and the association between the detected ROIs
and the existing tracks, it is computational low-cost. There-
fore it is also practical for real-time multi-target detection
and tracking.

5.3 Team Cooperation Test
We do experiments on the Segway RMP soccer robot ex-

ecuting the offensive play and coordinating with the human
team member. The test setup is demonstrated in Figure 9,
in which the digits along the lines show the sequence of the
whole strategy, the filled circle at position B represents the
robot, the unfilled circle at position E represent an oppo-
nent player, and the shaded circle represent the human team
member.

When each run begins, the human team member is at
position A . With this team cooperation plan (play), the
robot chooses the tactic CatchKickToTeammember to exe-
cute, in which the robot starts with the skill Search-Ball.
When the robot finds the ball, the team member passes the
ball directly to the robot and chooses a positioning point

A

B

E

C D

1
2'

2

3 3'

4 4'

Figure 9: A demonstration of a naive team coop-
eration plan in offensive scenario. The digits along
the lines show the sequence of the whole plan. The
filled circle at position B represents the robot. The
unfilled circle at position E represent an opponent
player. The shaded circle represent the human team
member.

Table 2: The average time taken over all the suc-
cessful runs.

Motion Model Single Model Multi-Model

Mean Time (sec) 33.4 22.6

to go to either at C or D. The robot grabs the ball af-
ter the ball is in the catchable area and is detected by the
infrared sensor (skill Grab-Ball). Next the robot searches
for the team member holding the ball with its catcher (skill
Search-Teammember). After the robot finds the team mem-
ber, the robot kicks the ball to its team member and the
team member shoots at the goal(skill KickToTeammember,
completing the whole offensive play. Each run ends in one
of the following conditions.

• succeed if the human receives the ball from the robot
or the human does not receiver the ball but the pass
can be considered as a “good” one.

• fail if the robot is in searching for the ball or the team
member for more than 30 seconds.

• fail if the ball is outside the field before the robot
catches it.

In the experiment over 15 runs, the robot with single model
trackers fails 5 of the total. While the robot with play-based
multi-model trackers fails 2 of the total. We also keep track
of the mean time taken in all the successful runs. We list
the result in Table 2. Using play-based multi-model tracking
saves 32.3% time in terms of completing the whole play over
single model tracking. During the experiment, we note that
when using the single model tracking, most time were spent
on searching the team member. Incorporating the team co-
operation knowledge known as play into the team member
motion modelling greatly improves the accuracy of the team
member motion model and therefore avoids taking time in
searching a lost target from scratch.

6. RELATED WORK
Tracking moving targets using a Kalman filter is the op-

tional solution if the system follows a single model, f and
h in Equation 1 and 3 are known linear functions and the
noise v and n are Gaussians [1]. Multiple model Kalman



filters such as Interacting Multiple Model (IMM) are known
to be superior to the single Kalman filter when the tracked
target is maneuvering [2]. For nonlinear systems or systems
with non-Gaussian noises, a further approximation is intro-
duced, but the posterior densities are therefore only locally
accurate and do not reflect the actual system densities.

Since the particle filter is not restricted to Gaussian den-
sities, a multi-model particle filter is introduced. However,
this approach assumes that the model index, m, is gov-
erned by a Markov process such that the conditioning pa-
rameter can branch at the next time-step with probabil-
ity p(mt = i|mt−1 = j) = hi,j where i, j = 1, · · · , Nm.
But the uncertainties in our target tracking problem do not
have such a property due to the interactions between the
robot and the tracked target. In this motivation, a tactic-
based motion modelling method is proposed in [4]. Based
on that approach, we further introduce the play-based mo-
tion modelling method when team coordination knowledge
is available. In [6], an approach were proposed for tracking a
moving target using Rao-Blackwellised particle filter. They
use a fixed transition table between different models. Our
transition model is dependent on the play that the robot is
executing and the additional information that matters. This
play-based motion modelling can be flexibly integrated into
our existing skills-tactics-plays architecture.

There have been different strategies in multi-target track-
ing. In order to handle the data association and track-
ing problem, the classical Joint Probabilistic Data Asso-
ciation Filter (JPDAF) adopts the methods like the ex-
tended Kalman Filter (EKF) for multi-target state estima-
tion, whose tracking performance is known to be limited by
the linearity of the data models. Another approach known
as sequential Monte Carlo methods are able to perform well
even when the data models are nonlinear and non-Gaussian.
However, almost all of these methods assume that the knowl-
edge of true targets (without clutter) is given, which is not
applicable in the field that Segway RMP soccer robots op-
erates in.

Recently, a hybrid approach for online joint detection and
tracking for multiple targets was proposed [7]. This ap-
proach does not rely on the clutter-free assumption. In this
paper, based on their approach, we present a play-based
multi-target tracking algorithm, which incorporates tactic
information to eliminate the false alarms and to improve
resampling efficiency. Compared to our method, first, exist-
ing techniques consider less complex dynamic systems where
only one part of the state space is non-linear. In contrast,
our approach estimate a system where multiple components
are highly non-linear (Segway RMP robot motion, ball mo-
tion, team member motion). Second, most existing tech-
niques examine their performance with simulated experi-
ments, while we test our approach in real robot experiments.
Third, our approach goes beyond existing techniques by in-
corporating play information into the tracking process.

7. CONCLUSIONS AND FUTURE WORK
Motivated by the interactions between a team and the

tracked target, we contribute a method to achieve efficient
tracking through using a play-based motion model and com-
bined vision and infrared sensory information. This method
gives the robot a more exact task-specific motion model
when executing different tactics over the tracked target (e.g.
the ball) or collaborating with the tracked target (e.g. the

team member). Then we represent the system in a compact
dynamic Bayesian network and use particle filter to keep
track of the motion model and target state through sam-
pling. The empirical results from the simulated and using
the real robot agent show the efficiency of the multi-model
tracking over single model tracking.

If the teammate is a human, not a robot, the certainty
that the teammate is executing the expected play or tactic
could be reduced. That is, the human teammate could fail
to execute the desired play or tactic. Future work will take
such uncertainty into account. A better human team mem-
ber modelling (for example, include intercepting the moving
ball, mark a player, covering the goal) will also help. An-
other interesting work is to know how the performance of
the presented method is affected by the presence of tactics
of the team member that are not exactly determined in the
team coordination plan.
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