Multiagent Collaborative Task Learning
through Imitation

Sonia Chernova and Manuela Veloso

Abstract. Learning through imitation is a powerful approach for ac-
quiring new behaviors. Imitation-based methods have been success-
fully applied to a wide range of single agent problems, consistently
demonstrating faster learning rates compared to exploration-based
approaches such as reinforcement learning. The potential for rapid
behavior acquisition from human demonstration makes imitation a
promising approach for learning in multiagent systems. In this work,
we present results from our single agent demonstration-based learn-
ing algorithm, aimed at reducing demonstration demand of a single
agent on the teacher over time. We then demonstrate how this ap-
proach can be applied to effectively train a complex multiagent task
requiring explicit coordination between agents. We believe that this
is the first application of demonstration-based learning to simultane-
ously training distinct policies to multiple agents. We validate our
approach with experiments in two complex simulated domains.

1 Introduction

Programming robots is a challenging problem due to sensor com-
plexity, noise, and the non-deterministic effects of robot actions. To
address this challenge, autonomous learning approaches have been
developed that allow robots to learn task execution through interac-
tion with the environment [14]. Most of these approaches, however,
rely on a long trial-and-error experimental process that is impracti-
cal due to time constraints and physical wear on the robot. Learn-
ing in systems with multiple robots is further complicated by the
complex interactions that can occur between distributed agents, such
as communication via message passing, physical interaction and re-
source contention. To address these problems, natural and intuitive
approaches must be developed that allow new skills to be taught to
multiple of robots in a timely manner.

Learning from demonstration, a collaborative learning ap-
proach based on human-robot interaction, offers an alternative to
exploration-based methods. The goal of this approach is to learn
to imitate the behavior of a teacher by watching a demonstration
of the task. Demonstration-based learning has been successfully ap-
plied to a variety of single agent learning problems [S5, 8, 18, 28]; its
fast learning rate compared to exploration-based learning methods,
such as reinforcement learning, makes learning from demonstration
a promising approach for multiagent systems.

In this work, we first present results of our single agent
demonstration-based learning algorithm, the confident execution
framework [10]. We then apply this framework to a collaborative
multiagent domain, demonstrating its effectiveness in simultaneously

1 Computer Science Department, Carnegie Mellon University, email: so-
niac@cs.cmu.edu, veloso@cs.cmu.edu

training multiple robots to perform a joint task. Our learning frame-
work aims to reduce each agent’s demonstration demands on the
teacher by allowing the agent to perform its task autonomously when
it is confident about its actions, and request expert assistance at times
of uncertainty. As a result, each agent operates with gradually in-
creasing autonomy as the task is learned, relieving the teacher from
repeated demonstrations of acquired behavior and allowing simulta-
neous supervision of multiple agents.

In the next section we discuss related work in the areas of demon-
stration and imitation learning, followed by a complete description
of the confident execution learning framework in Section 3. In Sec-
tion 4 we present experimental results demonstrating our approach
in single and multi agent domains.

2 Related Work

Learning from demonstration is an interactive learning method in
which the agent aims to imitate the behavior of an expert teacher.
Demonstration-based methods have been successfully applied to a
wide range of single agent learning problems.

Nicolescu and Mataric [17, 18] present a learning framework
based on demonstration, generalization and teacher feedback, in
which training is performed by having the robot follow a human
and observe its actions. A high-level task representation is then con-
structed by analyzing the experience with respect to the robot’s un-
derlying capabilities. The authors also describe a generalization of
the framework that allows the robot to interactively request help from
a human in order to resolve problems and unexpected situations. This
interaction is implicit as the agent has no direct method of communi-
cation; instead, it attempts to convey its intentions by communicating
though its actions.

Lockerd and Breazeal [8, 15] demonstrate a robotic system where
high-level tasks are taught through social interaction. In this frame-
work, the teacher interacts with the agent through speech and vi-
sual inputs, and the learning agent expresses its internal state through
emotive cues such as facial and body expressions to help guide the
teaching process. The outcome of the learning is a goal-oriented hi-
erarchical task model.

Bentivegna et al. [5, 6, 7] and Saunders et al. [25] present demon-
stration learning approaches using memory-based techniques. Both
groups use the k-nearest neighbor (KNN) [16] algorithm to classify
instances based on similarity to training examples, resulting in a pol-
icy mapping from sensory observations to actions. Our algorithm
takes a similar approach by utilizing Gaussian mixture models for
classification, but includes an interactive learning component simi-
lar to Nicolescu and Mataric. Inamura et al. [13] present a similar
method based on Bayesian Networks [20] limited to a discretely-

valued feature set.

A handful of studies have also examined imitation in the context
of multiagent systems. In the Ask For Help framework [11], rein-
forcement learning agents request advice from other similar agents in
the environment. Help is requested when an agent is confused about
what action to take, an event characterized by relatively equal quality
estimates for all possible actions in a given state.

A similar approach is presented by Oliveira and Nunes [19], in
which agents are able to select, exchange and incorporate advice
from other agents, combining it with reinforcement learning to im-
prove learning performance. The authors examine when and how
agents should exchange advice, and which of an agent’s teammates
should be communicated with. Their results show that exchange of
information can improve the average performance of learning agents,
although it may reduce the exploration of the state space, preventing
the optimal policy from being found in some cases.

Alissandrakis et al. [2, 3] present a general framework that en-
ables a robotic agent to imitate another, possibly differently embod-
ied, agent through observation. Using this framework, the authors
demonstrate the transmission of skills between individuals in a het-
erogeneous community of software agents. Their results indicate that
transmission of a behavior pattern through a chain of agents can be
achieved despite differences in the embodiment of some agents in the
chain. Additionally, the authors show that groups of mutually imitat-
ing agents are able to converge to a common shared behavior.

Price and Boutilier [21] present a multiagent system in which
novice agents learn by passively observing other agents in the en-
vironment. Each learning agent is limited to observing the actions of
others and no explicit teaching occurs. By observing a mentor, the
reinforcement learning agent can extract information about its own
capabilities in, and the relative value of, unvisited parts of the state
space. However, the task of an observed agent may be so different
that the observations provide little useful information for the learner,
in which case direct imitation of this expert must be avoided by the
algorithm.

The above methods study imitation from the perspective of a com-
munity of agents, where a single agent seeks advice from other mem-
bers of its group. A different approach is taken in the study of coach-
ing [23], where an external coach agent provides advice to a team of
agents in order to improve their performance at a task. The coach has
an external, often broader, view of the world and is able to provide
advice to the agents, but not control them. The agents must decide
how to incorporate the coach’s advice into their execution. Riley [23]
presents an approach for training the coach using imitation based on
example executions.

Our approach differs from the presented techniques in that it en-
ables a single human to simultaneously train multiple agents. The
agents may be differently embodied, and may learn different poli-
cies and perform different tasks. In our proposed system, the human
teacher is the only source of advice, providing demonstrations in the
form of action commands.

3 The Confident Execution Framework

In this section, we present a summary of our confident execution
learning framework which allows a single agent to learn a task pol-
icy from demonstration (for a more detailed description, please see
[10]). We then describe how this framework can be applied to simul-
taneously training multiple robots to perform a joint task.

0.15

017]

005

—0.05 .,

-10

Figure 1. An example of a 2-dimensional Gaussian mixture model with
three components. Contour lines below the GMM mark the one- and two-
standard deviation ellipses.

3.1 Task Representation

Our approach utilizes the learning by experienced demonstration
technique [18], in which the agent is fully under the expert’s con-
trol while continuing to experience the task through its own sensors.
During each training timestep, the agent records sensory observa-
tions about its environment and executes the action selected by the
human expert. We assume the expert attempts to perform the task
optimally, without necessarily succeeding.

Observations o are represented using an n-dimensional feature
vector that can be composed of continuous or discrete values rep-
resenting the state of the robot. The agent’s actions a are bound to a
finite set A of action primitives [4], which are the basic actions that
can be combined together to perform the overall task. The goal of
the system is to learn a policy m : o — .A, mapping observations
to action primitives. Each labeled training point (o, a) consists of an
observation labeled by its corresponding expert-selected action.

During training, the algorithm separates all datapoints into classes
based on their action label. A Gaussian mixture model (GMM), Fig-
ure 1, is then trained for each action class using the expectation-
maximization (EM) algorithm [12]. We selected Gaussian mixture
models for our approach due to previous successes of classification
methods in demonstration learning [5, 25], and because GMMs pro-
vide a built-in measure of classification confidence. Their robustness
to noise and ability to generalize and capture correlations between
continuous features make them a powerful tool for robotic data anal-
ysis.

Since a single action is often associated with a number of distinct
states (the action furn left may be taken from several different loca-
tions), we use a separate Gaussian mixture to represent each action
class. Components within the mixture represent the different state
regions and the number of components is determined using cross-
validation. New datapoints are classified by selecting the Gaussian
mixture with the maximum likelihood. The output of the classifica-
tion is the action represented by the selected GMM. Additionally,
the model returns a confidence value representing the certainty of
the classification based on the likelihood.

3.2 The Learning Process

Table 1 shows a pseudocode summary of the learning process. Learn-
ing begins with a non-interactive demonstration training phase dur-
ing which each action of the robot is controlled by the expert through
teleoperation. The algorithm uses training examples acquired from
the demonstrations to generate a task model. Every time max N ew
additional training points are acquired, the algorithm updates the
GMM model based on the new data. Additionally, the performance
of the current learned policy is evaluated by comparing how closely
it matches the behavior of the expert. Prior to updating the model
with a new training point (o, a), the algorithm classifies observation
o using the current model. It then compares the model-selected ac-
tion to the demonstrated action a. Performing this comparison over
a window of consecutive training points results in an estimate of the
prediction accuracy of the model that relates how closely the policy
matches the behavior of the expert.

The teacher performs non-interactive training until the model pre-
diction accuracy is sufficiently high, as determined by the expert.
At this point, learning transitions to the confident execution stage,
during which the agent selects between autonomously executing its
learned policy action and requesting help from the expert based on
the classification confidence of the above model. The algorithm ad-
just the agent’s autonomy by comparing the classification confidence
to an autonomy threshold. Classification confidences greater than the
threshold result in autonomous execution of the model-selected ac-
tion, while confidences below the threshold cause the agent to pause
its execution of the task and signal the teacher that a demonstration
is needed.

Since the threshold value is continuous, our approach allows
smooth adjustment of the autonomy level. This type of mechanism is
referred to as adjustable, or sliding, autonomy and has been proven
effective in a wide range of applications, from personal assistants
[26] to space exploration [27]. Our algorithm combines learning with
adjustable autonomy, resulting in an interactive teaching method that
targets low confidence regions of the state space and reduces depen-
dence on the human expert as the agent gains proficiency at its task.
In the presented experiments, the human teacher manually sets the
confidence threshold value that determines the level of autonomy.
We are currently developing a technique for calculating this value
automatically.

As the agent’s model improves over time, the agent will encounter
fewer observations with low classification confidence, resulting in
fewer demonstration requests. Learning terminates when the agent is
able to execute the task completely autonomously, or when the ex-
pert is satisfied with the performance of the model. The agent then
deterministically executes the action selected by the model, regard-
less of the classification confidence. This mode of operation is typical
of traditional learning approaches where the learned policy is always
trusted once learning is complete.

3.3 Multiagent Approach

The confident execution learning framework is a promising approach
for multiagent learning due to its fast learning rate compared to
exploration-based methods such as reinforcement learning [10], and
reduced demand on the expert over time. In this work, we examine
how it can be directly applied to training multiple agents simultane-
ously.

In a multiagent setting, the expert’s workload and teaching style
differ depending on the degree of collaboration required between the

Algorithm 3.1: THE LEARNING FRAMEWORK()

procedure INITIALTRAINING()

observation < GETSENSORDATA ()

expertAct « GETEXPERTACTION()

(gmmAct, conf) < CLASSIFY (observation)
predAccuracy < TRACKPRED(gmmAct, expertAct)

if numNewDatapoints > maxNew :
then UPDATEMODEL (observation, expertAct)

EXECUTEACTION(expertAct)
return (predAccuracy)

procedure CONFIDENTEXECUTION()
observation < GETSENSORDATA ()
(gmmAct, conf) <« CLASSIFY (observation)

if conf > confThresh :
then {EXECUTEACTION(gmmAct)
expertAct < GETEXPERTACTION()
else ¢« UPDATEMODEL (observation, expertAct)
EXECUTEACTION (expertAct)

Table 1. Pseudocode overview of the learning framework.

agents. Domains with little collaboration allow each agent to oper-
ate with little regard for the actions of others, and training can be
done independently for each agent. In such cases, it may be possible
to introduce new agents at different times, resulting in a mixture of
novice and expert agents to avoid overloading the expert at the be-
ginning of the training stage. Domains that require greater collabo-
ration between agents benefit from demonstration-based approaches
because exploration over the joint action space of multiple robots is
quite costly [9]. In these domains, it is beneficial to demonstrate the
task to multiple collaborating agents at the same time.

Using our approach described in the previous section, each agent
is able to learn its own individual policy regardless of the level of
collaboration required. Our approach scales to an arbitrary number
of robots without any modifications to the learning framework.

4 Experimental Results

We validate our approach using two simulated domains with contin-
uous and multidimensional feature spaces.

4.1 Single Agent Driving Domain

In this section we present results of a fast and dynamic simulated
car driving domain (Figure 2). In this domain, the agent takes the
shape of a car that must be driven by the expert on a busy road.
The speed of the car is fixed at 60 mph while all other cars move in
their lanes at predetermined speeds between 20-40 mph. The learn-
ing agent can not change its speed, and must navigate between other
cars to avoid collision. The agent is limited to three actions: remain-
ing in the current lane, and shifting one lane to the left or right of the
current position. The road has three normal lanes and a shoulder lane
on both sides; the car is allowed to drive on the shoulder but can not
go further off the road.

The environment is represented using four features, a distance to
the nearest car in each of the three lanes and the current lane of the
agent. The agent’s lane is represented using a discrete value symbol-
izing the lane number. The distance features are continuously valued

[PAUIBoLs B Simulated Worid BER
] []

0m 34|s 50 ms

Figure 2. Screenshot of the driving simulator.

in the [-25,25] range; note that the nearest car in a lane can be behind
the agent.

Demonstration of the task was performed by a human using a key-
board interface. Figure 3 shows the prediction accuracy of the model
during the initial non-interactive training phase. Training was per-
formed until the model reached 80% prediction accuracy over a 150-
timestep window, which resulted in a demonstration length of 500
timesteps, or approximately 2.1 minutes. After transitioning to the
confident execution phase, the expert completed the training after
150 demonstration timesteps when the model exhibited good per-
formance. During the confident execution phase all demonstrations
were done as sequences of ten consecutive moves to simplify the
task of the expert due to the fast-paced nature of this domain.

The feature space of this domain is complex as the different action
classes frequently overlap. Figure 4 shows a small sample of the data
representing how the agent should drive in the middle lane. The data
is split into two regions based on the relative position (in front or
behind) of the nearest car in the agent’s current lane. No samples
appear in the 10 to -10 distance range along the Lane2 axis as the
expert avoids collisions that would occur from having another car in
such close proximity.

The final model consisted of 34 Gaussian components across three
GMMs (one for each action class). The final policy was able to imi-
tate the expert’s driving style and navigate well in the complex driv-
ing domain. Since the algorithm aims to imitate the behavior of the
expert, no 'true’ reward function exists to evaluate the performance
of a given policy. However, we present two domain-specific evalua-
tion metrics that capture the key characteristics of the driving task.

Since the demonstrated behavior attempts to navigate the domain
without collisions, our first evaluation metric is the number of colli-
sions experienced under each policy. Collisions are measured as the
percentage of the total timesteps that the agent spends in contact with
another car. Always driving straight and colliding with every car in
the middle lane results in a 30% collision rate.

100 T T T T T T T T T

90+ 1

80 B

701 1

60 1

50 1

40t 4

301 1

Accuracy Prediction (%)

201 1

10F ,

0

0 50 100 150 200 250 300 350 400 450 500
Timestep

Figure 3. Prediction accuracy of the learned model over the
non-interactive training phase using a window of 150 timesteps.

B Right
A et
+ straight

Lane 3

Figure 4. Driving training data representing the driving strategy used
when the agent is in the middle lane. Graph axes represent distance to the
nearest car in each of the three driving lanes.

Our second evaluation metric is the proportion of the time the
agent spends in each lane over the course of a trial. This metric cap-
tures the driving preferences of the expert and provides an estimate of
the similarity in driving styles. Each evaluation trial was performed
for 1000 timesteps over an identical road segment.

Figure 5 compares the performance of the algorithm at different
stages in the learning process using these two metrics. Each line in
the figure represents a composite bar graph showing the percentage
of total time spent by the agent in each lane. Collision percentages
for each policy are reported to the right of the bar graphs. The bottom
line in the figure shows the performance of the expert over the eval-
uation road segment (not used for training). We see that the expert
successfully avoids collisions, and prefers to use the left three lanes,
only rarely using the right lane and right shoulder.

The top five lines summarize the behavior of the agent during the
non-interactive training phase. Training was stopped after every 100
training examples for evaluation. Initially the agent always remains
in the center lane, accumulating a 30.4% collision rate in the process.
As learning progresses, the agent learns to change lanes effectively,
beginning to use all five available lanes after 500 demonstration in-
stances, with a collision rate of only 1.3%. However, the agent’s lane
preference differs significantly from the expert as the agent spends
most of its time driving on the right shoulder.

Lane Distribution Comparison

[l Right Shoulder Collisions
. 100 30.4%

[l Right Lane
200 24.2%
[l Center Lane 300 1%
[Left Lane 400 12.1%
[]Left Shoulder 500 1.3%

4.3%
9.3%
1.0%

Conf. Exec. 50 |
Conf. Exec. 100
Conf. Exec. 150

Expert : 0%

0% 100%
Percentage of Time

Figure 5. Policy performance comparison using lane distribution and
collision evaluation metrics.

The three middle lines display performance during the confident
execution phase at 50-timestep intervals. Similarity in lane prefer-
ence improves over this final training phase, reaching final perfor-
mance very similar to that of the expert. Additionally, our agent’s
performance is comparable to that learned using Inverse Reinforce-
ment Learning by Abbeel et al. in [1]. For further evaluation of this
domain, including empirical results demonstrating how adapting ex-
ecution based on confidence focuses training on relevant areas of
the domain and a comparison between confident execution and non-
interactive demonstration, please see our previous work [10].

4.2 Multiagent Furniture Movers Domain

In this section we present a multiagent collaborative furniture movers
domain, Figure 6. In this domain, two agents must move a long,
heavy couch from one room to another through a narrow hallway and
stairs. We assume that the agents hold opposite ends of the furniture
piece throughout this task. Each agent uses six noisy local sensors
to determine distances to nearby walls. Additionally, each agent is
equipped with a stair sensor that reports a binary value representing
the presence or absence of a staircase in the immediate vicinity. The
complete feature vector for each agent consists of six continuous dis-
tance measurements, and two binary stair features, one for the agent’s
own location and one for its teammate’s. Note that each agent only
has a local view of the world, and its teammate’s stair information is
only updated via a special communicate action.

A total of six actions are available to the agents: forward, back,
left, right, communicate, and stair. At each timestep, each agent ex-
ecutes an action based on its own individual policy, and their overall
movement is determined by the joint action of both agents. Progress
can only be made if the agents select complimentary actions; for ex-
ample, pulling in opposite directions or attempting to rotate and push
at the same time will have no effect on the overall position of the
furniture piece. The communicate action has no special penalty asso-
ciated with it, but it does not allow any other action to be activated
during that cycle. Since the communicating agent remains stationary
for that turn, it prevents any movement regardless of the action taken
by the other agent (we assume the couch is too heavy for one agent to
move on its own). All movements of the robots are discretized, and
the domain can be completed optimally in 39 steps.

The staircase poses a special challenge in this domain, as it re-
quires explicit coordination between the agents. Both agents must
select the stair action to navigate over the stair segment successfully.
However, the corridor is narrow, and the agents are forced to move
one after the other instead of side-by-side. As a result, the rear agent
is not able to sense when the front agent reaches the staircase. To suc-

s

R —

Start @ Goal

Robot Sensors

—

Figure 6. Screenshot of the furniture movers domain. Two agents must
collaborate to move a couch from one room to another through a narrow
hallway with stairs.

10 T T T

of Demonstration Requests
L5

0 . .
0 5 10 15 20

Confident Execution Trial #

Figure 7. Total number of demonstration requests made by the agents
during each trial of the confident execution training phase.

cessfully pass through this region, the front agent must communicate
its stair data in order for the rear agent to recognize that the stair ac-
tion is required. Similarly, once the front agent moves past the stairs,
the rear agent must communicate its stair information to ensure that
the front agent knows to continue executing the stair action.

Since a single agent can not perform the task alone, both agents
were trained to perform the task at the same time. Demonstra-
tions were performed on an individual basis for each agent. During
the confident execution stage, an agent requesting a demonstration
waited for the teacher’s response, while the other agent was free to
continue its execution of the task. Note that in this task, the second
agent is not able to make progress on its own due to the constraints of
the domain, however, the algorithm places no restrictions upon this
agent’s actions.

We first evaluate the performance of our learning method us-
ing only the non-interactive demonstration technique, in which the
agents have no autonomy and the expert performs exhaustive demon-
strations of the task. We then present results using the complete con-
fident execution framework. This comparison allows us to evaluate
confident execution independently in the context of imitation learn-
ing.

Using only the non-interactive demonstration technique, the
agents required four demonstrations of the complete domain, or a
total of 156 examples per agent, to achieve 100% prediction accu-
racy and learn the optimal policy. This result confirms that learning
from demonstration allows the agents to imitate the behavior of the
expert from a small number of examples. Each agent learned its own,
unique, policy; the final learned model for each agent consisted of six
8-dimensional Gaussian mixture models.

Confident execution was used to reduce the number of re-
quired demonstrations even further by eliminating demonstrations

of already acquired behavior. Training was performed using non-
interactive demonstration until both models reached 80% prediction
accuracy over a window of 15 timesteps, resulting in a total of 65
demonstrations per agent. Under confident execution, the agents con-
tinued to perform the task, requesting assistance from the expert at
times of uncertainty. Figure 7 shows the total number of demonstra-
tion requests made by both agents during each confident execution
trial. The number of demonstration requests made decreases with
training, until no further requests are made after the 14th learning
trial. This resulted in an overall total of 86 demonstrations per agent,
approximately half of the number of demonstrations required by the
non-interactive method.

Finally, we compare the performance of our algorithm to rein-
forcement learning. Specifically, Q-learning with a non-deterministic
update function was used the learn a policy for each agent. To sim-
plify the task, all action combinations that did not have an effect
(such as one agent moving forward, while the other moves back)
were not taken into account. This approach was able to learn the opti-
mal policy after 470 iterations, and a total of 58370 exploration steps.
Table 2 summarizes the results of all three learning approaches. Note
that reinforcement learning performs poorly in this domain because
the state of the world is not fully observable as each agent does not
know the action taken by its teammate. Partial observability makes
this a very challenging problem [22], and a number of special ap-
proaches have been developed for dealing with this case [24]. We
plan to evaluate and compare these approaches in future work.

Algorithm # Steps to Learn
Non-Interactive Demonstration 156
Confident Execution 86
Reinforcement Learning 58370

Table 2. Comparison of the number of cycles required to learn the optimal
policy in the furniture movers domain.

5 Conclusion

In this paper, we proposed imitation as an alternative to exploration-
based methods for learning in multiagent systems. We demonstrated
the effectiveness of this approach using our demonstration-based
learning framework in a complex simulated multiagent domain. Us-
ing our technique, we were able to quickly and accurately train the
agents to imitate a human demonstration of the task. Additionally,
our results showed that the confident execution approach effectively
reduces the workload of the expert, allowing training to scale to a
greater number of agents.

REFERENCES

[1] Pieter Abbeel and Andrew Y. Ng, ‘Apprenticeship learning via in-
verse reinforcement learning’, in International Conference on Machine
learning, New York, NY, USA, (2004). ACM Press.

[2] Aris Alissandrakis, Chrystopher L. Nehaniv, and Kerstin Dautenhahn,
‘Synchrony and perception in robotic imitation across embodiments’,
in IEEE International Symposium on Computatonal Intelligence in
Robotics and Automation, Kobe, Japan, (2003).

[3] Aris Alissandrakis, Chrystopher L. Nehaniv, and Kerstin Dauten-
hahn, ‘Towards robot cultures?’, Interaction Studies: Social Behaviour
and Communication in Biological and Artificial Systems, 5(1), 3—44,
(2004).

[4] R.C. Arkin, Behavior-based robotics, MIT Press, 1998.

[S] D. C. Bentivegna, C. G. Atkeson, and G. Cheng, ‘Learning from ob-
servation and practice using primitives’, AAAI Fall Symposium Series,
"Symposium on Real-life Reinforcement Learning’, (2004).

(6]

(71

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]
[17]

[18]

[19]
[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

D. C. Bentivegna, G. Cheng, and C. G. Atkeson, ‘Learning from ob-
servation and from practice using behavioral primitives’, /1th Interna-
tional Symposium of Robotics Research, (2003).

D. C. Bentivegna, A. Ude, C. G. Atkeson, and G. Cheng, ‘Learning to
act from observation and practice’, International Journal of Humanoid
Robotics, 1(4), (2004).

C. Breazeal, G. Hoffman, and A. Lockerd, ‘Teaching and working with
robots as a collaboration’, in AAMAS '04: Proceedings of the Third
International Joint Conference on Autonomous Agents and Multiagent
Systems, pp. 1030-1037, Washington, DC, USA, (2004). IEEE Com-
puter Society.

Georgios Chalkiadakis and Craig Boutilier, ‘Coordination in multiagent
reinforcement learning: a bayesian approach’, in AAMAS ’03: Proceed-
ings of the second international joint conference on Autonomous agents
and multiagent systems, pp. 709-716, New York, NY, USA, (2003).
ACM Press.

S. Chernova and M. Veloso, ‘Confidence-based policy learning from
demonstration using gaussian mixture models’, in Joint Conference on
Autonomous Agents and Multi-Agent Systems, (2007).

Jeffery Allen Clouse, On integrating apprentice learning and reinforce-
ment learning, Ph.D. dissertation, University of Massachisetts, Depart-
ment of Computer Science, 1996. Director-Paul E. Utgoff.

A.P. Dempster, N.M.Laird, and D.B. Rubin, ‘Maximum likelihood from
incomplete data via the em algorithm’, Journal of Royal Statistical So-
ciety, 8(1), (1977).

T. Inamura, M. Inaba, and H. Inoue, ‘Acquisition of probabilistic behav-
ior decision model based on the interactive teaching method’, in Ninth
International Conference on Advanced Robotics (ICAR), pp. 523-528,
(1999).

L.P. Kaelbling, M.L. Littman, and A.W. Moore, ‘Reinforcement learn-
ing: A survey’, Journal of Artificial Intelligence Research, 4, 237-285,
(1996).

A. Lockerd and C. Breazeal, ‘Tutelage and socially guided robot learn-
ing’, in IEEE/RSJ International Conference on Intelligent Robots and
Systems, (2004).

T. Mitchell, Machine Learning, McGraw Hill, 1997.

M. N. Nicolescu and M. J. Mataric, ‘Learning and interacting in human-
robot domains’, in IEEE Transaction on Systems, Man and Cybernetics,
pp- 419430, (2001).

M. N. Nicolescu and M. J. Mataric, ‘Natural methods for robot task
learning: instructive demonstrations, generalization and practice’, in
Second International Joint Conference on Autonomous Agents and
Multiagent Systems, pp. 241-248, New York, NY, USA, (2003). ACM
Press.

Eugnio Oliveira and Luis Nunes, Learning by exchanging Advice,
Springer, 2004.

J. Pearl, Probabilistic Reasoning in Intelligent Systems, Morgan Kauf-
mann.

Bob Price and Craig Boutilier, ‘Accelerating reinforcement learning
through implicit imitation.’, J. Artif. Intell. Res. (JAIR), 19, 569-629,
(2003).

D. Pynadath and M. Tambe, ‘Multiagent teamwork: Analyzing the op-
timality and complexity of key theories and models’, in /st Conference
on Autonomous Agents and Multiagent Systems, (2002).

Patrick Riley, Coaching: Learning and Using Environment and Agent
Models for Advice, Ph.D. dissertation, Computer Science Dept.,
Carnegie Mellon University, 2005. CMU-CS-05-100.

Maayan Roth, Reid Simmons, and Manuela Veloso, ‘Reasoning about
joint beliefs for execution-time communication decisions’, in The
Fourth International Joint Conference on Autonomous Agents and
Multi Agent Systems (AAMAS), (2005).

J. Saunders, C. L. Nehaniv, and K. Dautenhahn, ‘Teaching robots by
moulding behavior and scaffolding the environment’, in HRI ’06: Pro-
ceeding of the 1st ACM SIGCHI/SIGART conference on Human-robot
interaction, pp. 118-125, New York, NY, USA, (2006). ACM Press.

P. Scerri, D. Pynadath, and M. Tambe. Towards adjustable autonomy
for the real world, 2003.

M. Sierhuis, J. Bradshaw, A. Acquisti, R. Hoof, R. Jeffers, and A. Us-
zok. Human-agent teamwork and adjustable autonomy in practice,
2003.

W. D. Smart and L. P. Kaelbling, ‘Effective reinforcement learning for
mobile robots’, in IEEE International Conference on Robotics and Au-
tomation, (2002).

