
Action Selection via Learning Behavior Patterns in Multi-Robot Domains

Can Erdogan Manuela Veloso
Computer Science Department, Carnegie Mellon University

Pittsburgh, PA 15213-3890, U.S.A.

Abstract
The RoboCup robot soccer Small Size League has
been running since 1997 with many teams success-
fully competing and very effectively playing the
games. Teams of five robots, with a combined au-
tonomous centralized perception and control, and
distributed actuation, move at high speeds in the
field space, actuating a golf ball by passing and
shooting it to aim at scoring goals. Most teams run
their own pre-defined team strategies, unknown to
the other teams, with flexible game-state dependent
assignment of robot roles and positioning. How-
ever, in this fast-paced noisy real robot league, rec-
ognizing the opponent team strategies and accord-
ingly adapting one’s own play has proven to be a
considerable challenge. In this work, we analyze
logged data of real games gathered by the CMDrag-
ons team, and contribute several results in learning
and responding to opponent strategies. We define
episodes as segments of interest in the logged data,
and introduce a representation that captures the spa-
tial and temporal data of the multi-robot system as
instances of geometrical trajectory curves. We then
learn a model of the team strategies through a vari-
ant of agglomerative hierarchical clustering. Using
the learned cluster model, we are able to classify a
team behavior incrementally as it occurs. Finally,
we define an algorithm that autonomously gener-
ates counter tactics, in a simulation based on the
real logs, showing that it can recognize and respond
to opponent strategies.

1 Introduction
The RoboCup robot soccer Small Size League is an inter-
esting multi-robot system where two teams of five small
wheeled robots, as built by the participants, compete to score
goals. The robots move at high speeds of approximately 2m/s
in a confined playing field of 6m×4m. Each team is au-
tonomously controlled by its own centralized computer that
receives input from two shared overhead cameras running at
60 Hz. The processed visual data, made equally available to
both teams, consists of the location and orientation of each
robot, and the location of the ball [Zickler et al., 2009].

Most of the playing teams have a finite set of pre-planned
strategies [Ruiz-del-Solar et al., 2010]. Our own current CM-
Dragons team also follows an STP (skills, tactics, plays) be-
havior architecture of pre-planned play strategies, as we in-
troduced for our earlier teams [Browning et al., 2005]. In a
game, the behavior planning algorithm chooses different team
strategies, plays, depending on the position of the ball and
other features of the game. For example, an attacking play
may include three roles, namely one robot preserving the pos-
session of the ball while two other robots position themselves
to receive a pass. The set of strategies of each team is un-
known to the other teams. In this work, we investigate the
learning of such strategies from data collected in real games.

Our CMDragons system includes a sophisticated logging
module to record a complete temporal sequence of the state
of a game. At every frame, the log includes the location and
orientation of each of own and opponent robots, the location
of the ball, and any referee calls, such as penalties, game stop-
pages, and goals. At a frame rate of 60Hz and with 20mn
games, the logs result in a considerable amount of data.

We focus on learning the attacking strategies of the oppo-
nent team, and define episodes of interest, as the sections of
the log where the ball possession is awarded to the opponent
team and a passing motion is about to be executed. We ex-
tract a set of trajectories corresponding to such logs, where
we define a trajectory as a sequence of time-stamped points
in 2D space. The problem is thus reduced to finding common
patterns in a set of trajectories observations.

We formalize the notion of similarity between sets of tra-
jectories and then contribute a hierarchical clustering tech-
nique to identify similar patterns. The key idea we build
upon is that trajectories can be represented as images and
thus, shape matching algorithms can be utilized in the sim-
ilarity metric. We show that our method can indeed extract a
small set of multi-robot strategies of opponent teams in real
games we played. We then show how we can use the learned
behavior clusters to predict the selected strategy from par-
tial observations incrementally over time. Finally, we present
how we can autonomously generate counter tactics, as we rec-
ognize the opponent pattern before it reaches an end. We
present experiments simulating three opponent teams from
games in RoboCup’2010 playing against CMDragons with
the new counter tactics, showing their effectiveness, under
the assumption the opponent team maintains its strategy.



2 Related Work
Opponent modeling has been widely studied in a variety of
games. In particular, in the RoboCup simulation soccer, the
Coach competition led to many successful efforts towards the
use of the learned opponent models as coaching advice be-
fore, and occasionally during the games. For example, given
a predefined set of possible opponent models extracted from
log data, classifiers are used to recognize a model, and the
team effectively adapts to adversarial strategies [Riley and
Veloso, 2006]. Support vector machines have been used
to model defensive strategies in a simulated football game
[Laviers et al., 2009]. Models of opponents have been repre-
sented and learned as play formations, with combined events
such as passes and shots [Kuhlmann et al., 2006]. In the
small-size robot league, fewer efforts model the opponent
robots, and most have been sparsely applied in real games,
if at all. Online adaptation was achieved by adjusting the
weights of team plays as a function of the result of their ap-
plication in a game, without the use of an explicit opponent
model. Planning follows an expert approach that adapts to the
opponent by probabilistically selecting plays based on their
weights [Bowling et al., 2004]. Offline learning from log
data has been used to learn conditional random fields to cap-
ture multi-robot tactics, such as marking and defensive robot
walls [Vail and Veloso, 2008]. In our work, we model the
spatial and temporal behavior data of an opponent play as in-
stances of geometrical trajectory curves, and learn the under-
lying patterns that govern executions of different strategies.
We then find counter tactics to the trajectories recognized.

In the area of trajectory analysis, the Longest Common
Subsequence model is shown to be robust to noise in multi-
dimensional trajectories, with efficient approximations [Vla-
chos et al., 2002]. Similarly, Dynamic Time Warping is a
widely used algorithm that can robustly measure the similar-
ity of trajectories with different temporal properties. In this
paper, we compare trajectories using the Hausdorff distance
metric [Rote, 1991]. Modifications for the Hausdorff metric
have also been proposed to address different data updating
policies and sampling granularities [Shao et al., 2010].

For the clustering of the trajectories, we adopted an ag-
glomerative hierarchical technique, where we provide an
algorithm to create partitions from the hierarchical tree
representation, as a modification of previous similar ap-
proaches [Kumar et al., 2002], starting with each cluster as an
element and building up to partitions by a series of merges.

3 From Logs to Multi-Robot Behaviors
In the RoboCup robot soccer small-size league, the vision
processing by the overhead cameras produces the visual in-
put to the central control computer at 60Hz, i.e., at 60 frames
per second. For each frame f , the input contains: (i) time tf ,
(ii) location, orientation and team of each robot r,<xr,f , yr,f ,
θr,f , teamr>, (iii) location of the ball <xb,f ,yb,f>, and (iv)
the referee command rf , which is a stop, a free kick, indi-
rect kick, penalty, or kickoff (for a particular team), namely
‘S’,‘F’,‘I’,‘P’,‘K’, respectively. To change the state of the
game, the referee issues a stop command, waits for the robots
to relocate at least 500 mm from the ball and then rewards the

ball possession to a team. CMDragons records the input in
log files for further analysis [Zickler et al., 2010].

A typical log file is composed of more than 70,000 entries
for a 20mn game. We define an episode E = [t0,tn] as a time
frame during which we analyze the behavior of an attacker
team to deduce its offensive strategies. An episode starts at
time t0 when the ball possession is given to a team with a free
kick or an indirect kick; next,, the offensive team has to make
a pass or shoot at the defensive team’s goal according to the
game rules. An episode ends at time tn when the actuated ball
goes out of bounds or is intercepted by the defensive team.
Figure 1 depicts the trajectories of two offensive robots that
move to receive a pass.

Figure 1: The trajectories of two robots that position for a
pass and the ball (in red) is passed to one depicted in black.

We formalize the definition of an episode where team T is
rewarded the ball possession. An episode E = [ti,tk] begins
at time ti if ri−1 is the stop command ‘S’ and ri is a free or
indirect kick, i.e. ri ∈ {‘F(T)’, ‘I(T)’}.

To detect the actuation of the ball, we check if the distance
between a robot and the ball is less than (R+Rb+ε) for some
small value ε where R is the radius of a robot and Rb is the
radius of the ball. So, at some time tj , such that tj ∈ [ti, tk],
and for some robot A, the following conditions must hold: (i)
atan2(yb,j − yA,j , xb,j − xA,j) = θA,j (robot faces the ball),
(ii) ((yb,j − yA,j)

2 +(xb,j −xA,j)
2) < (R+Rb + ε)2 (robot

actuates the ball) and (iii) teamA = T .
An episode ends at time tk if one of the following condi-

tions are fulfilled: (i) ((yb,j − yB,j)
2 + (xb,j − xB,j)

2) <
(R+Rb+ ε)

2 and teamB 6= T (ball interception by defense)
or (ii) |xb,t| > 3m or |yb,t| > 2m where the field coordinates
are within [-3,-2] by [3,2] in meters (ball is out of bounds).

This definition excludes candidate cases where although a
kick command is given, one of the following complications
arises: (i) the actuator robot moves the ball without its kicker,
(ii) a stop command is given before the end conditions are
met, or (iii) neither team responds to the command.

In this work, we focus on our games with teams TeamA,
TeamB and TeamC in RoboCup 2010. From the three
games, we detected 136 episodes and excluded 33 candi-
dates. Our team was defending in 30, 23, and 16 episodes
against TeamA, TeamB and TeamC. The mean length of the
69 episodes when our team was in defensive state is 3.946
seconds with standard deviation 1.554 seconds.

A robot A is qualified as an active agent in the time frame



[ti, tk] if, for some tj ∈ [ti, tk], one of the following con-
ditions holds true: (i) ((yb,j − yA,j)

2 + (xb,j − xA,j)
2) <

(R+Rb+ε)
2 (robot actuates the ball) or (ii) ((Gy

A−yA,j)
2+

(Gx
A − xA,j)

2) > (D)2 where < Gx
A, G

y
A > is the goal lo-

cation of A’s team and D is a constant for distance from the
goal (robot is not a defensive robot). Figure 2 depicts the tra-
jectories of three active robots in blue and of two defensive
robots in black. From this point on, the behavior of a team is
only described in terms of its active agents.

Figure 2: The trajectories of active and defensive robots in an
episode. The trajectory of the ball is depicted in red.

Given a robot A and a time frame [ti, tk], we define a tra-
jectory as TA(ti, tk) = {(xA,i, yA,i) . . . (xA,k, yA,k)}. The
behavior of a team with a set of active robots A, during
[ti, tk], is the set of the trajectories of each robot: S(ti, tk) =
∪A∈ATA(ti, tk). If a behavior S(ti, tk) is observed during an
episode Ej = [ti, tk], we may also denote it as Sj .

4 Learning Behavior Patterns
Let E be the set of episodes and let SEi be the behavior of A
during episodeEi ∈ E. Let SA(E) = ∪Ei∈ES

Ei

A be the set of
all our observations of team A. We define a behavior pattern
of team A, PA, as a cluster of similar sets of trajectories, such
that PA ⊂ SA(E). Intuitively, a behavior pattern PA repre-
sents the set of executions of a play during different episodes.
Figure 3 demonstrates the trajectories of active robots in two
episodes where they perform similar behavior. Next we for-
malize the notion of similarity between sets of trajectories.

Figure 3: The similar behavior of robots in two episodes, that
are mirror images of each other horizontally.

4.1 Similarity between Sets of Trajectories
A similarity function between two sets of trajectories has to
be built on a similarity metric or algorithm that evaluates a

pair of trajectories. In our work, we have chosen the Haus-
dorff metric for its generality and efficiency [Rote, 1991].
Given two trajectories T1 and T2 with m and n points re-
spectively, the Hausdorff distance is defined as:
H(T1, T2) = max{max

p∈T1

min
q∈T2

d(p, q),max
p∈T2

min
q∈T1

d(p, q)}

where d(p,q) is the Euclidean distance between points p and
q. The computation time is O(mn).

Let S1 and S2 be two sets of n trajectories during episodes
E1 and E2 respectively, and we want to compute their sim-
ilarity, Sim(S1, S2). We denote the ith trajectory in a set S
as S[i]. Let Pn be the set of all of the permutations of {1
. . . n}. Any permutation P ∈ Pn represents a matching be-
tween the trajectories S1[i] and S2[P (i)] for 1 ≤ i ≤ n. The
similarity between S1 and S2 is the minimum sum of pair-
wise distances between the trajectories of S1 and S2 across
all possible matchings:

Sim(S1, S2) = min
P∈Pn

n∑
i=1

H(S1[i], S2[P (i)]).

We additionally compute the similarity between S1 and
symmetries of S2 about the horizontal and vertical axes of
the field. If we let Flips be the set of functions where each
function returns a symmetric match of the input, the revised
similarity function becomes:

Sim(S1, S2) = min
F∈Flips

min
P∈Pn

n∑
i=1

H(F (S1[i]), S2[P (i)]).

Given a distance measure, we use a variant of agglom-
erative hierarchical clustering (AHC) due to two challenges
imposed by our datasets. First, due to the small size of our
data with 20 to 100 elements, outliers can significantly af-
fect the results of partitional algorithms. Second, the variance
in the densities of clusters we obtain from hierarchical algo-
rithms show that such data can not be successfully clustered
by density-based algorithms.

Upon executing AHC on the data set, we analyze the nodes
bottom-up in the tree, and merge sets as long as their size is
less than a variable maxClusterSize defined as a function of
the dataset. If a final set size is less than another variable
minClusterSize, then we mark it as an outlier.

Figure 4 presents the hierarchical clustering of the offen-
sive sets of trajectories of TeamA. The figures above the tree
depict the sets of trajectories of particular episodes (labeled
with episode numbers). The analysis of the tree yields the
clusters depicted with the red boxes around the leaves. For
instance, trajectory sets 17, 22 and 24, belong to the same
cluster as the movements of the offensive robots along with
the ball trajectory are more similar to each other than to those
in the rest of the data set.

4.2 Experimental Results
We provide experimental results that demonstrate that our
learning algorithm can indeed find the behavior patterns of
a team by observing its game play. We evaluate our work on
real game logs, testing whether we can deduce patterns from
both our opponents’ and our own game play.

To quantify the quality of the clusterings obtained, we com-
pare the results with the clusterings generated by ten people



Figure 4: A sample clustering of sets of robot trajectories into behavior patterns. The red boxes represent the clusters obtained
by hierarchical clustering. The trajectory sets in the same cluster are instances of the same behavior pattern.

classifying the behavior patterns during the game episodes.
The comparison of clusterings is based on the Rand index,
an objective criteria frequently used in clustering evaluation.
For two clusterings Ci and Cj of n elements, we define
two values psame and pdiff . psame is the number of ele-
ments in the same cluster and pdiff is the number of ele-
ments in different clusters in both Ci and Cj , with Rand index
(psame + pdiff )

/(
n
2

)
. If the Rand index is 1.0, then the two

clusterings are the same.
Table 1 summarizes the clusterings obtained in our exper-

iments by providing the average Rand Index computed be-
tween the output of our AHC algorithm and the ten human
clusterings. The minClusterSize is set to 2. The maxCluster-
Size is set to 1/3 of the total size of the dataset. Note that we
uniformly sample the trajectories with 10:1 ratio before we
compute the Hausdorff distance between them.

Table 1: Clustering Results in RoboCup Games
Team Episodes Clusters Ave. Rand Index

CMDragons 100 11 0.96
TeamA 30 8 0.87
TeamB 23 4 0.91
TeamC 16 3 0.94

5 Responding to Behavior Patterns
After learning the clusters corresponding to behavior patterns,
we now focus on the online recognition of an opponent be-
havior pattern and on a response to it.

5.1 Online Classification
Let C be a clustering of sets of trajectories such that C =
{c1 . . . cn} and let each cluster ci be denoted as multiple sets

of trajectories: ci = {Si,1 . . . Si,mi
} where mi is the size of

ci. Let t be the current time. Let Sp be the partial set of
trajectories that has been recorded since time t0 when the be-
ginning of an episode Ep was detected. Let tn be the end of
the episode, such that tn > t. The goal is to determine the
cluster into which Sp(t0, t) would be placed if it is observed
for the entire episode duration in [t0, tn].

The distance between a set of trajectories Sp and some
cluster ci in C is the mean of the similarity values between
Sp each Si,j in ci. To compare the partial set of trajec-
tories Sp with a complete set of trajectories Si,j , we limit
the duration of Si,j to that of Sp. Formally, the similarity
between Sp and any complete set of trajectory Si,j in any
cluster ci during an episode E = [t′0, t

′
n] is computed as

Sim(S(t0, t), Sj(t0,min(t
′
n, t
′
0 + t− t0))).

Figure 5 illustrates how the comparison of a partial set of
trajectories Sp with two complete sets A and B would pro-
ceed in time. As the observation duration t increases, more
points from the trajectories of A and B, depicted in blue, are
used in the similarity function.

Figure 5: Incremental partial comparison of pattern S against
patterns A and B. By t = 4.15, B is correctly identified.



To evaluate the effectiveness of our online classification,
for each team and for each set of trajectories in the dataset,
we first compute a clustering excluding that set; then deter-
mine the final behavior pattern it would be classified into if
it is observed entirely; and last, test what percentage of the
set of trajectories should be observed to classify it in its final
behavior pattern. Figure 6 presents the effect of different ob-
servation percentages on the correct classification of sets of
trajectories for several teams.

Figure 6: Graph depicting the effect of observation duration
of partial patterns of a team on their correct classification.

For instance, for each team, it is sufficient to observe the
beginning 30% of its episodes to identify with 70% success
rate the behaviors with the correct behavior patterns.

5.2 Non-Responsiveness Attacking Assumption
Given that we can correctly recognize offensive strategies
in the earlier stages of their executions, our goal is to take
preemptive actions that counter the attack. As there is no
feasibility at this time to experiment with the other teams,
we perform experiments in simulation. We interestingly ex-
tended our simulation to be able to play an opponent team
by replaying the log data captured from a past game. As
we investigate how to change the behavior of our team to
counter act the offensive play of the opponent team, we make
a Non-Responsiveness attacking assumption, in the sense that
the opponent teams would not change in the presence of our
counter act. Our assumption is based on our extensive anal-
ysis of games that leads to the conjecture that teams are non-
responsive to the behavior of their opponents in their offen-
sive strategies because they commit to predefined plans.

As an anecdotal example of our conjecture, Figure 7 il-
lustrates two real episodes of the same attacking pattern that
does not change even when the defense changes.

Robots R1 and R2 are attacking robots that perform the
same two trajectories even if the defense robot R3 executes
two considerably different trajectories.

5.3 Action Selection
Given a set of offensive trajectories, the goal is to adapt the
defensive behavior to intercept the ball after its first actuation.

Figure 7: Example of the execution of a pre-defined attack-
ing behavior (blue robots R1 and R2) non responsive to the
trajectory of the defense (red robot R3).

To this end, we modify the behavior of a single robot with a
different action. An action is defined with three fields: (i)
id, the identification of the executor robot, (ii) t, the time the
action will take place; (iii) loc, the location the executed robot
should move to.

Let H denote the online history of states as they will be
logged such that H[0] is the current state. Let C be the set
of learned behavior patterns. Given H and C, the SelectAc-
tion algorithm returns a preemptive action with the aforemen-
tioned parameters, if one exists.

Algorithm SelectAction
Input: H: History of states; C: Set of behavior patterns
Output: A preemptive action
1. P←onlineClassify(H , C);
2. if P = null, then return null;
3. ballTraj←getEstBallTraj(P);
4. minTime←∞; bestRobot←-1;
5. for each defensive robot Rd

i

6. [tempTime, tempLoc]←simulate(H , Rd
i , ballTraj);

7. if tempTime < minTime, then
8. minTime←tempTime;
9. bestRobot←Rd

i ;
10. bestLoc←tempLoc;
11. end if
12. end for
13. ballTime←getBallTravelTime(H , bestLoc);
14. if ballTime < minTime, then return null;
15. else return Action(bestRobot, H[0].time, bestLoc);

The function onlineClassify(H ,C) classifies a set of offen-
sive trajectories S observed in H , with the most similar be-
havior pattern P ⊂ C if their similarity, Sim(S,P) is greater
than some threshold. If the online classification fails, Se-
lectAction returns null. Given a behavior pattern P, that is
a cluster of similar sets of trajectories, the function getEst-
BallTraj returns the ball trajectory observed in the duration
of the centroid of P. Given the online history H , the func-
tion getBallTravelTime(H , loc) returns the time the ball takes
to move from its current location to loc. The function simu-
late(H , R, ballTraj) returns the time a robot R takes to reach
the trajectory ballTraj from its current location.

Intuitively, the algorithm classifies an observed offensive
pattern (lines 1-2); obtains an estimate ball trajectory (line



3); determines the closest robot to intercept the ball (lines 4-
10) and checks whether it can reach the interception location
before the ball does (lines 11-13).

5.4 Experimental Results
We ran experiments on real game data in the following man-
ner. For each team, we first let our system process the pre-
vious games from the logged files, learning the behavior pat-
terns. Second, we simulate a new game where we run our
system as usual, with the exception that visual data of oppo-
nents is from the log files. Only the detected episodes are
replayed based on the Non-Responsiveness assumption. For
each episode, we observe if the SelectAction algorithm inter-
cepts the passes.

In some episodes, the pass from the actuator does not reach
a receiver robot due to an interception by the other team or to
the inaccuracy of the actuator. Regardless, we ignore those
cases since from the log files, we can not actually simulate the
movement of the ball and create a collision by intercepting the
ball. Table 2 presents, for each team, the number of episodes
during which we previously could not take successful counter
actions but now do.

Table 2: Intercepted Passes in Log Simulations

Team Episodes Success (%)Un-responded Stopped
TeamA 26 21 80.7
TeamB 13 10 76.9
TeamC 15 11 73.3

A detailed analysis of the failed interception cases reveals
that there are two sources of error: (i) inability of the size of
the database to capture every case and (ii) the late classifi-
cation of partial trajectory sets into the right clusters. In the
second case, even though the right optimal action is chosen,
the robots do not have enough time to execute it.

In the real games, our team stopped 4, 10, and 1 attacking
behaviors out of 30, 23, and 16 episodes against teams A, B,
and C, respectively. With the new counter tactics, we stop a
total of 25, 20, and 12 episodes, respectively. In summary, the
results show that we can identify the strategy of an opponent
and successfully take counter actions for more than 70% of
the time.

6 Conclusion
In this paper, we contributed the learning of behavior pat-
terns of real multi-robot systems from temporal and spatial
data. We introduced a way of interpreting the sets of robot
trajectories as geometric curves, which we compared using
the Hausdorff distance. We then showed a variant of a hier-
archical clustering algorithms that uses the Hausdorff-based
similarity metric to successfully learn behavior patterns. Fi-
nally, we provided an algorithm that maps a new behavior
pattern as it develops over time into a learned cluster, and we
created preemptive actions to counter act the recognized op-
ponent action. We used extensive log data from real games
and performed experiments that showed the effectiveness of

our behavior learning from logs, as well as the recognition
and counter acting in simulation experiments. To the best
of our knowledge, our work is the first application of trajec-
tory matching techniques to opponent modeling in adversarial
multi-robot domains. We plan to follow three directions for
future work, namely to analyze opponent defensive strategies,
to investigate predictive models of behavior variations for the
opponent team, and to apply our behavior recognition and
counter acting in real games.

Acknowledgments
We would like to thank the outstanding work of the CMDrag-
ons’2010 research team, namely Stefan Zickler and Joydeep
Biswas, for all the algorithms and implementation, includ-
ing vision, logging, simulation, and robot behaviors. We also
thank Michael Licitra for designing and building the robots,
as well as the members of earlier CMDragons teams. Without
those researchers, this work would not have been possible.

References
[Bowling et al., 2004] M. Bowling, B. Browning, and

M. Veloso. Plays as effective multiagent plans enabling
opponent-adaptive play selection. In ICAPS, 2004.

[Browning et al., 2005] B. Browning, J. Bruce, M. Bowling,
and M. Veloso. STP: Skills, tactics and plans for multi-
robot control in adversarial environments. In JSCE, 2005.

[Kuhlmann et al., 2006] G. Kuhlmann, W. Knox, and
P. Stone. Know thine enemy: Champion RoboCup coach
agent. In Proceedings of AAAI, 2006.

[Kumar et al., 2002] M. Kumar, N. Patel, and J. Woo. Clus-
tering seasonality patterns when errors. In KDD, 2002.

[Laviers et al., 2009] K. Laviers, G. Sukthankar, M. Molin-
eaux, and D. W. Aha. Improving offensive performance
through opponent modeling. In AIIDE, 2009.

[Riley and Veloso, 2006] P. Riley and M. Veloso. Coach
planning with opponent models. In AAMAS, 2006.

[Rote, 1991] G. Rote. Computing the minimum Hausdorff
distance between two point sets on a line under translation.
In IPL, Volume 37. Elsevier North-Holland Inc, 1991.

[Ruiz-del-Solar et al., 2010] J. Ruiz-del-Solar, E. Chown,
and P. Ploeger, editors. RoboCup 2010. Springer, 2010.

[Shao et al., 2010] F. Shao, S. Cai, and J. Gu. A modified
Hausdorff distance based algorithm for 2-dimensional spa-
tial trajectory matching. In ICCSE. IEEE, 2010.

[Vail and Veloso, 2008] D. Vail and M. Veloso. Activity
recognition in multi-robot domains. In AAAI, 2008.

[Vlachos et al., 2002] M. Vlachos, G. Kollios, and
D. Gunopulos. Discovering similar multidimensional
trajectories. In 18. ICDE. IEEE, 2002.

[Zickler et al., 2009] S. Zickler, T. Laue, O. Birbach,
M. Wongphati, and M. Veloso. SSL-vision: The shared
vision system for RoboCup SSL. In RoboCup, 2009.

[Zickler et al., 2010] S. Zickler, J. Biswas, and M. Veloso.
CMDragons team description. In RoboCup, 2010.


