
Noname manuscript No.
(will be inserted by the editor)

Push-Manipulation of Complex Passive Mobile Objects using
Experimentally Acquired Motion Models

Tekin Meriçli · Manuela Veloso · H. Levent Akın

Received: date / Accepted: date

Abstract In a realistic mobile push-manipulation sce-

nario, it becomes non-trivial and infeasible to build

analytical models that will capture the complexity of

the interactions between the environment, each of the

objects, and the robot as the variety of objects to be

manipulated increases. We present an experience-based

push-manipulation approach that enables the robot to

acquire experimental models regarding how pushable

real world objects with complex 3D structures move in

response to various pushing actions. These experimen-

tally acquired models can then be used either (1) for

trying to track a collision-free guideline path generated

for the object by reiterating pushing actions that result

The first author was partly supported by The Scientific and
Technological Research Council of Turkey under Programmes
2211 and 2214, and the Turkish State Planning Organiza-
tion (DPT) under the TAM Project, number 2007K120610.
This research was further supported by the National Science
Foundation under grant number IIS-1012733, by the Office of
Naval Research under grant number N00014-09-1-1031, and
by the Air Force Research Laboratory under grant number
FA87501220291. The views and conclusions contained herein
are those of the authors only.

T. Meriçli
Department of Computer Engineering
Boğaziçi University
Bebek, 34342, Istanbul, Turkey
E-mail: tekin.mericli@boun.edu.tr

M. Veloso
School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213, United States
E-mail: veloso@cmu.edu

H. L. Akın
Department of Computer Engineering
Boğaziçi University
Bebek, 34342, Istanbul, Turkey
E-mail: akin@boun.edu.tr

in the best locally-matching object trajectories until the

goal is reached, or (2) as building blocks for construct-

ing achievable push plans via a Rapidly-exploring Ran-

dom Trees variant planning algorithm we contribute

and executing them by reiterating the corresponding

trajectories. We extensively experiment with these two

methods in a 3D simulation environment and demon-

strate the superiority of the achievable planning and

execution concept through safe and successful push-

manipulation of a variety of passively mobile pushable

objects. Additionally, our preliminary tests in a real

world scenario, where the robot is asked to arrange a

set of chairs around a table through achievable push-

manipulation, also show promising results despite the

increased perception and action uncertainty, and verify

the validity of our contributed method.

Keywords Push manipulation · Manipulation

planning · Experience-based manipulation

1 Introduction

Pushing is one of the many modalities of non-prehensile

manipulation (Lynch, 1996), which may be the most

suitable option depending on the requirements of the

manipulation task and the constraints imposed by the

physical properties of both the object and the robot.

For instance, the object may be too large or heavy,

the robot may not be equipped with a manipulator

arm, or the utilization of some properties of the object

may make its transportation more efficient and conve-

nient that way. The objective of push-manipulation is

to come up with and execute a sequence of pushing

actions to maneuver an object incapable of moving by

itself from an initial configuration to a goal configura-

tion. In this study, we expect our omni-directional mo-

2 Tekin Meriçli et al.

Fig. 1 Realistically simulated passive mobile objects and our
omni-directional mobile robot used as the pusher.

bile robot CoBot (Rosenthal et al, 2010), which is not

equipped with a manipulator arm, to push-manipulate

a set of passive mobile objects (Fig. 1) in such a way

to transport them to their desired poses while avoid-

ing collisions in the task environment cluttered with

obstacles. The following facts make our problem a par-

ticularly challenging one.

– Our pushable objects move on passive caster wheels,

which introduce additional motion uncertainty as

they continue moving for some time even after the

push is ceased. Objects with these kinds of proper-

ties are inherently more difficult to push-manipulate

compared to objects that slide quasi-statically on

high-friction surfaces.

– Our objects have complex 3D structures. It is nei-

ther trivial nor feasible to write down analytical in-

teraction and motion models for each and every one

of such complex objects; hence, traditional model-

based planning approaches will not solve the prob-

lem in a flexible way.

As a promising solution, we develop a method that

does not require any explicit analytical models for nei-

ther the objects nor the robot (Meriçli et al, 2012,

2013). Following a case-based approach (Veloso, 1994)

instead, the robot builds object-specific experimental

motion models by memorizing the observed effects of its

pushing moves on various passive mobile objects. The

acquired models are then used in the following ways.

1. A collision-free path for the object is planned with-

out taking into account whether the plan can be

achieved with the available experimental models,

and the robot tries to make the object track the

path by reiterating the memorized pushing actions

that result in the best locally-matching object tra-

jectories until the goal is reached.

2. The acquired experimental models are used as build-

ing blocks for constructing safe and achievable push-

manipulation plans via the Exp-RRT algorithm, a

Rapidly-exploring Random Trees (RRT) variant we

contribute (Meriçli et al, 2012, 2013) and executing

the solution path.

The following sections elaborate on our experience-

based push-manipulation methods.

2 Related Work

Pushing enables complex manipulation tasks to be per-

formed with simple mechanics in cases where the object

is too bulky or heavy to lift, or the robot simply lacks a

manipulator arm. As a result of being one of the most

interesting methods used within the non-prehensile ma-

nipulation domain (Lynch, 1996; K. M. Lynch and M.

T. Mason, 1997), push-manipulation has attracted sev-

eral robotics researchers. An early work by Salganicoff

et al (1993) presents a very simple, 1-nearest neighbor

based approximation method for the forward model of

an object being pushed from a single rotational contact

point in an obstacle-free environment by controlling

only one degree of freedom. Agarwal et al (1997) pro-

pose an algorithm for computing a contact-preserving

push plan for a point-sized pusher and a disk-shaped

object using discrete angles at which the object can

be pushed and a finite number of potential interme-

diate positions for the object. They assume that their

pusher can place itself at any position around the ob-

ject since it does not occupy any space; however, this

approach cannot be used when real robots are consid-

ered as they have non-zero dimensions that can collide

with the obstacles in the environment. Nieuwenhuisen

et al (2005, 2006) utilize compliance of the manipulated

object against the obstacles rather than trying to avoid

them, and make use of the obstacles with linear surfaces

in the environment to guide the object’s motion by al-

lowing the object to slide along the boundaries. de Berg

and Gerrits (2010) computationally improve this ap-

proach and present both a contact preserving and an

unrestricted push planning method in which the pusher

can occasionally let go of the object. Similar to the

potential field based motion planners (Khatib, 1986),

Igarashi et al (2010) propose a method that computes

dipole-like vector fields around the object that guide the

motion of the robot to get behind the object and push it

towards the target. Relatively slow robot motions and

high friction for the objects are assumed, and robots

with circular bumpers are used to push circular and

rectangular objects of various sizes in single and multi-

robot scenarios. As a promising step towards handling

objects with more complex shapes, Lau et al (2011)

achieve pushing of irregular-shaped objects with a cir-

cular robot by collecting hundreds of samples on how

the object moves when pushed from different points in

different directions, and using a non-parametric regres-

sion method to build the corresponding mapping, sim-

ilar to the approach of Walker and Salisbury (2008).

Push-Manipulation of Complex Passive Mobile Objects using Experimentally Acquired Motion Models 3

Their approach resembles ours in the sense that they

also utilize the observations of the object’s motion in

response to various pushing actions. Even though they

use irregular-shaped objects in their experiments, those

objects are flat ones with quasi-static properties and

the final placement orientation is ignored in their ex-

periments, which further simplifies the problem. Zito

et al (2012) present an algorithm that combines a global

sampling-based planner with a local randomized push

planner to explore various configurations of the manip-

ulated object and come up with a series of manipulator

actions that will move the object to the intermediate

global plan states. Their experiment setup consists of a

simulated model of a tabletop robot manipulator with

a single rigid spherical fingertip and an L-shaped object

(a polyflap) to be manipulated. The setup is obstacle-

free and the state space is limited to the reach of the

robot arm, which is relatively small, as they are using a

stationary manipulator. The randomized local planner

utilizes a realistic physics engine to predict the object’s

pose after a certain pushing action, which requires ex-

plicit object and contact modeling. Kopicki et al (2011)

use the same problem setup and present an algorithm

for learning through interaction the behavior of the ma-

nipulated object that moves quasi-statically in response

to various pushes. However, the learned object behav-

ior is not used for push planning in their work. Scholz

and Stilman (2010) use the observed outcomes of a set

of four linear and two rotational pushes for planning in

a quasi-static tabletop setup where a manipulator arm

with a spherical rigid finger push-manipulates objects

with simple geometric shapes, ensuring single point of

contact. Another recent study by Dogar and Srinivasa

(2012) uses push-manipulation in a tabletop manipula-

tion scenario as a way to reduce uncertainty prior to

grasping by utilizing the funneling effect of pushing.

Along the lines of learning object kinematics and dy-

namics, Katz and Brock (2008) propose an interactive

perception approach, where the robot interacts with the

objects in a tabletop scenario and identifies individual

rigid bodies that compose the object by tracking how

the corresponding visual feature points move relative to

each other. Using that information, the robot is able to

extract the kinematics of the object of interest.

According to our survey of the literature, the most

common push-manipulation scenarios seem to involve

pushing of objects with primitive geometric shapes us-

ing circular or point-sized robots, or rigid fingertips on

a surface with relatively high friction that makes the

object stop immediately when the pushing motion is

ceased. Even then, relatively complex analytical models

are derived to define the object’s behavior or realistic

physics engines of simulators are used for contact mod-

(a) (b) (c)

Fig. 2 The object may contact (indicated by a red arrow)
the robot at (a) its body, (b) basket, or (c) base, or a combi-
nation of these depending on its 3D structure and the pushing
direction, making it non-trivial to model explicitly.

eling and motion estimation. Our approach differs from

many of these proposed ones in the sense that;

– we deal with complex 3D real world objects that

may contact the robot on various points (Fig. 2),

– the manipulated objects do not move in a quasi-

static manner; they continue moving freely for a

while after the push, and their caster wheels con-

tribute to their motion uncertainty,

– mobile manipulation is performed in a large-scale

environment cluttered with obstacles, requiring con-

struction and execution of safe and achievable plans,

– no explicit analytical model is used or learning based

mapping is built; only the pushing motions per-

formed in the past and their corresponding observed

effects along with the associated variances are uti-

lized for planning and execution.

3 Experience-based Push-Manipulation

Humans learn and further sharpen their manipulation

and corresponding prediction-based planning skills by

interacting with their environment and observing the

outcomes. Ideally, robots should also learn from their

experiences as opposed to the unscalable and ineffi-

cient approach of providing them with detailed ana-

lytical models of each and every object that they are

expected to interact with, and physics engines to com-

pute the outcomes of these interactions. In our case,

due to the complexity of the potential interactions be-

tween the robot, the objects, and the floor surface as

well as the resulting motion characteristics, it is neither

trivial nor efficient to try to define such models manu-

ally. For these reasons, we let our robot interact with

the pushable objects either through self-exploration or

demonstration via joysticking to observe how they move

in response to various pushes. These observations are

then turned into experimental models to be used for

planning and execution. In case of self learning, the

4 Tekin Meriçli et al.

properties of these interactions, such as the pushing di-

rections and durations, are determined randomly. Our

algorithm consists of the following components, which

we explain in the rest of this section:

– A set of experiences represented as sequences com-

posed of the robot’s motion commands, its resulting

active trajectory, and the object’s corresponding ob-

served passive trajectory,

– A generative planner that makes use of these past

pushing experiences as building blocks to construct

achievable and collision-free push plans,

– An execution monitoring module to stop execution

and trigger re-planning whenever there is a signifi-

cant discrepancy between the expected and the ac-

tual motion of the object during plan execution.

3.1 Sequences

Each individual interaction of the robot with the ob-

jects is stored as sequences of pose-action pairs for the

robot and the corresponding poses for the object of in-

terest, representing their active and passive trajectories,

respectively. These trajectories are defined with respect

to various frames of reference. A static global frame of

reference, ϕG, is attached to the environment. We also

attach separate frames of reference to the robot and the

object of interest, denoted as ϕR and ϕO, respectively,

to define their poses within ϕG. In addition, we de-

fine an auxiliary frame of reference, ϕS , to indicate the

last stationary pose of the object before it starts being

pushed. Fig. 3(a) illustrates these reference frames.

Let ℘R be ϕR w.r.t. ϕO, and ℘O be ϕO w.r.t. ϕS ,

both of which are denoted as 〈x, y, θ〉. Invariance to ϕO
is achieved by recording ℘R together with the motion

command at that moment and the corresponding ℘O.

Therefore, a sequence Si of length n takes the form

Si : ((℘R0
, a0, ℘O0

), . . . , (℘Rn−1
, an−1, ℘On−1

))

where aj is the action associated with ℘Rj , denoted as

〈vx, vy, vθ〉 indicating the (in our case omni-directional)

motion command composed of the translational and

rotational velocities of the robot. Fig. 3(b) provides

the visualization of the robot and object trajectories

within the stored sequences. The transparent, scaled-

down robot figures indicate the push initiation poses

(i.e. ℘R0
of each sequence) whereas the scaled-down ob-

ject figures indicate the mean observed poses of the ob-

ject after the pushes (i.e. mean ℘On−1 of each sequence).

The robot trajectory (indicated by green curves) and

the object trajectory (indicated by red curves) that be-

long to the same sequence are marked with the same

ID value. Final object pose uncertainty is depicted with

(a) (b)

Fig. 3 (a) Various reference frames used during sequence
recording and reiteration depicted before (t = ts) and after
(t = te) a push. (b) Visualization that corresponds to the
scene shown in the upper left corner of the image. The robot
trajectory and the corresponding object trajectory compo-
nents of 7 different sequences are illustrated.

the yellow ellipses drawn around the mean final poses.

The process of obtaining the projected final object pose

distributions is elaborated in Section 3.2.

These sequences are recorded at each step of the

robot’s perception cycle, in our case at a frequency

of 30Hz. In order to improve the efficiency of collision

checking along the robot’s and the object’s trajectories,

we define keyframes at every kth frame of the sequence

and perform collision checking only for the keyframes.

The value of k can be adjusted according to the dimen-

sions of the object being pushed; that is, the smaller the

object, the better to check collisions more frequently

along the active and passive trajectories.

3.2 Building Experimental Models

There are two challenges to be addressed during the

experimental model building process.

1. The first challenge is the uncontrolled motion of the

object after the push is ceased. As a result of mov-

ing on passively-rolling caster wheels, the pushable

objects used in our experiments do not stop imme-

diately after the robot stops pushing, and the exact

poses of the objects after they come to rest vary

even between the pushing attempts from the same

direction for the same duration.

2. The second challenge is the effect of the initial sta-

tionary orientations of the object’s caster wheels on

the trajectory that the object follows while being

pushed. The wheels do not immediately align with

the pushing direction after the push starts, which

introduces additional uncertainty to the motion of

the object and its final observed pose.

Push-Manipulation of Complex Passive Mobile Objects using Experimentally Acquired Motion Models 5

We address these partly interrelated problems simul-

taneously by having the robot build its experience in-

crementally over several trials instead of relying on a

single observation.

When the robot is asked to acquire experience about

a given pushable object through self-exploration, it de-

termines m random push initiation locations immedi-

ately around the object together with the correspond-

ing random pushing durations ranging from 1 to 3 sec-

onds. We name these tuples push configurations, ς =

{ς0, . . . , ςm−1}, ςi : (℘R0
, t), which are used to carry

out the first push trials on the object. Each ςi rep-

resents a simple linear push performed while moving

with constant velocity. On the other hand, we can also

demonstrate the robot more sophisticated and informa-

tive pushing motions for the given objects via the use of

a joystick. Regardless of the method that the robot uses

to acquire its object related experience, a new sequence

is created and stored whenever the robot tries a par-

ticular push for the first time. The additional trials are

merely reiterating of these newly learned sequences to

update the parameters of the distributions associated

with each of them to represent the uncertainty in the

observed final pose of the relevant object after a push.

Fig. 4 illustrates the visualization of the actual ob-

served relative final object pose data recorded during

the execution of one of the several learned sequences

for the chair object. As an attempt to capture this mo-

tion uncertainty caused by the caster wheels, the robot

experiments with each Snewi of the newly gathered set

of sequences Snew for varying initial wheel orientations.

If there are more than two newly learned sequences,

then the robot iterates over Snew by using a set of in-

crements ι = {ι0 = 1, . . . , ιj = |Snew| − 1} in a way

similar to a hash collision resolution strategy. Starting

with ι = ι0, the robot alternates between Snewi using

i = ((i + ι) mod |Snew|) until each of them are cov-

ered. Then it keeps picking other increments ιl with

l = ((l+1) mod (j+1)) and continues its experimenta-

tion until n samples from each of the Snewi are collected.

If there are only one or two newly learned sequences,

then the robot either replays some of the other already

learned sequences or executes random pushing motions

to change the initial orientations of the wheels.

Based on the visualizations of the actual data as

shown in Fig. 4, we decided to approximate these dis-

tributions with 3-dimensional Gaussians for the sake

of simplicity. During the collection of these n samples

for each Snewi , the corresponding distribution parame-

ters are incrementally updated according to Eq. (1) and

Eq. (2), assuming that the observed final object poses

will be normally distributed.

(a) Relative location

(b) Relative orientation

Fig. 4 Actual distribution of the relative final pose data of
one of the sequences logged during push execution.

℘̄Oit = ℘̄Oit−1
+
℘Oit − ℘̄Oit−1

t
(1)

Σ℘
Oit

=
(t− 1)Σ℘

Oi
t−1

+ (℘Oit − ℘̄Oit)(℘Oit − ℘̄Oit−1
)T

t
(2)

In these equations, ℘̄Oit denotes the mean of the ob-

served final object pose after the tth trial for a specific

Snewi , and Σ℘
Oit

is the corresponding covariance, which

in our case is a 3×3 matrix as we are dealing with 3 DoF

poses in the form of 〈x, y, θ〉. This compact representa-

tion eliminates the need for storing all of the previously

observed individual poses.

These distributions are also good indicators of how

reliable and consistent individual push sequences are.

Since the object moves in an uncontrolled manner after

the pushing is ceased, we do not want it to end up in an

unforeseen pose which may happen to collide with the

obstacles in the environment, or cause the next push-

ing motion in the plan to be unachievable due to the

obstruction of the corresponding push initiation pose.

6 Tekin Meriçli et al.

Therefore, we eliminate the sequences with variances

exceeding predefined thresholds to improve the safety

and reliability of the plans generated using these se-

quences, eliminating potential failures and reducing the

number of re-plans needed along the way during plan

execution.

3.3 Reactive Push-Manipulation

One possible way of using the experimentally acquired

models for push-manipulation is to plan a collision-free

guideline path for the object without worrying about

whether it can actually be followed using the available

sequences, and then reiterating the ones that result in

the best locally-matching non-colliding object trajecto-

ries until the goal is reached. First of all, the sequences

with obstructed robot trajectories are filtered out as

those would not be possible to reiterate. As the final

placement orientation is important in our problem, the

next check is performed to see if the current orienta-

tion of the object differs from the goal orientation by an

amount greater than the allowed tolerance. If that is the

case and the local environment of the object has enough

space for the required maneuver, then the sequence, the

execution of which will reduce the orientation differ-

ence the most, is selected for execution. If, on the other

hand, the orientation difference is still acceptable, this

time cosine similarities between the directions of each

of the non-colliding object trajectories (τi) and the di-

rection of the next waypoint on the guideline path (G)

are computed as shown in Equation (3). The sequence

that results in the object trajectory with the greatest

similarity to the guideline is selected for execution.

Fig. 5 The anticipated object trajectories are approximated
with vectors (marked with τi) and compared against the vec-
tor representing the desired moving direction (the red vector
marked with G) using cosine similarity. τ4 is the most similar
direction to the desired one in this particular figure.

sim(τi,G) =
τi· G
||τi|| ||G||

(3)

To better visualize the concept, Fig. 5 shows the bird’s-

eye view of the object trajectory components of a set

of sequences learned for a chair together with the di-

rection of the next waypoint along the guideline path

generated at the very beginning of the process. The

direction vectors are depicted as arrows superimposed

on the anticipated and desired trajectories. Trajecto-

ries with IDs 8 and 9 are the results of the rotational

movements of the robot; hence, they are usually more

suitable for reducing the orientation difference between

current pose and the goal pose of the object.

The sequence selected based on its directional and

rotational similarity to the desired intermediate state

may result in collision of the object with the environ-

ment when executed all the way to the end. It is im-

portant to keep in mind that the elegance of push-

manipulation comes with the potential danger of ir-

reversibility ; that is, the robot may push the object

to such an inconvenient configuration that it may not

be able to recover. Considering these undesired conse-

quences, it becomes very important to be able to control

the amount of movement so that the object is pushed

only so much that it does not collide with anything, and

ends up in a state that is as close to the desired one as

possible. Therefore, in addition to the directional and

rotational similarity checks, the robot also tries to find

the best matching and collision-free projected pose (i.e.

keyframe) of the object along the trajectory and stops

pushing right at the corresponding moment.

3.3.1 Experimental Evaluation

The Webots simulation environment (Michel, 2004) en-

abled us to realistically simulate the pushable real world

objects and their motions on passively-rolling caster

wheels. Even though we used identical caster wheels

for all the pushable objects, their actual physical struc-

tures, weight distributions, and the varying wheel place-

ments cause them to have distinct motion characteris-

tics. For simulating the 2-axes rotation of the caster

wheels, we set the Coulomb friction coefficient for the

wheel axis as 0.1 and for the fork axis that rotates the

wheel vertically as 1.0.

In the simulated setup, we first demonstrated a total

of 10 pushing sequences to the robot; four linear pushes

from the four main directions, four diagonal pushes, and

two rotational pushes from either side of the object as

shown in Fig. 6(d). The final placement of an object

was considered successful if the distance to the desired

Push-Manipulation of Complex Passive Mobile Objects using Experimentally Acquired Motion Models 7

(a) S1: 4 linear, 1 rotational (b) S2: 4 linear, 2 rotational

(c) S3: 4 linear, 2 diagonal, 2
rotational

(d) S4: 4 linear, 4 diagonal, 2
rotational

Fig. 6 The four different sets of sequences used in the ex-
periments. Among these sets, S1 is the most challenging one
as it has only one rotational pushing sequence in addition to
the four linear ones.

goal location was below 0.15m, and the orientation dif-

ference was below π/6 radians. In the experiments per-

formed with the chair, the robot was able to place the

object to its desired pose safely 6 out of 10 times. 1

We also investigated the effects that the number and

types of the available pushing sequences have on the
overall success of the approach. Fig. 6 shows the four

different sets of the motion sequences that the robot

was allowed to use. In a sample setup, we placed the

chair rotated π/2 radians counterclockwise 3 meters

away from the the desired goal configuration so that

the robot would need to perform rotational as well as

translational manipulation moves in order to bring the

chair to its desired pose. As we utilized a randomized

generative planner to construct the guideline path, we

repeated our experiments 10 times with each of the four

sets of sequences. The average distances and orientation

differences obtained with each of these sets as well as

the number of pushes required to obtain these results

are summarized in Table 1.

Among these sets, S1 only had a counterclockwise

rotational pushing sequence in addition to four linear

1 A video showing the robot performing experience-
based reactive push-manipulation in simulation can be seen
here: http://youtu.be/1Z8KW7fPGrA

Table 1 Performances of different sets of motion sequences.

Sequence set Push count µdist (cm) µ4θ (deg)

S1 25 14.11 26.12
S2 8 14.82 14.06
S3 7 14.87 23.52
S4 7 14.86 20.49

pushing sequences; therefore, it took a lot more pushes

for the robot to bring the chair to the desired ori-

entation by using the available sequences. Looking at

Table 1, the general tendency seems to be towards a

decreasing number of pushes as the translational and

rotational variety of the available sequences grows. In

some challenging setups, we observed insufficient vari-

ety of sequences resulting in situations where the robot

got stuck due to either potential collisions, or having

all the push initiation poses obstructed. Those were

the main reasons of the robot failing to safely trans-

port the object to its desired pose 4 out of 10 times

in the aforementioned experiments. The success rate

could be increased by increasing the number and the

variety of sequences. However, the best results are ob-

tained when achievability is taken into account during

planning, which is explained in the following section.

3.4 Achievable Push-Manipulation

The sequences encapsulate information about how the

pushable objects move in response to various pushes;

therefore, instead of trying to track paths that are gen-

erated in an uninformed manner, the learned sequences

can be utilized for constructing informed plans that are

collision-free and achievable for both the object and the

robot. Due to its simplicity, practicality, and probabilis-

tic completeness property, we decided to base our plan-

ning algorithm on a Rapidly-exploring Random Trees

(RRT) (LaValle, 1998, 2006) approach. Starting from

the initial configuration, the RRT algorithm incremen-

tally builds a tree by uniformly sampling points from

the state space and growing the tree in the direction

of the sample by extending the closest node of the tree

towards the sample along a straight line. It is also pos-

sible to bias the tree growth towards the goal and reuse

past executions (Bruce and Veloso, 2002).

Our contributed planning algorithm modifies the

original RRT algorithm and uses the previously ob-

served object trajectories as building blocks for extend-

ing the tree towards the sample. In other words, we

build the tree out of the memorized object trajectories

that can be regenerated by the robot without neither

the robot’s nor the object’s projected poses being in col-

lision with the obstacles. This is the key point in ensur-

8 Tekin Meriçli et al.

Algorithm 1 The Exp-RRT algorithm.

1: function BuildExpRRT(ooi, qinit, qgoal)
2: Tree← qinit; qnew ← qinit;
3: while sim(qnew, qgoal) < THRESHOLD do
4: qrand ← Sample();
5: qmost similar ←MostSimilar(Tree, qrand);
6: qnew ← Extend(ooi, qmost similar, qrand);
7: Tree.add(qnew);
8: end while
9: return Trajectory(Tree, qnew);

10: end function
11: function MostSimilar(Tree, qtarget)
12: return arg maxq∈Tree sim(q, qtarget);
13: end function
14: function Extend(ooi, qsource, qtarget)
15: Strans ← {Transform(Si, qsource)}∀Si ∈ ooi.S;
16: Ssafe ← {Strans \ {Colliding(St)}}∀St ∈ Strans;
17: return arg maxSi.qf∀Si∈Ssafe sim(Si.qf , qtarget);
18: end function

ing achievability from both the robot’s and the object’s

perspective; that is, we cannot guarantee a straight line

extension towards the sample to be achievable with the

available sequences, but we can indeed guarantee that

an extension made with the most suitable non-colliding

sequence is achievable, as the robot has already experi-

enced that particular object motion. The pseudo-code

of our contributed experience-based RRT (Exp-RRT)

algorithm is given in Algorithm 1.

At each iteration, we sample a random pose with

probability p or use the goal as the sample with proba-

bility 1−p. The closest node of the tree to the new sam-

ple is the one that gives the maximum similarity value

according to the similarity function defined in Eq. 4,

sim(p1, p2) =
dmax

dist(p1, p2)
cos(p1.θ − p2.θ) (4)

where dmax is the maximum possible distance that can

be obtained in the task environment and dist(p1, p2)

is the Euclidean distance between the locations of the

poses. Therefore, the closer the locations of the two

poses and the smaller the angular difference between

their orientations, the more similar they are. After the

closest node to the sample is determined, imagining the

object to be on the pose of the closest node, this time

the final expected poses of the sequences originating

from that imaginary pose are checked against the sam-

ple according the similarity function defined in Eq. 4.

The tree is extended towards the sample by using

the final projected object pose of the sequence that

gives the highest similarity value and is collision-free

for both the object and the robot. This process is re-

peated until the pose of the newly added node falls

within predefined distance and orientation difference

limits to the goal pose. Fig. 7 illustrates two steps of

the tree construction process, assuming that the goal

itself is used as the sample to be reached. Object tra-

jectories within the sequences are illustrated as dashed

curves and the projected final object poses are depicted

as little squares.

During tree construction, the achievability of a se-

quence is determined by checking each keyframe for col-

lisions along the robot and object trajectories within

the sequence. Additionally, in order to incorporate the

motion uncertainty of the object into the planning pro-

cess, collision check for the final expected object pose is

performed using the associated distribution rather than

a single pose. Taking uncertainty into account during

RRT planning has been studied in the literature (Mel-

chior and Simmons, 2007; Berg et al, 2010), however, we

do it for the manipulated objects instead of the robot

itself in addition to performing it in a novel way. We

use Eq. (5)-(7) to derive 2L + 1 sigma points for each

sequence, which represent the extreme points of the as-

sociated distributions. L is the dimensionality of the

state space, which, in our case is L = 3 as we are deal-

ing with 3 DoF poses.

χ0 = ℘̄Of (5)

χi = ℘̄Of + ζ(
√
Σ℘

O
f
n

)i, i = 1, . . . , L (6)

χi = ℘̄Of − ζ(
√
Σ℘

O
f
n

)i, i = L+ 1, . . . , 2L (7)

In these equations, ℘̄Of is the mean of the final ob-

ject poses observed so far for a particular sequence,

(
√
Σ℘

O
f
n

)i is the ith column of the matrix-square-root of

the covariance matrix Σ℘
O
f
n

, and ζ is the scalar scaling

factor that determines the spread of the sigma points

around ℘̄Of . Increasing ζ increases the conservativeness

of the planner. In our experiments, we used ζ = 3. Each

of these extreme poses are checked for collision and the

sequence is marked as unachievable and excluded from

the set of sequences to be considered for extending the

tree in case any of these poses are in collision with the

objects in the environment. A separate regular RRT

planner is used for planning a collision free path for the

robot that will take it to the starting pose ℘R0
of the

selected pushing sequences during plan execution.

3.4.1 Plan Execution and Monitoring

The constructed plan is executed by reiterating one af-

ter another the robot trajectories of the chain of se-

quences that transports the object to the desired pose.

Even though the plan is constructed by taking into

account the uncertainties in the expected final object

poses, the object inevitably digresses from its foreseen

Push-Manipulation of Complex Passive Mobile Objects using Experimentally Acquired Motion Models 9

Fig. 7 Illustration of the Exp-RRT construction process. The sequences resulting in the most similar poses are highlighted.

path, especially when it needs to be transported for

longer distances. During plan execution, re-planning

may be triggered depending on whether the actual ob-

served final pose of the object after a push falls within

the tolerance region of the expected pose distribution,

which is computed using Eq. (8)

(℘Oo − ℘̄O)TΣ−1
℘O (℘Oo − ℘̄O) ≤ χ2

k(p) (8)

where ℘Oo is the observed final pose of the object, ℘̄O is

the expected final pose, Σ℘O is the expected final pose

covariance, and χ2
k(p) is the quantile function for prob-

ability p of the chi-squared distribution with k degrees

of freedom. In our case k = 3 and we use p = 0.05 to

make sure that the observation is statistically signifi-

cantly different from the expectation for the robot to

trigger re-planning.

Additionally, in order to relax the planning process

a bit, we design a heuristic that dynamically alters the

desired final pose accuracy depending on the distance
of the object from the goal. This heuristic is defined in

Eq. (9)-(10) as;

δ = (dist(℘Oo , ℘Og)/dmax) + δmax (9)

ω = π(dist(℘Oo , ℘Og)/dmax) + ωmax (10)

where ℘Og is the goal pose, δ and ω are the distance and

orientation difference thresholds, respectively, δmax and

ωmax are the maximum allowed final distance and orien-

tation difference thresholds, respectively. This heuristic

helps the robot plan a “rough” solution quickly when

the object is far from the goal, and enforces more accu-

rate planning at each re-planning attempt as the object

gets closer to the goal.

3.4.2 Experimental Evaluation

We performed majority of our achievable push planning

and manipulation experiments again in Webots. The

final placement of an object was considered successful

if the distance of the object to the desired goal was

below 0.2m and the orientation difference was below

π/9 radians. Considering the dimensions of the objects

that our robot is expected to manipulate, such as a

0.8m×0.45m serving tray and a 1.9m×0.9m stretcher,

these constraints are quite tight.

As briefly mentioned in Section 3.2, the first step in

our experiments is to select the reliable set of sequences

to be used for planning. We do that by eliminating the

ones that cannot be reiterated consistently; that is, the

ones that have high variance in the final observed ob-

ject pose. We determined the maximum allowed posi-

tion and orientation variances to have the same values

as δmax and ωmax. After this elimination, we evalu-

ate the remaining set of sequences for their proficiency

on generating solutions for randomly picked goals to

see how good these solutions are in terms of the path

length (i.e. the lowest the number of pushes required to

transport the object, the better the solution is) and hav-

ing consistently similar path lengths. In its evaluation

mode, the robot picks a number of random, collision-

free goals, and starts evaluating the proficiency of the

available sequences by adding them to its library of se-

quences one batch at a time, and checking the number

of goals that can be reached consistently with the avail-

able sequences. When more than a certain percentage

of the random goals start to be reached, the robot stops

adding new sequences to its library. It is always possible

for the robot to learn some additional sequences for an

object in case it encounters a problem that it cannot

solve with the currently available set of sequences. On

the other hand, it is also important to keep the number

of stored sequences per object as low as possible due to

storage and processing efficiency concerns.

The batch size used in our experiments was m = 7.

During the evaluation and the actual planning pro-

cesses, we consider a planning attempt unsuccessful if

the total number of RRT nodes allowed is exceeded.

10 Tekin Meriçli et al.

In our experiments, we determined the maximum num-

ber of Exp-RRT nodes to be 50625 as we require 0.2m

distance accuracy with at most +/ − π/9 radians ori-

entation difference in a 15m× 15m environment.

Fig. 8 illustrates the results obtained by following

the sequence library evaluation procedure for the push-

able chair object and 20 randomly picked collision-free

goals. Since the robot is essentially using a random

sampling-based planner, each planning attempt was re-

peated 10 times for each of the 20 goals, so that that

we can analyze the planning performance more reliably.

Fig. 8(a) shows how the mean path length computed

over all 20 goals changes with the changing number

and variety of the sequences in our library. It can eas-

ily be seen from the figure that the mean path length

decreases with the increasing number of available se-

quences for a while and then settles around a certain

mean path length value. Fig. 8(b) shows how the stan-

dard deviation of the mean path length changes with

the increasing number of available sequences, which is

a measure of how consistent the solutions are in terms

of path length. Similarly, we can see from the figure

that the robot starts finding solutions that have consis-

tently lower path lengths as the variety of the available

sequences increases. These figures are good indicators

for the robot to understand when it has learned enough

variety of sequences to solve a decent number of push

manipulation problems for a specific object. Here we

provide only the plots obtained for the chair object as

the experiments with the other pushable objects in our

inventory resulted in similar plots.

Separate sets of sequences are acquired and stored

for each of our pushable objects. Fig. 9 demonstrates
the generated achievable and collision-free plans from

initial (S) to goal (G) poses for five of those objects,

namely a chair, an overbed table, a pushable serving

tray, a stretcher, and a cart by using their correspond-

ing sequences as building blocks. Among these objects,

the cart is a particularly challenging one as only the

two front wheels are caster wheels and the back ones

are stationary, resembling the wheel configuration of a

traditional shopping cart. This wheel configuration re-

sults in totally different motion characteristics. The ob-

ject and wheel configuration independent nature of our

method enables the robot to learn and make use of push

sequences even for these kind of objects with different

kinematic and dynamic properties. As it can be seen

from these screenshots, our experiment environment is

much bigger and much more cluttered compared to the

problem setups used in many of the related studies sur-

veyed in Section 2. Considering the long distances that

the robot is expected to navigate the object for, it is

inevitable to have the object digress from its foreseen

(a) Change of the mean path length computed over 20 goals
with the increasing variety of sequences.

(b) Change of the standard deviation of the mean path length
computed over 20 goals with the increasing variety of se-
quences.

Fig. 8 Evaluation results of the growing variety of the avail-
able sequences for the chair object.

path during plan execution and for the robot to re-plan

in order to guarantee the safe transportation of the ob-

ject. In these five particular instances shown in Fig. 9,

the robot had to re-plan for 5.5 times on the average.

All of the generated plans were successfully executed in

simulation with no failures. 2

It must be noted that the simulation environment is

essentially a black box for the robot, as the real world

would be, and the only information that the simulator

provides to the robot is the poses of the objects. It is a

black box for us as well, since we only provide the ob-

ject meshes, mass values, and wheel friction coefficients,

and let the ODE physics engine of the simulator take

care of the inter-object interactions. The only motiva-

tion behind using a realistic 3D simulator is to obtain a

setup that “looks” an “behaves” reasonably realistic as

we are not concerned with transferring any knowledge

from the simulated environment to the real world. In

other words, both the internal and external parameters

of the simulator are totally irrelevant to the operation

of our method. Therefore, even if we had not set the

physics parameters realistically, the method would still

work and learn how to push-manipulate objects under

2 A video showing the simulated mobile manipulator suc-
cessfully push-manipulating an overbed table can be seen
here: http://youtu.be/mw-PCjPa0XI

Push-Manipulation of Complex Passive Mobile Objects using Experimentally Acquired Motion Models 11

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n) (o)

Fig. 9 Generated plans (shown as blue ghost figures over the corresponding path) using the past observed and memorized
trajectories for various pushable objects, namely a chair ((a), (b), and (c)), an overbed table ((d), (e), and (f)), a pushable
serving tray ((g), (h), and (i)), a stretcher ((j), (k), and (l)), and a cart ((m), (n), and (o)) in challenging environments cluttered
with obstacles and other objects.

those circumstances. Our contributed method is able to

handle any pushable object after the robot experiments

with them to learn how they move in response to vari-

ous pushes, and it is totally independent of the robot,

the object, and the environment (simulated or real), as

we verify in the following section.

3.5 Moving to the Real World

In addition to the detailed study we did in simula-

tion, we also ran some preliminary tests in a physical

setup to validate our contributed method in terms of its

robot, object, and environment (i.e. real or simulated)

12 Tekin Meriçli et al.

Fig. 10 A snapshot from one of the real world tests, where
the task of the robot is to arrange the chairs around the round
table. Visualization of the setup in simulation is provided on
the top left corner of the image.

independence. In this test, our CoBot robot (Rosenthal

et al, 2010) was asked to arrange a set of chairs in a pre-

defined seating formation around a round table, some

of which were already in place. Fig. 10 shows a snap-

shot from the physical setup in which we tested our

proposed method.

There are a number of challenges that need to be

addressed when switching from the simulated environ-

ment to the physical one. The first one is the construc-

tion of a stable world model. In simulation, we get the

global pose information of all the objects in the environ-

ment directly from the simulator. However, in the phys-

ical setup, the robot’s global pose information comes

from the localization module (Biswas et al, 2011), which

is noisier compared to the perfect information received

in simulation. The pose of the chair is computed relative

to the robot; hence, the calculated global pose of the

chair is affected by the noise in the localization estima-

tion of the robot. In order to make it easier to detect the

chair visually, we placed Augmented Reality (AR) tags

on both sides of the back of the chair (Fig. 10), which

are visible most of the time from almost all directions.

However, perception is not perfect either; therefore, ad-

ditional noise comes from the perception of the AR tags.

The second challenge is the maintenance of a reliable

world model at all times. Since the Kinect sensor that

we use as the primary visual sensing device is placed

at a certain location on the robot with a certain angle

to satisfy multiple requirements, and the field of view

of the camera is limited, the AR tags cannot be seen

anymore when the robot gets very close to the object

to push it. Those cases need to be covered by a good

tracker so that the robot can still have an idea of where

the object is even if it is not visible within the robot’s

field of view.

During our preliminary tests 3, the robot was, in

general, able to construct a stable world model by com-

bining its perception with its localization information

to generate and execute push-manipulation plans. Even

though we have not performed detailed experiments in

this setup, we observed that there was an overall in-

crease in the frequency of re-planning due to the in-

creased uncertainty in both perception and action in

real world.

These preliminary real world tests run using the ex-

act same code base verified the validity of our method

and demonstrated its robot, object, and environment

(simulated and real) independence as the only pieces

of information needed were the robot’s localization be-

lief and the pose of the object inferred from the robot’s

own detection, processing, and transformation of the

AR tags associated with the object of interest.

4 Conclusion and Future Work

Push-manipulation is one of the most interesting and

challenging robotic manipulation modalities that has

attracted many researchers. However, many of the pro-

posed methods handle flat objects with primitive geo-

metric shapes moving quasi-statically on high-friction

surfaces, yet they usually make use of complex ana-

lytical models or utilize specialized physics engines to

predict the outcomes of various interactions. On the

other hand, we propose an experience-based approach,

which does not require any explicit analytical model or

the help of a physics engine. Our mobile robot simply

experiments with pushable complex 3D real world ob-

jects to observe and memorize their motion character-

istics together with the associated motion uncertainties

resulting from varying initial caster wheel orientations

and potential contacts between the robot and the ob-

ject. It then uses this incrementally built experience

either for trying to make the object of interest follow a

guideline path by reiterating in a reactive manner the

sequences that result in the best locally-matching out-

comes, or as building blocks of a sampling based planner

we contribute, the Exp-RRT, to construct push plans

that are safe and achievable. In contrast to the proposed

approaches in the literature, in our contribution;

– we handle real world objects with complex 3D struc-

tures that may contact the robot on more than one

point,

3 A video showing the physical CoBot acquiring and using
push-manipulation cases in a real world setup can be seen
here: http://youtu.be/TORQdBPHJ3g

Push-Manipulation of Complex Passive Mobile Objects using Experimentally Acquired Motion Models 13

– the manipulated objects move on passively-rolling

caster wheels and do not stop immediately after the

pushing is ceased,

– the experiment environment is cluttered with obsta-

cles; hence, both collision-free and achievable plans

should be constructed and manipulation should be

performed delicately,

– we do not use any explicit analytical models or learn

a mapping between the trajectories of the robot and

the object; we only utilize the experimented and ob-

served effects of the past pushing motions to antic-

ipate the future, plan, and act accordingly.

We extensively tested our method in a realistic 3D

simulation environment where a variety of pushable ob-

jects with passively-rolling caster wheels needed to be

navigated among obstacles to reach their desired final

poses. We also performed some preliminary tests in a

physical setup to verify the validity of our method. Our

experiments demonstrate safe transportation and suc-

cessful placement of several pushable objects in simula-

tion and promising results for push-manipulation tasks

in real world, such as arranging chairs in predefined

seating formations in a study area.

Future work includes;

– extensive testing and detailed experimentation in

the physical setup,

– repairing only the problematic parts of the gener-

ated plans and reusing them instead of complete

re-planning,

– active learning of the sequences as needed by asking

for additional demonstrations,

– performing subset selection among the reliable se-

quences to find the minimum set of useful ones,

– expanding the skill set of the robot by accumulating

new experiences over time,

– transferring learned manipulation sequences among

objects with similar properties.

Acknowledgements We are grateful to Joydeep Biswas,
Brian Coltin, and Stephanie Rosenthal for their work with
the CoBot’s autonomy and task planning. We further thank
Çetin Meriçli for his comments on this work and his help with
the experiments with CoBot.

References

Agarwal PK, Latombe J, Motwani R, Raghavan P

(1997) Nonholonomic path planning for pushing a

disk among obstacles. In: Proceedings of ICRA

Berg JVD, Abbeel P, Goldberg K (2010) LQG-MP: Op-

timized Path Planning for Robots with Motion Un-

certainty and Imperfect State Information. In: Pro-

ceedings of Robotics: Science and Systems, Zaragoza,

Spain

de Berg M, Gerrits D (2010) Computing Push Plans for

Disk-Shaped Robots. In: Proceedings of ICRA

Biswas J, Coltin B, Veloso M (2011) Corrective Gra-

dient Refinement for Mobile Robot Localization. In:

Proceedings of IROS

Bruce J, Veloso M (2002) Real-Time Randomized Path

Planning for Robot Navigation. In: Proc. of IROS

Dogar M, Srinivasa S (2012) A Planning Framework

for Non-Prehensile Manipulation under Clutter and

Uncertainty. Autonomous Robots 33(3):217–236

Igarashi T, Kamiyama Y, Inami M (2010) A Dipole

Field for Object Delivery by Pushing on a Flat Sur-

face. In: Proceedings of ICRA

K M Lynch and M T Mason (1997) Dynamic nonpre-

hensile manipulation: Controllability, planning, and

experiments. International Journal of Robotics Re-

search 18:64–92

Katz D, Brock O (2008) Manipulating Articulated Ob-

jects with Interactive Perception. In: Proceedings of

the IEEE International Conference on Robotics and

Automation 2008, Pasadena, CA, pp 272–277

Khatib O (1986) Real-Time Obstacle Avoidance for

Manipulators and Mobile Robots. The International

Journal of Robotics Research 5(1):90–98

Kopicki M, Zurek S, Stolkin R, Mörwald T, Wyatt J

(2011) Learning to predict how rigid objects behave

under simple manipulation. In: Proc. of ICRA

Lau M, Mitani J, Igarashi T (2011) Automatic Learning

of Pushing Strategy for Delivery of Irregular-Shaped

Objects. In: Proc. of ICRA

LaValle SM (1998) Rapidly-Exploring Random Trees:

A New Tool for Path Planning. Tech. rep., Computer

Science Dept., Iowa State University

LaValle SM (2006) Planning Algorithms. Cambridge

University Press

Lynch KM (1996) Nonprehensile Robotic Manipu-

lation: Controlability and Planning. PhD thesis,

Robotics Institute, Carnegie Mellon University

Melchior N, Simmons R (2007) Particle RRT for Path

Planning with Uncertainty. In: 2007 IEEE Interna-

tional Conference on Robotics and Automation, pp

1617–1624

Meriçli T, Veloso M, Akın HL (2012) Experience

Guided Achievable Push Plan Generation for Passive

Mobile Objects. In: Beyond Robot Grasping - Mod-

ern Approaches for Dynamic Manipulation, IROS’12,

Algarve, Portugal

Meriçli T, Veloso M, Akın HL (2013) Achievable Push-

Manipulation for Complex Passive Mobile Objects

using Past Experience. In: 12th International Confer-

ence on Autonomous Agents and Multiagent Systems

(AAMAS 2013), Saint Paul, Minnesota, USA

14 Tekin Meriçli et al.

Michel O (2004) Webots: Professional Mobile Robot

Simulation. Journal of Advanced Robotics Systems

1(1):39–42

Nieuwenhuisen D, van der Stappen A, Overmars M

(2005) Path Planning for Pushing a Disk using Com-

pliance. In: Proceedings of IROS

Nieuwenhuisen D, van der Stappen A, Overmars MH

(2006) Pushing Using Compliance. In: Proceedings

of ICRA

Rosenthal S, Biswas J, Veloso M (2010) An Effective

Personal Mobile Robot Agent Through Symbiotic

Human-Robot Interaction. In: Proc. of AAMAS

Salganicoff M, Metta G, Oddera A, Sandini G (1993)

A Vision-Based Learning Method for Pushing Ma-

nipulation. In: AAAI Fall Symposium on Machine

Learning in Vision: What Why and How?

Scholz J, Stilman M (2010) Combining motion plan-

ning and optimization for flexible robot manipula-

tion. In: Humanoid Robots (Humanoids), 2010 10th

IEEE-RAS International Conference on, pp 80–85,

DOI 10.1109/ICHR.2010.5686849

Veloso MM (1994) Planning and Learning by Analogi-

cal Reasoning. Springer Verlag

Walker S, Salisbury JK (2008) Pushing Using Learned

Manipulation Maps. In: Proceedings of ICRA

Zito C, Stolkin R, Kopicki M, Wyatt J (2012) Two-

level RRT Planning for Robotic Push Manipulation.

In: Proceedings of IROS

