
Zero Shot Transfer Learning for Robot Soccer
Extended Abstract

Devin Schwab
Carnegie Mellon University

Pittsburgh, PA
dschwab@andrew.cmu.edu

Yifeng Zhu
Carnegie Mellon University

Pittsburgh, PA
yifengz2@andrew.cmu.edu

Manuela Veloso
Carnegie Mellon University

Pittsburgh, PA
mmv@cs.cmu.edu

ABSTRACT
We present a method for doing zero-shot transfer of multi-agent
policies as the number of teammates, opponents, and environment
size varies. We apply our approach to RoboCup inspired test do-
mains, where it is necessary for policies to adapt to changing num-
bers of robots due to in-game breakages. We introduce the concept
of encoding not only the states as an image, but also the action
space as a multi-channel image, which allows the state and action
size to remain fixed across team size changes. We also introduce
Fully Convolutional Q-Networks, which represent Q-functions in
this space using Fully Convolutional Networks. We present results
for zero-shot transfer of these policies across team sizes and field
sizes, showing that performance remains consistent as both change.

KEYWORDS
Reinforcement Learning; Multiagent learning; Transfer Learning
ACM Reference Format:
Devin Schwab, Yifeng Zhu, and Manuela Veloso. 2018. Zero Shot Transfer
Learning for Robot Soccer. In Proc. of the 17th International Conference
on Autonomous Agents and Multiagent Systems (AAMAS 2018), Stockholm,
Sweden, July 10–15, 2018, IFAAMAS, 3 pages.

1 INTRODUCTION AND RELATEDWORK
RoboCup soccer is an international competition where teams of
researchers compete to create the best team of autonomous soccer
playing robots [13]. The game presents a challenging environment
to any type of learning agent due to the multiple agents, adversar-
ial nature, noisy states, noisy actions, and sparse reward signals.
Keepaway is a simplified sub-game of robot soccer that has been
used as a test domain for learning approaches [9, 10]. In keepaway,
a team of agents attempts to maintain control of the ball for as long
as possible, while a team of adversaries attempts to take the ball.

In this work, we introduce a method to learn multi-agent poli-
cies with a fixed team size and field size, and then transfer these
policies to new team sizes and new field sizes with zero additional
training. We apply our approach to a keepaway inspired domain.
During a real robot soccer game, the number of robots will vary due
to breakages, battery changes, etc. Therefore, any learned policy
must be capable of adapting to new team sizes without a lengthy
training process. While there are many existing transfer learning

This research is partially sponsored by DARPA under agreements FA87501620042 and
FA87501720152. The views and conclusions contained in this document are those of
the authors only.

Proc. of the 17th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2018), M. Dastani, G. Sukthankar, E. André, S. Koenig (eds.), July 10–15, 2018,
Stockholm, Sweden. © 2018 International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

approaches, there are not many multi-agent specific transfer ap-
proaches. Most approaches are just slight adaptations on single
agent transfer techniques including: multi-agent object oriented
MDPs, task mappings, experience sharing, and supervision from
more experienced agents in similar contexts [1–3, 12]. Unlike these
works, we focus not on transferring between different tasks, but
across team sizes and field sizes. To our knowledge, this is the first
work in this area.

In this rest of this paper, we introduce the following contri-
butions: 1) a method of encoding the state and action space as
multi-channel images, 2) the Fully Convolutional Q-Network ar-
chitecture, which represents a Q-function in this encoding using
Fully Convolutional Networks (FCN) [5] and 3) experimental re-
sults demonstrating consistent performance after zero shot transfer
to different team and field sizes.

2 METHODOLOGY
Wemodel theworld as a standardMarkovDecision Process (MDP) [8].
For RoboCup, we assume that the raw state information contains
positions of all detected robots and the ball and any other infor-
mation necessary to control the robots (e.g. velocities). We also
assume that the robots on each team are homogeneous. We apply
our method to a grid-world game inspired by keepaway.

2.1 Naïve State-Action Representation
The simplest state representation for a keepaway like domain, is to
concatenate the position of the ball, position of the robots, and any
other relevant features into a single state vector. We will assume
that the action space for each robot is made up of discrete actions,
such as “move left”, and groundings of parameterized actions like
“pass to robot 1”. Using the state vector and the set of discrete
actions, we could apply any off the shelf deep RL algorithm such
as DQN [6, 7].

This representation cannot easily transfer across team sizes, as
adding/removing robots will change the state-vector size and the
number of actions. Policies are represented as a parameterization
of the state-action space, so changing the dimensionality of either
states or actions will require new parameters to be learned.

2.2 Image Action Space MDP
We represent the state as a generated multi-channel image that
spans the entire field, with high enough resolution to remain fully-
observable. Positions of the robot are marked in this image using
different colors to represent teams and which robot has the ball as
seen in Figure 1. Adding or removing robots to the field now only
changes the colors in the image, not the size.



Actions are represented as a one-hot, multi-channel image. Each
channel corresponds to a discrete action or an action parameterized
by a robot. To select a discrete action, in the channel corresponding
to the discrete action, the agent will mark its own position. To select
a parameterized action, in the channel corresponding to that action,
the agent will mark the robot that the action is being applied to.
Figure 1 shows an example of what this action might look like for
a single discrete action “move” and a single parameterized action
“pass to”.

The action space has many pixels that can be marked, but only
a few are relevant in a given state. Similar to prior work [14], we
add an additional channel to the state image that marks all pixels
that are valid actions for the given state. The agent must learn to 1)
use this extra state information and 2) learn which of the marked
pixels is the best choice for the state.

Example State “Move” Channel “Pass to” Channel

Figure 1: (Left) Example of generated state image. Ball
holder is red, teammates are blue, opponents are yellow.
(Middle, Right) Example action encoding for choosing “Pass
to” action with upper left blue teammate as parameter.

2.3 Fully Convolutional Q-Networks
Using a standard DQN style architecture (convolutions followed
by fully connected (FC) layers) has two issues: 1) FC layers can
only accept a fixed size input 2) flatten for the FC layers throws
away spatial information. We instead create Fully Convolutional
Q-Networks, by adapting Fully Convolutional Networks (FCN) [5]
to represent the Q-function in our new image action space. FCQNs
consist only of convolutional layers, so for any size input, a propor-
tionally sized output image will be produced. Therefore an FCQN
can be evaluated for any sized field. Each pixel in the output image
represents the Q-value of marking that pixel in the one-hot action
image. As used in Sukhbaatar et al. [11], we add an averaging layer
to our network to help multiple agents coordinate.

2.4 Training and Transferring
States and actions are represented via images as described above
and our policy is represented by an FCQN. All agents use the same
FCQN layers and train a shared set of weights. Agents can discern
their own positions via their masking channels.

Training is performed using the Double DQN [4] training al-
gorithm with the FCQN architecture. An ϵ-greedy policy is used
for exploration. After training, to add a new agent, simply execute
another copy of the shared FCQN weights. Similarly, to remove an
agent, just remove one of the copies of the shared sets of weights.

3 EMPIRICAL RESULTS
We create a grid-world domain inspired by RoboCup Keepaway. A
team of agents, one starting with the ball, tries to keep the ball as
long as possible. An opposing team, with a fixed policy controlled
by the environment, chases after the ball holder, and attempts to

intercept passes. The ball is stolen when an opponent is in a cell
adjacent to the ball holder. The ball holder can only pass along
rows and columns when no opponent is in between the ball holder
and the teammate. The rewards during training are: -1 for marking
invalid pixel, -1 when the ball is lost, -1 when the ball is captured, 0
otherwise. Episodes are capped at 100 steps. ϵ is decayed from 0.99
to 0.1 over two million steps. We trained with a team size of 3 vs 3
opponents on a field size of 10 × 10 for 900,000 samples.

Figure 2 shows the results of transferring this policy, with no
additional training, across different agent team and opponent team
sizes. Each cell represents the average over 100 separate trials with
the stated team size combinations on on a 20 × 20 field. We see
that the agents often reach the maximum step count of 100 when
there are more teammates than opponents. However, when the
teammates are outnumbered, the performance drops because the
opponents can corner the ball holder while blocking all passes.

Figure 2: (Left) Transfer of trained policy to different agent
team and opponent team sizes. Each cell is the average
episode length before ball capture over 100 trials.

Figure 3 shows the results of transferring a policy, with no addi-
tional training, across different field sizes. We see that despite large
changes in the field size, the policy performance remains consistent,
with an average of 84.67 ± 6.52 steps.

Figure 3: Transfer of a trained policy to different field di-
mensions. Each cell is average episode length before ball cap-
ture over 100 trials.

4 CONCLUSION
We have presented a novel state-action space representation that
remains invariant to the number of agents in an environment. We
have also presented a novel application of Fully Convolutional Net-
works to represent Q-functions in this encoding. We have demon-
strated on a RoboCup inspired grid keepaway domain that using
these techniques, it is possible to do zero shot transfer across team
sizes and field sizes, with minimal change in policy performance.



REFERENCES
[1] Georgios Boutsioukis, Ioannis Partalas, and Ioannis Vlahavas. 2011. Transfer

learning in multi-agent reinforcement learning domains. In European Workshop
on Reinforcement Learning. Springer, 249–260.

[2] Felipe Leno Da Silva and Anna Helena Reali Costa. 2016. Transfer Learning for
Multiagent Reinforcement Learning Systems.. In IJCAI. 3982–3983.

[3] Daniel Garant, Bruno Castro da Silva, Victor Lesser, and Chongjie Zhang. 2015.
Accelerating multi-agent reinforcement learning with dynamic co-learning. Tech-
nical Report.

[4] Hado van Hasselt, Arthur Guez, and David Silver. 2015. Deep Reinforcement
Learning With Double Q-Learning. CoRR (2015). arXiv:cs.LG/1509.06461 http:
//arxiv.org/abs/1509.06461v3

[5] Jonathan Long, Evan Shelhamer, and Trevor Darrell. 2015. Fully Convolutional
Networks for Semantic Segmentation. In The IEEE Conference on Computer Vision
and Pattern Recognition (CVPR).

[6] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis
Antonoglou, Daan Wierstra, and Martin Riedmiller. 2013. Playing Atari with
Deep Reinforcement Learning. (2013). arXiv:cs.LG/1312.5602 http://arxiv.org/
abs/1312.5602v1

[7] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness,
Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg
Ostrovski, et al. 2015. Human-level control through deep reinforcement learning.
Nature 518, 7540 (2015), 529–533.

[8] Martin L Puterman. 2005. Markov Decision Processes: Discrete Stochastic Dynamic
Programming. John Wiley & Sons, Inc., Hoboken, NJ USA.

[9] Peter Stone, Gregory Kuhlmann, Matthew E. Taylor, and Yaxin Liu. 2006. Keep-
away Soccer: From Machine Learning Testbed to Benchmark. Springer Science +
Business Media, 93–105. https://doi.org/10.1007/11780519_9

[10] Peter Stone, Richard S. Sutton, and Gregory Kuhlmann. 2005. Reinforcement
Learning for Robocup Soccer Keepaway. Adaptive Behavior 13, 3 (2005), 165–188.
https://doi.org/10.1177/105971230501300301

[11] Sainbayar Sukhbaatar, arthur szlam, and Rob Fergus. 2016. Learning Multia-
gent Communication with Backpropagation. In Advances in Neural Information
Processing Systems 29, D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and
R. Garnett (Eds.). Curran Associates, Inc., 2244–2252. http://papers.nips.cc/paper/
6398-learning-multiagent-communication-with-backpropagation.pdf

[12] Adam Taylor, Ivana Duparic, Edgar Galván-López, Siobhán Clarke, and Vinny
Cahill. 2013. Transfer learning in multi-agent systems through parallel transfer.
(2013).

[13] The RoboCup Federation. 2017. RoboCup. (2017). http://www.robocup.org/
[14] Oriol Vinyals, Timo Ewalds, Sergey Bartunov, Petko Georgiev, Alexander Sasha

Vezhnevets, Michelle Yeo, Alireza Makhzani, Heinrich Küttler, John Agapiou,
Julian Schrittwieser, John Quan, Stephen Gaffney, Stig Petersen, Karen Simonyan,
Tom Schaul, Hado van Hasselt, David Silver, Timothy Lillicrap, Kevin Calderone,
Paul Keet, Anthony Brunasso, David Lawrence, Anders Ekermo, Jacob Repp, and
Rodney Tsing. 2017. Starcraft II: A New Challenge for Reinforcement Learning.
CoRR (2017). arXiv:cs.LG/1708.04782 http://arxiv.org/abs/1708.04782v1

http://arxiv.org/abs/cs.LG/1509.06461
http://arxiv.org/abs/1509.06461v3
http://arxiv.org/abs/1509.06461v3
http://arxiv.org/abs/cs.LG/1312.5602
http://arxiv.org/abs/1312.5602v1
http://arxiv.org/abs/1312.5602v1
https://doi.org/10.1007/11780519_9
https://doi.org/10.1177/105971230501300301
http://papers.nips.cc/paper/6398-learning-multiagent-communication-with-backpropagation.pdf
http://papers.nips.cc/paper/6398-learning-multiagent-communication-with-backpropagation.pdf
http://www.robocup.org/
http://arxiv.org/abs/cs.LG/1708.04782
http://arxiv.org/abs/1708.04782v1

	Abstract
	1 Introduction and Related Work
	2 Methodology
	2.1 Naïve State-Action Representation
	2.2 Image Action Space MDP
	2.3 Fully Convolutional Q-Networks
	2.4 Training and Transferring

	3 Empirical Results
	4 Conclusion
	References

