
Noname manuscript No.
(will be inserted by the editor)

Using Pre-Computed Knowledge for Goal Allocation
in Multi-Agent Planning

Nerea Luis1 · Tiago Pereira 2,3,4 · Susana
Fernández1 · António Moreira2,4 · Daniel
Borrajo1 · Manuela Veloso3

Received: date / Accepted: date

Abstract Many real-world robotic scenarios require performing task planning
to decide courses of actions to be executed by (possibly heterogeneous) robots.
A classical centralized planning approach has to find a solution inside a search
space that contains every possible combination of robots and goals. This leads to
inefficient solutions that do not scale well. Multi-Agent Planning (MAP) provides
a new way to solve this kind of tasks efficiently. Previous works on MAP have
proposed to factorize the problem to decrease the planning effort i.e dividing the
goals among the agents (robots). However, these techniques do not scale when
the number of agents and goals grow. Also, in most real world scenarios with
big maps, goals might not be reached by every robot so it has a computational
cost associated. In this paper we propose a combination of robotics and planning
techniques to alleviate and boost the computation of the goal assignment process.
We use Actuation Maps (AMs). Given a map, AMs can determine the regions
each agent can actuate on. Thus, specific information can be extracted to know
which goals can be tackled by each agent, as well as cheaply estimating the cost of
using each agent to achieve every goal. Experiments show that when information
extracted from AMs is provided to a multi-agent planning algorithm, the goal
assignment is significantly faster, speeding-up the planning process considerably.
Experiments also show that this approach greatly outperforms classical centralized
planning.

Keywords Multi Agent Planning · Actuation Maps · Goal Allocation · Robotics
· Distributed Planning · Path Planning

1Universidad Carlos III de Madrid
Avda. Universidad 30, Madrid, Spain
Tel.: +34916248898
E-mail: nluis@inf.uc3m.es

2Faculty of Engineering, University of Porto, Portugal
3Carnegie Mellon University, Pittsburgh, USA
4INESC-TEC, Porto, Portugal

2 Nerea Luis1 et al.

1 Introduction

Real-world robotic scenarios, in which a set of robots need to solve a certain
amount of tasks, usually require the combination of path-planning and motion-
planning techniques. An example of this type of scenarios is the coverage problem,
which consists of distributing the space among the set of robots, so that each one
explores a certain region of the environment. The coverage problem planning task
is to find a route for each robot so that all the feasible space is covered by the
robots’ actuators, while minimizing the execution time. Vacuum cleaning robots
can be potential candidates for this problem. We assume that we have a team of
heterogeneous robots with different sizes. While the smallest robot can reach more
areas, a bigger robot cleans a wider area while traveling a smaller distance. Never-
theless, other similar problems can also be solved with our contributed technique
e.g. heterogeneous robots executing surveillance tasks, cooperative mapping of the
environment or search and rescue tasks. As long as there exist (1) some navigation
graph where we can extract information to help the planner; and (2) agents with
similar or different capabilities, it will be a potential domain to solve with our
approach. We have encoded our problem as a Multi-Agent Planning (MAP) task.
Automated planning is the field of Artificial Intelligence which deals with the com-
putation of plans. A plan is a sequence of actions that, if executed in order from
the initial state, reaches another state where all the feasible goals are achieved.

The problem is modeled with the standard PDDL language [14]. For that pur-
pose, we use a discrete representation of the map, i.e., a 2D grid of waypoints.
Robots can move from one waypoint to another as long as they are grid neighbors
and do not collide with obstacles. Moreover, robots can actuate other waypoints
if their distance to the robot’s current position is less than their actuation radius.
Here we consider actuation as a robot performing an operation that results in some
task being executed in the environment. Therefore, the actuation capabilities could
be modeled not only as the operations where a robot changes its surrounding, but
also as any perception-like operation e.g. the planning problem to solve would be
mathematically equivalent if the overall goal was not to clean all reachable space,
but instead to measure the temperature everywhere. Our framework allows to
solve planning problems where sensing operations need to be executed at specific
waypoint locations. e.g. mapping the Wi-Fi signal strength in buildings, taking
measurements of temperature and humidity on a set of pre-defined locations such
as a computer cluster and server sites, different kinds of inspection or even surveil-
lance problems. For vacuum cleaning robots, the sensing is performed through
the robot’s actuator that cleans the floor. Cleaning a specific waypoint location
can be seen as the robot accomplishing a specific cleaning task, and therefore the
coverage problem would represent a robot moving through a map and executing
multiple tasks, i.e., actuating on all available waypoints on the environment with
the objective of cleaning all reachable regions of the environment. In the cleaning
case, the actuation capabilities of each robot depends on the specific actuator each
robot uses, e.g., its shape and size. In general, for each robot and domain a differ-
ent actuation model can be considered e.g the actuation radius being smaller than
the robot’s footprint, the actuation range being exactly the same as the robot’s
footprint, or extending it further than the footprint. An example of the last case
is a mobile manipulator, where an arm can be extended and actuate on regions
beyond the robot’s range in terms of its shape and footprint. In this paper, for

Using Pre-Computed Knowledge for Goal Allocation in Multi-Agent Planning 3

simplicity we only focus on two cases. First, circular robots where the actuation
range is smaller or equal to the robot footprint’s radius, and second, any-shape
robots whose actuation range is the same as its footprint.

We expect the planner to output a plan that accomplishes all the feasible
actuation tasks, by moving the robots to all the reachable locations from where
they can actuate the goal waypoints. Given the robot heterogeneity, some tasks
might only be feasible for a subset of the robots.

From a MAP point of view, the multi-robot problem we propose forces us to
deal with two issues regarding the performance of the planning process: (1) the
size of the search space grows with the number of waypoints and goals; and (2)
some goals are not feasible for some robots. On one hand, real-world scenarios
are big enough to make almost impossible for a planner to solve this problem in
a reasonable amount of time by just assigning all goals to all agents (following
a centralized planning approach). On the other hand, some Multi-Agent planners
invoke a goal-allocation phase before starting to plan to decrease the effort of com-
puting individual plans [4], [24]. During goal allocation, a relaxed plan is computed
per goal and robot to either return an estimated cost or to identify unfeasibility.
This process would be repeated multiple times, concretely |Agents| × |Goals| re-
sulting in a huge loss of computation time, especially to identify unfeasible goals
i.e exploring most of the search space.

Therefore, we contribute a methodology that uses Actuation Maps (AMs) to
extract path-planning related information. That information is used to later boost
the performance of a multi-agent planner. In concrete, we use these maps as a
preprocessing step to speed-up the goal assignment phase. Actuation maps are
built only once before the planning process, one per robot, at a very low cost
in comparison to the impact on time savings observed later in goal assignment.
The AMs, from the robot-dependent reachability maps [27], not only determine
the feasibility of each pair robot-goal but also allow us to efficiently compute an
estimated cost of achieving that goal. As a result, the planner receives the esti-
mated cost information as input, and saves time by simplifying the goal allocation
computation, directly assigning goals to robots.

In our previous work, we showed that combining a preprocessing operation with
MAP could bring huge savings on planning time [29]. More specifically, we used
AMs to estimate the cost of each robot when actuating each goal waypoint. Then,
we introduced those estimations into the goal assignment phase to distribute the
goals among the robots and plan individual paths that together solved the coverage
problem.

In this paper, we extend that approach with various contributions:

– Introducing collision avoidance, with a replanning phase solving the conflicts
between the individual paths of each robot.

– Generalization of robot shape models, from circular only to any-shape, updat-
ing both the Actuation Maps and the information extraction of generate the
PDDL problem.

– Evaluation of four different configurations of our approach against two central-
ized planners and three multi-agent planners.

– Description of the architecture -now organized into four modules- and detailed
explanation of the preprocessing step.

4 Nerea Luis1 et al.

– Description of the general problems where our approach can have a huge impact
plus the coverage problem.

– Description of the Goal Allocation process and the deletion of unfeasible goals.
– Description of the MAP algorithm - including a new version that detects and

solves interactions among agents.

This paper is structured as follows: in Section 2 we describe the kind of prob-
lems for what our approach has been designed for and include some planning
formalizations. Then, on Section 3 we describe the coverage problem we want to
solve. On Section 4, our approach is presented. Section 5 explains in detail the
preprocessing step, which is our main contribution. After that, Section 6 contains
the description of the MAP algorithm. On Section 7 we briefly extend our ap-
proach to MAP problems that involve interactions. Then, on Section 8, we extend
the formalization of circular robots to any-shape robots. On Section 9 we show
illustrative experimental results of our algorithm on different scenarios. Finally, we
discuss the related work and we present our conclusions and directions for future
work.

2 General Problem Formulation

Our approach can be easily applied to any robotic problem that involves at least
the following elements:

– a map of the environment.
– a set of potential tasks to be executed by an agent over the environment.
– a way to model that scenario into a PDDL domain and problem.

The map can be modeled in different ways (e.g. a navigation graph, a grid of
waypoints, a building floor etc.). The model is useful for our approach as long as
the features related to the information of the environment can be extracted. In
this paper the map is generated as an Actuation Map.

The set of potential tasks can vary depending on the problem to solve. In this
paper we are focusing on the coverage problem and as a result it is enough for
the robots to move through the environment. Some other alternatives tasks would
be looking for objects, opening doors or achieve some clients’ orders through the
environment.

The potential of our approach relies on the ability to extract information from
the map related to the tasks. The aim is to transform that information into a set of
estimation costs that can speed up the planning process i.e we have computed the
cost as the distance to each of the waypoints on the coverage problem. Some other
alternative tasks would be the distance to a required object, the dangerousness or
reliability of a path, the features of a robot (velocity, arms) etc.

In order to transform this kind of problems into PDDL we have to model (1)
a domain; (2) a problem; and compute (3) a set of estimated costs. The domain
and problem are a lifted representation in predicate logic of the planning task.
However, most of the planners always perform a grounding transformation from
the domain and problem to generate the planning task.

Definition 1 Planning Task (Single Agent). A single-agent strips planning
task [12] is a tuple Π = 〈F,A, I,G〉, where F is a set of propositions, A is a
set of instantiated actions, I ⊆ F is an initial state, and G ⊆ F is a set of goals.

Using Pre-Computed Knowledge for Goal Allocation in Multi-Agent Planning 5

Each action a ∈ A is described by (1) a set of preconditions (pre(a)) that
represent literals that must be true in a state to execute the action; (2) and a set
of effects (eff(a)), which are literals that are expected to be added (add(a) effects)
or removed (del(a) effects) from the state after the execution of the action. The
definition of each action might also include a cost c(a) (the default cost is one).
As we are working with multiple agents, we consider a MAP formalization where
a set of m agents, Φ = {φ1, . . . , φm}, has to solve the given task.

Definition 2 Multi Agent Planning task. The MAP task is formed by a set of
planning subtasks, one for each agent, M = {Π1, . . . , Πm} where M refers to the
MAP task. Each planning subtask Πi includes only the facts, actions, goals and
initial state related to the agent φi.

Last, we define the estimated cost per agent and goal.

Definition 3 Estimated cost per agent and goal (EC). EC = {(g, φi, c) | g ∈
G,φi ∈ Φ, c = C(g, φi)} such that c represents the cost to reach the goal position
g from the agent’s initial state. If a goal cannot be reached by an agent, c will be
∞.

Usually, these estimated costs are computed to divide the goals among the
agents before the planning process starts. In planning, c is obtained with a heuristic
function. However, in our approach, we compute c using a function based on the
path planning and problem features. Even though MAP is domain-independent,
our function to compute the estimated costs is domain-dependent and should be
set up differently on each domain, though it would be very similar to this one in
most related robotic domains.

3 The Coverage problem description

In this work we only consider heterogeneous teams of circular robots that actuate
in a 2D environment, where the world is represented by a 2D image that can
be down sampled to a 2D grid of waypoints. The AM gives information about
the actuation capabilities of each robot, as a function of robot size and initial
position [27]. In the example with vacuum cleaning robots, the AM represents the
regions of the world each robot can clean.

At first, we assume that robots are circular and thus the only Robot feature is
its size, with 2D grid positions being rotation-invariant. Other shapes can also be
trivially considered in our approach by extending the PDDL domain file to take
into consideration robot orientation as well.

As it was previously said, we modeled the domain and problem using PDDL.
The domain has two types of objects: robots, which act as agents; and waypoints,
which represent positions in the discretized world. We consider a coverage problem,
where the goal is to have the robots actuating on waypoints. In this version of the
coverage problem, robots actuate a waypoint if it is inside its actuation radius.
Thus, they do not need to be exactly placed on the waypoint to actuate it.

Therefore, the set G is a list of waypoints to actuate on (positions that need
to be covered). The PDDL domain we created has four predicates:

– At (robot, waypoint): defines the robot position;

6 Nerea Luis1 et al.

– Connected (robot, waypoint, waypoint): establishes the connectivity be-
tween waypoints, specified for each robot, and given the robot heterogeneity,
some connections might be traversable by some robots and not by others;

– Actuated (waypoint): indicates which waypoints were already actuated; this
predicate is used to specify goals;

– Reachable (robot, waypoint, waypoint): shows which waypoints can be ac-
tuated by a robot when located on a different waypoint location.

Robots have to actuate every waypoint in G. The waypoints, when connected,
generate a navigation graph for a certain robot. The two actions that are defined in
the domain are called navigate (Listing 1) and actuate (Listing 2). The first one
moves a robot from its current waypoint location to a neighbor waypoint as long
as both are connected. The second action is used to mark a waypoint as actuated
if it is identified as reachable from the robot’s current waypoint location i.e the
waypoint was located inside the robot’s actuation radius on the real environment.
Navigate and actuate are the two actions that can be executed by an agent when
it is placed on a waypoint. Both navigate and actuate have as effect the predicate
actuated.

Listing 1 Action Navigate in PDDL

(: action nav igate
: parameters (? r − robot ?y − waypoint ? z − waypoint)
: precondition (and

(connected ? r ?y ? z) (at ? r ?y)
)

: ef fect (and
(not (at ? r ?y)) (at ? r ? z) (actuated ? z)

)
)

Listing 2 Action Actuate in PDDL

(: action actuate
: parameters (? r − robot ?y − waypoint ? z − waypoint)
: precondition (and

(at ? r ?y) (r eachab l e ? r ?y ? z)
)
: ef fect (and

(actuated ? z)
)

)

In order to generate a PDDL problem, the waypoints’ grid resolution is defined
in advance using a discretization step. After that, a navigation graph and a set of
reachable waypoints are defined for each robot, taking into account their physical
characteristics. All this information is generated on the preprocessing step, further
explained in Section 5.

Using Pre-Computed Knowledge for Goal Allocation in Multi-Agent Planning 7

4 Architecture

As it was previously said, this work combines Actuation Maps (AM) with Multi-
Agent Planning (MAP). The contributed architecture can be seen in Figure 1. It
has been divided into four modules and receives as input the map of the environ-
ment, the general knowkedge related to the task to solve and the features of the
set of robots. The aim of each module is described as follows:

1. Actuation Maps module: it is in charge of generating the AMs for each given
robot. It also extracts the map features that can potentially alleviate the plan-
ning process e.g path-planning features, transforms them into a set of estima-
tion costs and generates the planning problem in PDDL. It is explained on
Section 5.1.

2. Multi-Agent Planning Task Generation module: once the outputs from the
prior module and the domain are received as input, the goal assignment process
is launched. This module is in charge of dividing the goals among the agents
following some goal-strategy. Then, a set of domain and problem is generated
for each agent, which is known as factorization. It is explained on Section 5.2.

3. Multi-Agent Planning Algorithm module: the individual planning process and
the merging phase are run on this module. It is explained on Section 6.

4. Conflicts solver module: if any interactions need to be solved, this module
employs a plan-reuse-planner to fix them. It is explained on Section 7.

MultiAgent Planning
 Task Generation

Actuation Maps
(Feature Extraction)

If any
conflicts

arise

MultiAgent Planning
Algorithm

Conflicts solver
 (Plan-Reuse Planner)

Environment
Map

Features
Robot1

Features
Robot2

Features
Robotm

...

Input information

2 1

3 4

General
knowledge

Fig. 1 Complete architecture that combines Actuation Maps and Multi-Agent Planning

The following subsections explain the essential information regarding both
fields: Actuation Maps and Multi-Agent Planning. The aim is to fully understand
later the preprocessing step and the Multi-Agent Planning algorithm.

8 Nerea Luis1 et al.

4.1 Actuation Maps

Our system receives as input the Environment map which represents a 2D envi-
ronment (e.g. building floor plan) and m Robot models with the agents’ features.
There is a third input provided by the user that refers to the General knowledge
of the environment (i.e: tasks to solve). These three inputs represent the input
information described in Figure 1.

We briefly summarize here the process of building the Actuation Space [27]. We
assume there is an occupancy grid map, i.e., a gray-scale image representing the
environment (Figure 7(a)). In this image each pixel has a value with the probability
of the corresponding world position being occupied by an obstacle. This occupancy
grid map is first transformed into a binary image of free and obstacle pixels, using
a fixed threshold.

We define G as the set with all pixel positions from the input binary image.
This input image (Environment map in Figure 5) is represented by M, the set
with the obstacle pixel positions. We define the structuring element as an image
that represents the robot shape. Using the robot-model image, Ri is the set with
pixel positions from a circle with radius equal to the robot size. The morphological
operation dilation on the obstacle set M by Ri is:

M⊕ Ri =
⋃

r∈Ri

Mr (1)

where Mr is the translation of M by vector r.
The visual output of applying this dilation operation to a map of obstacles is

the inflation of obstacles by the robot size. The free configuration space, Cfree, is
then defined as:

C
free
i = {p ∈ G | p /∈M⊕ Ri} (2)

where G is the grid set with all the pixel positions. The free configuration space
represents the feasible positions for the robot center, but does not give any infor-
mation about the regions that can be actuated by the robot.

In order to determine the Actuation Space instead, the partial morphological
closing operation is used. Morphological closing is a dilation operation followed
by a morphological erosion. Because dilation and erosion are dual operations,
the morphological closing of obstacles (erosion applied to the image with inflated
obstacles) is equivalent to the dilation of free configuration space.

However, the morphological closing cannot be used to determine the Actua-
tion Space, because it does not consider which points are reachable from the initial
robot position, and different initial positions do change the overall actuation capa-
bilities. The partial morphological closing was introduced in order to consider the
initial robot position when determining the Actuation Space. In order to use the
partial morphological closing, the algorithm needs to find the navigable regions
first. The set of navigable regions from a starting robot point r0i is always a subset
of Cfreei .

Li(r
0
i) = {p ∈ G | p connected to r0i ∧ p ∈ C

free
i } (3)

The navigable set Li(r
0
i) is the set of points that are connected to the initial

position r0i through a path of adjacent cells in the free configuration space.
In Figure 2 we show a simulated map with 2 robots with different sizes, and

the respective navigable space.

Using Pre-Computed Knowledge for Goal Allocation in Multi-Agent Planning 9

(a) Map (b) Robot1 (c) Robot2

Fig. 2 Simulated map and two heterogeneous robots with different sizes in (a); colored regions
represent the navigable space, Li(r

0
i), for 2 robots with different sizes, depending on size and

initial position of robots.

Finally, by applying the the second dilation operation of the morphological
closing to the navigable set (subset of Cfree) instead of applying it to the free
configuration space, we obtain the partial morphological closing operation. The
Actuation Space is thus the dilation of the navigable space.

Ai(r
0
i) = Li(r

0
i)⊕ Ri (4)

In Figure 3 we show the Actuation Spaces after applying the partial morpho-
logical closing operation to the original map. The Actuation Space represents what
the robot can actuate from any point reachable from its initial position.

(a) Map with 2
Robots

(b) Actuation
Space 1

(c) Actuation
Space 2

Fig. 3 Colored regions in Figure (b) and Figure (c) represent actuation spaces for respective
robots, i.e. the points in the environment that each robot can actuate, depending on their size
and initial position shown in Figure (a).

As an example, we can consider again the vacuum cleaning robot case. The
configuration space represents the possible center positions for the robot; the actu-
ation space A represents the regions the robot can clean; and unreachable regions
like corners result from the circular shape of the robot.We briefly summarize here
the process of building the Actuation Space [27]. We assume there is an occupancy
grid map, i.e., a gray-scale image representing the environment. In this image each
pixel has a value with the probability of the corresponding world position being oc-
cupied by an obstacle. This occupancy grid map is first transformed into a binary
image of free and obstacle pixels, using a fixed threshold.

We define G as the set with all pixel positions from the input binary image.
This input image (Environment Map Image in Figure 5) is represented by M, the
set with the obstacle pixel positions. We define the structuring element as an image

10 Nerea Luis1 et al.

that represents the robot shape. Using the robot-model image, Ri is the set with
pixel positions from a circle with radius equal to the robot size. The morphological
operation dilation on the obstacle set M by Ri is:

M⊕ Ri =
⋃

r∈Ri

Mr (5)

where Mr is the translation of M by vector r.
The visual output of applying this dilation operation to a map of obstacles is

the inflation of obstacles by the robot size. The free configuration space, Cfree, is
then defined as:

C
free
i = {p ∈ G | p /∈M⊕ Ri} (6)

where G is the grid set with all the pixel positions. The free configuration space
represents the feasible positions for the robot center, but does not give any infor-
mation about the regions that can be actuated by the robot.

In order to determine the Actuation Space instead, the partial morphological
closing operation is used. Morphological closing is a dilation operation followed
by a morphological erosion. Because dilation and erosion are dual operations,
the morphological closing of obstacles (erosion applied to the image with inflated
obstacles) is equivalent to the dilation of free configuration space.

However, the morphological closing cannot be used to determine the Actua-
tion Space, because it does not consider which points are reachable from the initial
robot position, and different initial positions do change the overall actuation capa-
bilities. The partial morphological closing was introduced in order to consider the
initial robot position when determining the Actuation Space. In order to use the
partial morphological closing, the algorithm needs to find the navigable regions
first. The set of navigable regions from a starting robot point r0i is always a subset
of Cfreei .

Li(r
0
i) = {p ∈ G | p connected to r0i ∧ p ∈ C

free
i } (7)

The navigable set Li(r
0
i) is the set of points that are connected to the initial

position r0i through a path of adjacent cells in the free configuration space.
Finally, by applying the the second dilation operation of the morphological

closing to the navigable set (subset of Cfree) instead of applying it to the free
configuration space, we obtain the partial morphological closing operation. The
Actuation Space is thus the dilation of the navigable space.

Ai(r
0
i) = Li(r

0
i)⊕ Ri (8)

4.2 Discretization

For the planning problem, it is possible to consider each individual pixel as a way-
point. However, that approach results in a high density of points that would make
the planning problem excessively complex. Moreover, there is some redundancy in
having points that are too close to each other, as their difference is not significant
in terms of the environment size and localization accuracy.

Therefore, we reduced the set of locations from all pixels to a smaller set of
locations. We considered again waypoints distributed into a grid, but now the
grid-size is greater than one pixel. Then, we can find the connectivity between

Using Pre-Computed Knowledge for Goal Allocation in Multi-Agent Planning 11

points to construct the navigation graph of each robot, shown in Figure 4(a). It is
also possible to find which waypoints can be actuated from other waypoints using
the distance between them, as shown in Figure 4(b), by considering the maximum
actuation radius.

The problem of such discretization is the change in the actuation space topol-
ogy. Adjusting the position of waypoints could allow a better representation of the
topology of the environment, but the multi-robot nature of the problem compro-
mises that solution. In order to deal with multiple robots with different reachable
sets, for each agent, we independently adjust the waypoint position -temporarily-
in a hidden manner invisible to the other agents. When discretizing each robot’s
configuration space, we might consider a waypoint as belonging to the free con-
figuration space even if it is strictly outside it, as we assume an error margin
to compensate for the discretization error. Nevertheless, we still maintaining the
original waypoint position in further steps, such as determining actuation feasibil-
ity. When determining the navition graph of each robot, an unreachable waypoint
position is moved to the closest point in the reachable space, as long as the ad-
justment is under a given margin δ. The adjustment is always temporary to the
construction of the connectivity graph, i.e., after the connectivity is tested, the
waypoint position resets to its default grid position for the next steps.

Moreover, when determining the connectivity of waypoints for the navigation
graph, only the eight grid neighbors are considered. A∗ is then used to determine
the real distance between waypoints (e.g., around obstacles), and connectivity is
only considered if the real distance is at most a factor of α = 1.2 the straight line
distance between them.

The grid density is chosen manually in order to adjust the level of discretization.
As for the α and δ parameters, they were tuned empirically such as the free space
topology is still maintained even while using lower density discretization of the
environment. By trial and error, we found empirically that α = 1.2 works for
all the tested scenarios. As for the δ parameter, we set it to always start with a
value of 3, then build the discretized model and verify if it is valid, i.e., if all the

(a) Navigability (b) Actuation

Fig. 4 In Figure (a), the free configuration space for the bigger robot in Figure 2(a), with
the discretization waypoints shown as green dots. The blue lines represent the connectivity
between waypoints in the navigation graph of the robot. Using parameters δ and α it is possible
to maintain the topology of the free configuration space by allowing points in the navigation
graph that were originally unfeasible for the robot. In Figure (b), the actuation map of the
same robot, and the respective actuation graph represented with yellow lines.

12 Nerea Luis1 et al.

waypoints belonging to the actuation map become feasible for the respective robot
in terms of the discretized representation. If not, we increment the parameter until
a topologically consistent representation is found (number of feasible goals equals
number of waypoints inside actuation map).

Finally, all waypoints that belong to the robot actuation map should be con-
nected to some waypoint of its navigable graph. If that is not the case after the
previous steps, we connect the isolated waypoints to the closest navigable vertex in
line of sight, even if their distance is greater than the maximum actuation distance,
again to compensate for the discretization error. Therefore, while the planner may
return an actuate action to cover waypoint A from the navigable waypoint B in
the discretized world, a real robot would have to move closer from the waypoint
B to waypoint A in order to actuate the latter.

4.3 Multi-Agent Planning

When multiple agents are involved (e.g robots, workers, drivers) we talk about
Multi-Agent Planning(MAP) [34]. MAP computes a plan for/by a set of agents
that jointly solve a planning problem. Usually, MAP tasks have to deal with some
coordination issues among agents or the sharing of resources. From the perspec-
tive of MAP, planning domains exhibit a coupling level that ranges from loosely-
coupled to tightly-coupled, depending on the degree of interaction between agents
plans [7]. Agents on loosely-coupled domains barely interact with each other.
Tightly-coupled domains have a considerable level of interaction among agents.
This implies solving interactions while planning (agents’ communication) or after-
wards (conflict solving). Our domain is loosely-coupled, as agents barely interact
with each other. However, there might be collisions that are not detected by the
planner. A different approach involving collision-detection is further explained on
Section 7.

In Multi-Agent Planning two main approaches have been commonly used: cen-
tralized and distributed. The centralized approach involves a master agent which
knows everything about the agents and the environment. The master agent sees
the rest of agents as resources and is also responsible for coordinating and solving
the interactions that might arise during the planning process. On the distributed
approach each agent builds its own plan synchronously with the rest of the agents.
Depending on the amount of communication allowed among the agents, they will
need to share their information during the planning process or they have to later
merge their plans and solve the conflicts that might have arisen. Our MAP algo-
rithm follows the later, using plan merging [13, 25] to build the solution plan after
the individual planning process. Thus, no cost of communication is involved and
there is no implementation inside the algorithm regarding communication.

5 Preprocessing

The contributed preprocessing step is shown in Figure 5. This is the point where
both techniques, AMs and MAP, are combined and complement each other. Section
5.1 describes the generation of goals, the detection of unfeasible regions and the

Using Pre-Computed Knowledge for Goal Allocation in Multi-Agent Planning 13

PDDL Problem
Generation

Goal Assignment

Actuation
 Transformation

Robot1

Actuation
 Transformation

Robot2

Actuation
 Transformation

Robotm
...

#robots
#waypoints

Grid of waypoints
List of goals

Discretization and
Merging of Maps

Estimated Cost
per Goal-Agent

List of feasible and
unfeasible goals

per agent

Factorization

Domain1
Problem1

Domain2
Problem2

Domainm
Problemm

...

Environment
Map

Features
Robot1

Features
Robot2

Features
Robotm

...

Input information

Environment
Map

Features
Robot1

Features
Robot2

Features
Robotm

...

Input information

General
knowledge

PDDL Domain

Fig. 5 Preprocessing stage before the planning process starts. First, inputs are processed in
order to generate the AM for each agent. Then, a discretization is applied to generate all the
required information for planning such as the navigation graph for the PDDL problem, the
list of estimated costs etc. Once this information has been generated, GA starts and the MAP
problem is divided into subproblems with specific goals assigned to each individual problem.

computation of estimated costs. Section 5.2 describes the process of generating the
MAP task and how the task is factorized (divided) in subtasks.

5.1 Extracting information from Actuation Maps

When converting the original map and the Actuation Space to the PDDL descrip-
tion, it is possible to consider each individual pixel as a waypoint in a grid with the
size of the whole image. However, that approach results in a high density of points
that makes the planning problem excessively complex. There is also redundancy
in having points that too close to each other, as their difference is not significant
in terms of the environment size and localization accuracy.

Therefore, we reduce the set of possible locations by downsampling the grid
of waypoints. The downsampling rate sr is set manually. If the original pixel

14 Nerea Luis1 et al.

resolution is used, the resulting grid of waypoints G′ contains all pixels and is
equivalent to G. Otherwise the set G′ represents the grid waypoint positions after
downsampling.

Using the Actuation Space it is possible to very easily find UG, the list of
unfeasible goals per agent :

UG = {g ∈ G
′, φi ∈ Φ | g 6∈ Ai(r

0
i)} (9)

The positions in the actuation space Ai(r
0
i) are feasible goal positions for actu-

ation tasks. Even though this was used to find the unfeasible list UG, the original
Actuation Transformation does not provide any information about the cost for
each robot to execute a feasible actuation task.

For that purpose, we contribute the following extension. We build the naviga-
ble space Li in an iterative procedure, from the starting position r0i . In the first
iteration we have L0

i (r
0
i)← {r0i }, and then the following rule applies:

L
j
i (r

0
i) = {p ∈ G | ∃q ∈ L

j−1
i (r0i) : p neighbor of q

∧p ∈ C
free
i ∧ p 6∈ L

a
i (r0i) ∀a < j} (10)

When using this recursive rule to build the navigable space, we guarantee that
any point in the set L

j
i (r

0
i) is exactly at distance j from the initial position r0i .

Furthermore, if we build the actuation space sets with the intermediate navi-
gable sets L

j
i (r

0
i),

A
j
i (r

0
i) = L

j
i (r

0
i)⊕ Ri (11)

then the intermediate actuation set A
j
i (r

0
i) represents the points that can be ac-

tuated by the robot from positions whose distance to r0i is j. The actuation space
defined in the previous section can also be alternatively defined as

Ai(r
0
i) = {p ∈ G | ∃a : p ∈ A

a
i (r0i)} (12)

The Actuation Map is defined for g ∈ Ai(r
0
i):

AMi(r
0
i , g) = min{j | g ∈ A

j
i (r

0
i)}+ 1 (13)

The Actuation Map AMi(r
0
i , g) represents, for each g ∈ Ai(r

0
i), the minimum

number of actions needed for the robot to actuate the grid waypoint g if starting
from the initial position r0i , measured in the pixel-based grid G. In Equation 13, the
minimum j∗ represents the minimum distance (i.e., minimum number of navigate
actions) needed to travel from r0i to some point from where g can be actuated. The
added one in Equation 13 accounts for the one actuate action needed to actuate
g, after the j∗ navigate actions needed to reach a place from where the robot can
actuate g.

Thus, the cost function c is defined in Equation 14, where sr is the downsam-
pling rate. The division by sr transforms the estimated cost of actions measured
in the pixel-based grid G, AMi(r

0
i , g), to the respective cost value in the downsam-

pled grid of waypoints G′. The ceil function rounds up the result of the division to
the smallest integral value that is not less than AMi(r

0
i , g)/sr. The cost function

c is domain-dependent and works for the coverage problem. If a different problem
is given as input, the cost function should be redefined.

Using Pre-Computed Knowledge for Goal Allocation in Multi-Agent Planning 15

c(AMi(r
0
i , g)) = ceil

(
AMi(r

0
i , g)/sr

)
(14)

Finally, the Estimated Cost per Goal-Agent list EC is defined in Equation 15.

EC = {〈g, φi, c〉 | g ∈ G
′ ∧ φi ∈ Φ ∧ g ∈ Ai(r

0
i) ∧ c ∈ c(AMi(r

0
i , g))} (15)

5.2 Multi agent planning task generation

One the discretization of maps has been performed, we have all the information
needed to generate the MAP task M, which is formed by a domain (received as
input) and a problem (generated through the discretization). The inputs to the
Goal Assignment (GA) phase are (1) the PDDL domain; (2) the PDDL problem;
(3) the list of estimated costs where c is computed as the number of steps for
an agent to reach the goal position g from its initial position; and (4) the list of
unfeasible goals UG = {g ∈ G,φi ∈ Φ | C(g, φi) = ∞}. The cost of navigating
between two neighbor grid waypoints is 1 unit. As long as EC is provided, UG is
not used inside the MAP algorithm. The case when EC is not provided is later
explained in this section.

In Multi-Agent systems, in order to perform task allocation [8, 18] some strat-
egy has to be determined or implemented, as the aim it is to divide the MAP
task in subtask to alleviate the planning process afterwards. In addition, a goal-
assignment strategy (GAS) needs to be chosen to define the way goals are assigned
to agents by the system.

In our approach we took the Load-Balance (LB) strategy previously defined

in [2], that first calculates k =

⌈
|G|
|Φ|

⌉
, which represents the average number of goals

per agent. Then, it assigns each goal g ∈ G to the agent φi ∈ Φ that achieves g
with the least cost. This strategy avoids, if possible, assigning more goals than k to
each agent. The LB assignment strategy is used when minimizing the maximum
number of actions per agent (makespan). As a second option, we also took the
Best-Cost (BC) strategy also defined before in [2], which simply assigns each goal
to the agent that can achieve it with the least cost. The BC strategy is used when
minimizing the total number of actions over all robots (plan length).

As in [2], only when the information about estimated cost per pair robot-goal is
not available for some reason, our MAP algorithm would perform GA computing
a relaxed plan using the ff heuristic [19]. This is not a contribution of the paper
itself, as it was already in [24]. However, in that work, when a goal was unfeasible
for every agent, it was assigned to all of them. In our approach, when the goal has
been identified as unfeasible by all agents, the relaxed plan is not computed for
that pair robot-goal and the goal is not included into the M task. This behavior
is not common in classical deterministic Automated Planning, as planners expect
that the problem does not contain any unfeasible goal. As our approach separates
goal allocation from planning, we can easily deal with unfeasible goals. This small
contribution gives us more flexibility when working for real environments, as it
is better to obtain a plan that solves 95% of the goals than just failing during
planning. To plan using soft-goals [23] or working on oversubscription planning
[31][17] would have been other ways to deal with unfeasibility, but they are out

16 Nerea Luis1 et al.

of the scope of this work. In summary, there are two contributions to the GA
process: (1) the detection and deletion of unfeasible goals is a contribution that
helps not only on skipping the computation of those relaxed plans but also avoids
the planning process to fail; and (2) to use information from AMs, as the algorithm
receives and processes the estimated costs from the AMs to skip the computation
of the relaxed plans.

The first step is to allocate the feasible goals to the agents. This step uses
the information of estimated costs received from AMs. Goal assignment phase
(GA) returns as output (1) a subset of Φ′ agents, Φ′ = {φ1, . . . , φn}, that will
be the only ones who will plan to solve the problem; and (2) a new MAP task
M ′ = {Π1, . . . , Πn}. As a result, a specific PDDL domain and problem will be
generated for each φ′i agent which only includes the goals each agent has to achieve.
As it previously mentioned, if a goal is unfeasible for all the Φ′ agents, the MAP
algorithm will discard it from the new MAP task M ′, so that the process of
planning will not fail. The ouput of this process is a pair (domain, problem) for
each agent as in Figure 5 after the Factorization step and in Equation 16.

M ′ = 〈Π1, ..., Πn〉 =
{
〈D1, P1〉, 〈D2, P2〉, ..., 〈Dn, Pn〉

}
(16)

The Multi-Agent Planning Algorithm

Inputs: M ′, SAP
Output: π

1 Forall φ′i ∈ Φ′ do πi =plan(Πi, SAP)
2 πseq = concatenate(π1, . . . , πn) /* where n = |Φ′| */
3 If valid(πseq)
4 Then return π =parallelize(πseq)
5 Else return no-solution

Fig. 6 High level description of the MAP algorithm. Inputs: MAP task (M ′), Single-Agent
Planner (SAP). Output: resulting plan (π) or no solution.

6 The Multi-agent Planning Algorithm

In order to solve the MAP task we use the distributed phase of a previous work
of the authors [24]. Our algorithm receives as input a MAP task, which consists
of a PDDL domain and problem files (Figure 6) for each agent in φi ∈ Φ′. On the
first step, each agent builds its plan individually (line 1). Then the agents’ plans
are merged by a simple concatenation of plans in one resulting plan (line 2). If the
merged plan is valid, we parallelize the plan (line 4) generated by the merging step.
Parallelization is performed in two steps: converting the input total-order plan into
a partial-order one by a similar algorithm to [35]; and parallelizing this partial-
order plan by ordering actions in the first time step that satisfies all ordering

Using Pre-Computed Knowledge for Goal Allocation in Multi-Agent Planning 17

(a) Waypoints (b) Path 1 (c) Path 2 (d) Path 3 (e) Path 4

Fig. 7 These figures represent the Corridor scenario used in the experiments. The waypoint
discretization is shown in Figure (a). The resulting path for each robot is shown in Figures (b)
to (e), after solving the planning problem using load balance as goal-strategy. Path 1 belongs
to the smallest robot. Path 4, to the biggest one.

constraints in the partial-order plan. The main advantage of parallelization is
to be able to return a plan in which on each time step, more than one action
can be executed at the same, taking advantage of having multiple robots in the
environment as well. As the domain does not have any interactions, there is no
need of fixing the plan regarding interactions.

To set up the algorithm, an off-the-shelf planner had to be chosen. The ad-
vantage of this MAP algorithm is that any state-of-the-art planner can be easily
included on the distributed planning phase without further code modification. Our
configuration uses lama-unit-cost as the planner SAP of the algorithm. lama-
unit-cost corresponds to the first search that lama performs, using greedy-best-
first with unit costs for actions [30]. The merged plan is validated using VAL [20],
the validator from the International Planning Competition (IPC)1. On Figure 7
we show a solution example obtained from the MAP algorithm. It corresponds to
the scenario called Corridor-High later on the experiments.

7 Dealing with interactions

Real-world robotics environments might imply to deal with potential interactions
among robots (at the very least) e.g collisions, sharing a resource, cooperation,
etc. On the previous description of the Coverage problem we did not explicitly
considered any kind of interactions. Our idea was (1) to test first the scalability
of the MAP algorithm; and (2) to generate, as fast as possible, a valid solution.
Robots might occasionally collide at some specific step of the solution plan. How-
ever, that collision could be easy resolved during execution by forcing one of the
robots to wait until the other robot has left the conflict zone. Then, the stopped
robot will continue executing the rest of its plan. On the other hand, there is a
subarea of Automated Planning called Planning by Reuse that has been widely

1 http://icaps-conference.org/index.php/main/competitions

18 Nerea Luis1 et al.

employed in areas such as Case-Based Planning [6], or replanning when plan exe-
cution fails [15]. Usually, planners that perform plan repair receive three inputs: a
domain, a problem and a plan to be fixed. Examples of this kind of planners are
lpg-adapt [15] or errt-plan [5]. Therefore, an improvement of our approach is to
detect and fix potential collisions right after the individual planning process using
an off-the-shelf plan reuse planner. This new feature makes our architecture more
robust when executing the solution plan in a real environment. Thus, we slightly
changed our PDDL domain to track the collisions by adding a new predicate called
occupied.

– Occupied (waypoint): indicates that there is a robot on that waypoint.

That predicate is set as a new precondition of the navigate action described
in Listing 3. This allows the agent to only traverse a connection if the destination
waypoint is not occupied by a robot.

Listing 3 Action Navigate that now checks occupied positions

(: action nav igate
: parameters (? r − robot ?y − waypoint ? z − waypoint)
: precondition (and

(connected ? r ?y ? z) (at ? r ?y)
(occupied ?y) (not (occupied ? z))

)
: ef fect (and

(not (at ? r ?y)) (not (occupied ?y))
(at ? r ? z) (actuated ? z) (occupied ? z)

)
)

The new version of our MAP algorithm is described in Algorithm 8. As the MAP
algorithm starts with the individual planning phase, no collisions will be detected
at that point (line 1). After concatenation, the solution plan is validated by VAL
(line 3). The validator will detect if the occupied predicate is true twice on the

The Multi-Agent Planning and Reuse Algorithm

Inputs: M ′, SAP , R
Output: π

1 Forall φ′i ∈ Φ′ do πi =plan(Πi, SAP)
2 πseq = concatenate(π1, . . . , πn) /* where n = |Φ′| */
3 If valid(πseq)
4 Then π =parallelize(πseq)
5 Else
6 πreuse = plan-reuse(M ′,πseq , R)
7 π =parallelize(πreuse)
8 If valid(π) return π
9 Else return no-solution

Fig. 8 MAP algorithm that also includes the plan-reuse phase. Inputs: MAP task (M ′), Single-
Agent Planner (SAP). Plan-reuse planner (R). Output: resulting plan (π) or no solution.

Using Pre-Computed Knowledge for Goal Allocation in Multi-Agent Planning 19

same waypoint and if the predicate at from two robots refers to the same waypoint
on the same planning step. If so, the plan will be invalid. As a result, the M ′ task
and the invalid plan are sent to the plan reuse planner (line 6). When the plan
is fixed, the parallelization step is applied (line 7). Finally, the MAP algorithm
runs VAL again (line 8) and if the plan is valid it is returned as the solution. The
configuration of our algorithm is the same as the previous version - the single-agent
planner is lama-unit-cost. The plan reuse planner is lpg-adapt.

8 Extending Approach to Any-Shape Robots

For the case of non-circular robot footprints (Figure 9), given the robot model is
not rotation invariant, we need to discretize orientation as well. We use a world
representation that is composed of multiple layers, using the partial morphological
closing operation to each layer, and as such determining individually for each
orientation the corresponding actuation space [28].

First, the algorithm needs images to model both the robot and its actuation
capabilities. Both are parametrized by images that can be rotated and scaled to
represent any robot. As input, it is also necessary to give the center of the robot
and actuation in terms of their model images, and their relative position.

Here we assume a quantization of the orientation given by nθ layers. Using
the input image for the robot model, we rotate it by 2jπ/nθ, where 0 ≤ j < nθ,
in order to build a model of the robot for each possible orientation, as shown in
Figure 10.

In terms of morphological operations, we consider two structuring elements, R
and T, to represent the robot and actuation models respectively. After rotating
them, we get R(θj) and T(θj), with 0 ≤ θj < nθ.

Fig. 9 Environment and robot models used to test the extended approach to any-shape robots
.

Using the structuring element for the robot model, we again apply morpho-
logical operations to determine the free configuration space, now for each possible
quantized orientation, dilating the map using a different robot shape model for
each layer. We use a circular representation for the layered orientation, where the
next layer after θj = nθ − 1 is layer θ = 0.

C
free(θj) = {p ∈ G | p /∈M⊕ R(θj)} ∀0 ≤ θj < nθ (17)

20 Nerea Luis1 et al.

(a) Robot Model R for
θ = 0o

(b) Robot Model R for
θ = 45o

(c) Robot Model R for
θ = 90o

Fig. 10 Example of an image representing the robot footprint, rotated for three different an-
gles, and used as structuring element in the morphological operations applied to the respective
orientation layers; robot center shown in red.

In order to model a robot that navigates through waypoints, we need to es-
tablish the type of connectivity between points in different layers, such as it is
equivalent to the type of motion the robot actually has. As an example, using the
connectivity graph from Figure 11, where one point is connected to all its neigh-
bors in the same layer, and the respective positions in adjacent layers, is equivalent
to considering an omnidirectional model of navigation.

Given the connectivity mode, it is then possible to find all points in each layer of
the configuration space that connect with the starting robot location r0i , obtaining
the navigable set Li(r

0
i , θj). We can then use a second dilation operation to the

navigable space in each layer to obtain the actuation space for each orientation.
The structuring element for this second operation is the one that models the
actuation capabilities, T, which dilates the space according with the actuation
model. If instead the structuring element R is used again, that would be equivalent
to assuming an actuating ability completely coincident with the entire footprint.

Fig. 11 Three adjancent layers of the discretized orientation, showing in blue the neighbor
points of a central orange dot, representing the connectivity/motion model.

Then, the actuation space for each layer would be given by

Using Pre-Computed Knowledge for Goal Allocation in Multi-Agent Planning 21

A(r0i , θj) = Li(r
0
i , θj)⊕ T(θj) (18)

The actuation space gives the actuation capabilities for each orientation for a
given robot shape and starting position. So, if a point belongs to A(r0i , θj), then it
can be actuated by the robot. We show in Figure 12 the navigable and actuation
spaces for different layers, given the robots and map shown in Figure 9.

(a) Robot 1 -
Navigable Space -
0o Layer

(b) Robot 1 - Nav-
igable Space - 45o

Layer

(c) Robot 1 - Nav-
igable Space - 90o

Layer

(d) Robot 1 - 2D
Projected Naviga-
bility

(e) Robot 1 - Ac-
tuation Space - 0o

Layer

(f) Robot 1 - Ac-
tuation Space - 45o

Layer

(g) Robot 1 - Ac-
tuation Space - 90o

Layer

(h) Robot 1 - 2D
Projected Actua-
tion Map

(i) Robot 2 - Nav-
igable Space - 0o

Layer

(j) Robot 2 - Nav-
igable Space - 45o

Layer

(k) Robot 2 - Nav-
igable Space - 90o

Layer

(l) Robot 2 - 2D
Projected Naviga-
bility

(m) Robot 2 - Ac-
tuation Space - 0
Layer

(n) Robot 2 - Ac-
tuation Space - 45o

Layer

(o) Robot 2 - Ac-
tuation Space - 90o

Layer

(p) Robot 2 - 2D
Projected Actua-
tion Map

Fig. 12 Navigable and Actuation Space for 2 non-circular robots with different sizes, for the
scenario shown in Figure 9.

22 Nerea Luis1 et al.

After determining the actuation space for each layer, we can obtain the overall
actuation map in a rotation-invariant representation by projecting the multiple
layers into one single 2D image.

P(r0i) =
⋃
θj

A(r0i , θj) (19)

P(r0i) has the same kind of representation we had with the circular robot, where
the actuation space is a single 2D image not depending on the orientation.

For the any-shape robots, a multi-layer representation is used to determine
the Actuation Map, representing different orientations. However, in terms of ac-
complishing goals, we assume it is irrelevant the orientation from which a robots
actuates on a waypoint position.

Therefore, while on the rotation-invariant scenario the domain was discretized
in a series of 2D waypoints, for the any-shape case there are two types of waypoints:
the 3D waypoints representing (x, y, θ) position, and the 2D waypoints representing
(x, y) positions invariant to orientation.

Therefore, the navigability graph now becomes a graph of 3D waypoints con-
nected to each other, modeling the motion capabilities of robots in the world in
terms of both rotation and translation, individually or combined, as exemplified
for different orientation layers on Figure 13.

On the other hand, the actuation graph is now a graph of 3D waypoints con-
nected to 2D waypoints, representing the actuation of a rotation-independent po-
sition in the projected 2D actuation map, from a 3D robot waypoint location,

(a) Robot 1 Graphs -
0o Layer

(b) Robot 1 Graphs -
45o Layer

(c) Robot 1 Graphs -
90o Layer

(d) Robot 2 Graphs -
0o Layer

(e) Robot 2 Graphs -
45o Layer

(f) Robot 2 Graphs -
90o Layer

Fig. 13 The connected and reachable graphs shown in blue and yellow, respectively; as
shown for each layer, the yellow actuation graph connects 3D waypoints to the original 2D
green waypoints, and the blue connectivity graph connects 3D waypoints not only to neighbors
in the same layer, but also in adjacent layers.

Using Pre-Computed Knowledge for Goal Allocation in Multi-Agent Planning 23

(a) Robot 2 - Graphs
on Free Configura-
tion Space - 0o Layer

(b) Robot 2 - Graphs
on Navigable Space -
0o Layer

(c) Robot 2 - Graphs
on Free Configuration
Space - 90o Layer

(d) Robot 2 - Graphs
on Navigable Space -
90o Layer

Fig. 14 The discretized graphs constructed are independent of the initial robot positions,
allowing to run the problem from different initial positions; the white regions (navigable space,
dependent on initial position) are covered by the graphs, but some black regions (if open in
the configuration space, independent on initial position) are also covered by the constructed
graphs.

also shown in Figure 13. The predicates on the PDDL problem are represented as
follows:

– Connected (robot, 3Dwaypoint, 3Dwaypoint)

– Reachable (robot, 3Dwaypoint, 2Dwaypoint)

For each 2D waypoint in the circular robot scenario, there is now nθ 3D way-
points in the same (x, y) position, representing the different orientations a robot
can have on the same 2D waypoint. As we show in Figure 14, the two graphs are
constructed independently of the initial position, allowing very easily to change the
starting location of any robot and solve a different instance of the same problem.
Thus, there were no modifications in the modeling of the PDDL problem. The 3D
to 2D representation is transparent to the planning process.

The navigate action moves through 3D waypoints, and the actuate action
makes 2D waypoints have the actuated predicate. The list of goals to solve the
problem is still given by a list of 2D waypoints that cover all the space. Thus for the
same map, the coverage problem is still the same in terms of goal waypoints and
its modellization, but now we plan for robots to move through the environment
and actuating goal positions from some planned orientation. The PDDL domain
did not need any further modifications.

If we project the multiple layers of the graphs in a 2D image, we can analyze
which waypoints are navigable in terms of the robot motion, and which ones are
only feasible through an actuation action. As we show in Figure 15, some of the
waypoints are not feasible by any of the robots, and all the feasible waypoints lie
inside the Actuation Space (grey region of the images).

9 Experiments and results

In this section we show the results of the experiments that were designed test
the impact of the preprocessing on two different versions of our MAP algorithm.
First, on the following section we describe the five scenarios designed to run the
experiments. Then, on Section 9.2 the experiments on the Coverage problem are

24 Nerea Luis1 et al.

(a) Robot 1 (b) Robot 2

Fig. 15 All goal waypoints are shown as spheres on top of the Actuation Map: green represent
unfeasible waypoints, in red the ones covered by the connected graph, and in blue the ones
only covered by the reachable graph; for the smaller robot 1, the two graphs are the same.

analyzed. These results were partially included on the previous version of the paper
[29]. Finally, on Section 9.3 we show the results on the Coverave problem including
collision detection.

9.1 Simulation Description

Here we describe in detail the scenarios used for running the experiments. We
designed three different scenarios, shown in Figure 16, each one with two levels of
waypoint density (H, the higher, and L, the lower density) plus two more scenar-
ios that only have one density level. The scenarios are designed for circular robots
except for the last one (called Rooms) that is designed for any-shape robots. Fur-
thermore, in Table 1 we present the size of each map image, and the number of
feasible and unfeasible goals for each scenario.

– Mutual Exclusive: three wide parallel horizontal halls, connected between them
by two narrow vertical halls; 3 robots move within the horizontal sections, one
in each, and their actuation reachabilities are mutually exclusive.

– Corridor: four wide sections with openings of different sizes connecting them;
the opening decreases from the top to the bottom, with all 4 robots being able
to actuate in the top region, to only 1 being able to reach the bottom.

– Extremities: wide open section with three halls departing to different directions,
where all 4 robots actuate; at the end of each hall there is a room that can
be accessed through an opening, with only one robot reaching the extremity
connected with the smallest opening, to three reaching the one connected with
the biggest opening.

– Maze: maze-like scenario with narrow halls and passages with different sizes,
resulting in bigger robots not reaching some parts of the maze, or needing to
traverse bigger paths to arrive to the same locations as smaller robots.

– Rooms: simple floorplan environment with some room-like spaces connected
through passages of different sizes as well, used to test the non-circular robot
case where they can traverse the passages using only certain orientations.

Using Pre-Computed Knowledge for Goal Allocation in Multi-Agent Planning 25

(a) Mutual Exclusive (b) Maze

(c) Corridor (d) Extremities (e) Rooms

Fig. 16 Maps of the five scenarios used in the experiments. Grey regions represent out-of-
reach regions which cannot contain goal waypoints. They are unfeasible for all the robots.
Robots are represented with blue circles positioned in the region of their starting position.

Table 1 Number of feasible and unfeasible goals for all robots in each problem, and respective
grid size.

Feasible Unfeasible Grid Size
CorridorH 819 118 49x19
CorridorL 384 92 33x13
ExtremeH 1993 1325 51x63
ExtremeL 896 589 34x42
MutExH 499 513 45x21
MutExL 223 242 30x14

Maze 572 100 25x25
Rooms 131 61 13x13

26 Nerea Luis1 et al.

9.2 Experiments on the Coverage problem

In this section we show some experiments that test the impact of the preprocessing
on the MAP algorithm (map in advance). As it was previously said, we have mod-
eled five different scenarios that include up to four agents with different sizes, and
thus different actuation capabilities. Planning results are shown using as metrics
the time in seconds, the length of the resulting plan and the makespan. In non-
temporal domains, we refer as makespan the length of the parallel plan (number
of execution steps, where several actions can be executed at the same execution
step). Given that we are dealing with MAP tasks that have no interactions, it is
expected that agents can execute their actions in parallel whenever possible.

Four different configurations of our MAP algorithm have been set up:

– map-lb-ec with estimated-cost information (EC). EC refers to the configura-
tion that combines Actuation Maps and MAP.

– map-bc-ec with estimated-cost information (EC), also combining Actuation
Maps and MAP.

– map-lb, same as before but without EC information.
– map-bc same as before but without EC information.

As it was mentioned in Section 5.2, the LB strategy helps to minimize the
makespan metric. The BC strategy focuses on minimizing the plan length metric.
We also run the problems without the preprocessing stage in order to evaluate our
impact in terms of computation time and plan quality.

Furthermore, the following state-of-the-art planners have been chosen as a
comparison baseline:

– lama [30], centralized planer and winner of IPC 2011.
– yahsp [36], a greedy centralized planner.
– adp [9], a multi-agent planner that automatically detects agents.
– siw [26], a multi-agent planner that factorizes the problem into subproblems

solving one atomic goal at a time until all atomic goals are achieved jointly.
– cmap [3], a multi-agent planner that employs a centralized approach to solve

the problem.

The three multi-agent planners that have been chosen participated on the 1st
Competition of Distributed and Multi-agent Planners (CoDMAP2) and obtained
good results on the final classification.

Neither of these five planner perform a goal allocation phase separated from the
planning process. Thus, we had to test them using the equivalent PDDL problems
that do not contain unfeasible goals. Also, in order to fairly compare the results of
the makespan metric, we had to apply our parallelization algorithm to the resulting
plans of adp and siw, as they only return the sequential plan.

We have generated two problems per scenario, one of them with less number of
waypoints (which we identify as L in tables) and the other one with a high density
of waypoints (H), except for the last two scenarios that only have one density level
(Maze and Rooms), making it a total of eight problems. The Rooms scenario works
for any-shape robots while the rest work for circular robots. Before discussing the
results on the tables we need to clarify that a maximum of two hours was given

2 http://agents.fel.cvut.cz/codmap/

http://agents.fel.cvut.cz/codmap/

Using Pre-Computed Knowledge for Goal Allocation in Multi-Agent Planning 27

to each planner to solve each scenario. yahsp results do not appear in the tables
because it could not solve any of the scenarios.

The maximum time spent on the preprocessing for any scenario was 170 mil-
liseconds, for the Extremities problem with 4 robots. We included the preprocess-
ing times (to generate the AMs) in the GA column of Table 2, and in the total
time in Tables 3 and 6. Hardware used for running the planner was IntelXeon
3,4GHz QuadCore 32GB RAM. AMs were computed using a 2.5GHz DualCore
6GB RAM. Table 2 is shown to prove the remarkable impact that information
from Actuation Maps (AMs) has in combination with the MAP algorithm. Goal
assignment (GA) times in Table 2 are minimal (map-lb-ec) in comparison with
the ones when map-lb needs to compute the relaxed plans for every goal-agent
pair. Even though the individual planning time and parallelization time for map-
lb-ec is slightly higher than map-lb, the time gains in GA completely dominate
the overall planning time.

Table 2 Detailed time results in seconds for the MAP algorithm using the Load Balance
strategy with and without estimated cost information. From left to right total time, goal
assignment time, individual planning time and parallelization time.

map-lb-ec map-lb
Name TOTAL(s) GA Planning Parallel TOTAL(s) GA Planning Parallel
CorridorH 33.58 0.64 24.37 8.57 1232.97 1204.20 20.88 7.89
CorridorL 6.18 0.26 4.62 1.30 128.78 123.59 4.10 1.09
ExtremH 602.68 3.06 428.28 171.34 timeout
ExtremL 58.32 0.92 40.93 16.47 3870.00 3823.75 32.89 13.36
MutExH 7.39 0.34 5.03 2.02 903.65 896.82 4.81 2.02
MutExL 1.39 0.12 1.04 0.23 69.41 68.19 0.98 0.24
Maze 254.40 0.32 210.32 43.76 timeout
Rooms 146.60 0.15 94.30 52.15 1620.02 1554.36 95.39 50.45

Table 3 Total time results in seconds. From left to right map with estimated-cost information
in Load-balance (LB-EC); map without estimated cost information in LB; map with estimated
cost information in Best-cost (BC-EC); map without estimated cost information in BC; adp,
siw and cmap are other multi-agent planners and lama is a centralized planner.

Total Time (s)
map-lb-ec map-lb map-bc-ec map-bc adp lama siw cmap

CorridorH 33.58 1232.97 41.53 2839.79 mem.limit timeout 96.02 timeout
CorridorL 6.18 128.78 9.07 135.58 104.47 5.75 9.42 180
ExtremH 602.68 timeout 1788.69 timeout mem.limit timeout timeout timeout
ExtremL 58.32 3870.00 112.03 3929 mem.limit timeout 196.91 timeout
MutExH 7.39 903.65 7.27 910.18 5.54 6.29 4.89 1274.14
MutExL 1.39 69.41 1.38 72.24 0.84 1.12 1 95.77
Lab 254.40 timeout 308.32 timeout 427.08 timeout 320.15 timeout
Rooms 146.60 1620.02 268.44 1628.93 mem.limit 387.12 288.65 1328.65

The easiest scenario to be solved using planning is the Mutual Exclusive (Mu-
tExH, MutExL) because it is designed for each robot to traverse a mutual exclusive
subset of waypoints. This is the reason why time results are very similar among
all planners except for map-lb and map-bc where the planner needs to compute

28 Nerea Luis1 et al.

the relaxed plans for each pair robot-goal. Regarding time results, the fastest con-
figuration is map-lb-ec if all total times are summed up. Also, the impact of
combining information from actuation maps with MAP can be easily appreciated
if columns from map-lb-ec and map-lb are compared in Table 3. The same hap-
pens with BC configurations. adp and lama were only capable of solving four
problems. adp reached the memory limit when planning the solutions before the
two hours limit. Even though adp is a multi-agent planner, the effort of computing
plans when all goals are assigned to all agents is very big. lama reached the two
hours limit (timeout) without returning a solution on the other four problems.

Table 4 shows the results regarding the plans’ length and Table 5 the results
regarding makespan. The best configuration overall regarding plan length is map-
bc-ec. Regarding makespan, map-lb-ec is better. Moreover, map-lb-ec configu-
ration is the best one for problems with higher density of waypoints, while map-lb
proves to be better for reducing makespan in low density problems. This can be ex-
plained by the discretization errors from Equation 13, which are greater when the
down sampling rate is bigger. When allocating goals, the estimation costs are the
only guide for the MAP algorithm. The consequence of having slightly inaccurate
cost estimates results in the allocation of some goals to different agents than the
ones that the estimated costs from the relaxation of plans would suggest. However,
this issue does not have a big impact on makespan and plan length results.

From the set of planners chosen to compare our approach, siw obtains the best
performance on time, plan length and makespan. siw is able to solve most of the
scenarios due to its factorization process. The importance of factorizing a MAP
problem is a conclusion that can be extracted after observing Tables 4 and 5, as
the planners that do not perform factorization (lama, adp, cmap, yahsp) have
to solve bigger and more complex tasks.

Regarding our configuration, map-bc-ec’s goal-allocation works better than
the one performed by map-bc. On the other hand, the lower the number of agents
used to plan, the harder the planning task needed to solve for the ones being used.
Thus, plan length is better with BC, but on the contrary total time is usually
worse than LB configurations.

Table 4 Plan length: from left to right map with estimated-cost information in Load-balance
(map-lb-ec); map without estimated cost information in LB; map with estimated-cost in Best-
Cost (map-bc-ec); map without estimated cost information in BC; adp, lama, siw and cmap.

Plan Length
map-lb-ec map-lb map-bc-ec map-bc adp lama siw cmap

CorridorH 1289 1268 1226 1136 1154
CorridorL 605 598 588 475 1403 470 492 470
ExtremH 3428 3116
ExtremL 1490 1587 1365 1233 1398
MutExH 642 642 642 642 748 642 723 642
MutExL 277 277 277 277 278 277 339 277
Maze 1463 1437 1355 1346 1553 1376
Rooms 473 469 475 475 481 478 476 478

Using Pre-Computed Knowledge for Goal Allocation in Multi-Agent Planning 29

Table 5 Makespan: from left to right map with estimated-cost information in Load-balance
(map-lb-ec); map without estimated cost information in LB; map with estimated-cost in Best-
Cost (map-bc-ec); map without estimated cost information in BC; adp, lama, siw and cmap.

Makespan
map-lb-ec map-lb map-bc-ec map-bc adp lama siw cmap

CorridorH 403 408 461 734 397
CorridorL 219 189 303 458 1313 286 263 286
ExtremH 1453 1929
ExtremL 556 511 928 1140 463
MutExH 116 116 116 116 162 116 187 116
MutExL 59 59 59 59 60 59 101 59
Maze 466 479 597 793 603 461
Rooms 240 240 242 242 257 253 245 253

9.3 Experiments detecting potential collisions

In this section we show the results obtained on the same scenarios as in the previous
section but using instead the PDDL domain that detects collisions described in
Section 7. In Tables 6 and 7, we refer to map&r-lb-ec as running the Algorithm 8
using the LB strategy. map&r-bc-ec runs the BC strategy instead. We have also
compared our approach against the same set of planners as in Section 9.2. The
maximum time for each planner to solve each scenario is two hours. yahsp results
are not shown in the tables as it was not able to solve any problem. The aim of
this experiment is to analyze the impact of detecting and fixing collisions on the
makespan and time metrics. Plan length is not relevant, as the difficulty relies on
the planner’s ability to manage several agents and collision avoidance at the same
time. That is a feature that directly affects the makespan result.

Regarding time results in Table 6, it can be seen that the number of problems
solved decreases considerably. Also, time results have increased in all planners.
This is due to the collision avoidance effect. On one hand, centralized approaches
can deal with it more easily, as the master agent has the whole control of the
agents. However, it is still facing the same issue as in the previous experiments:
the tasks are harder to solve and now the search space is bigger. On the other
hand, distributed approaches as siw solve more scenarios and obtain better re-
sults. Again, the factorization of the planning task is relevant for the planners’
performance. siw’s time results increased in comparison with those on Table 3.

Table 6 Time in seconds from left to right map with estimated-cost information in Load-
balance (map&r-lb-ec); map with estimated-cost in Best-Cost (map&r-bc-ec); adp, lama,
siw and cmap.

Total Time (s)
map&r-lb-ec map&r-bc-ec adp lama siw cmap

CorridorH timeout timeout mem.limit timeout 298.33 timeout
CorridorL 175.44 190.27 285.4 220.53 26.77 383.75
ExtremH timeout timeout mem.limit timeout timeout timeout
ExtremL timeout timeout mem.limit timeout 557.95 timeout
MutExH 12.51 13.05 mem.limit 14.06 13.49 1425.34
MutExL 4.00 4.27 4.10 4.3 5.16 124.30
Maze 472.89 timeout mem.limit timeout 405.66 timeout
Rooms 296.55 357.83 mem.limit timeout 284.66 timeout

30 Nerea Luis1 et al.

Table 7 Makespan: from left to right map with estimated-cost information in Load-balance
(map&r-lb-ec); map with estimated-cost in Best-Cost (map&r-bc-ec); adp, siw, cmap and
lama.

Makespan
map&r-lb-ec map&r-bc-ec adp lama siw cmap

CorridorH 577
CorridorL 387 553 545 358 345 358
ExtremH
ExtremL 505
MutExH 198 198 204 158 204
MutExL 88 88 60 90 79 90
Maze 503 512
Rooms 250 250 288

This is directly related to the collision avoidance. As siw solves one new goal on
each iterated factorization, a bigger amount of robots’ actions are changed due to
collisions; and that requires a bigger amount of time to be fixed.

Our approaches are halfway between the centralized and the distributed ap-
proach. The first part of our algorithm is distributed while the plan-reuse phase is
centralized. Thus, the success of our algorithm depends on the number of collisions
and the difficulty of solving them. lpg-adapt focus first on reutilizing the greater
possible number of the actions from the invalid plan. When a collision is detected,
lpg-adapt will search for a valid action on the part of the search space that is
closer to the invalid action and its current planning state. This causes lpg-adapt
to iteratively explore the search space starting from a very concrete section. The
exploration distance will be increased as long as the valid action is still not found.
This approach works well if the collision requires a small change to be fixed i.e.
it only affects to a couple of actions - the solution can be found near the search
space of the action and current state. But if the way to avoid the collision affects
to a bigger part of the plan i.e. robots have to move back several waypoints and
change path directions; lpg-adapt might get lost on the search space, as it will
try to search first on the space closer to the invalid action and the solution might
be far away from there. Thus, timeout will be reached before a solution is found.
Scenarios not solved by our approaches on Table 6 fail for that reason.

Regarding makespan results from Table 7, map&r-lb-ec and siw are the two
planners that obtain the best results - they also solve most of the problems. Al-
though the Rooms scenario might seem easier to solve by just looking at Table
1, as it works for any-shape robots, the grid of waypoints is bigger and harder
to navigate from the planning point of view. The search space is very big. The
reason of failing on the Extremities and Maze scenarios is due to the changes on
the robots’ paths caused by the collision avoidance or the topology of the scenario.
Those scenarios contain narrower areas and large halls where only some robots can
reach the end. Thus, robots might spend a lot of time looking for the correct path
while at the same time avoiding the rest of the agents.

Using Pre-Computed Knowledge for Goal Allocation in Multi-Agent Planning 31

10 Related Work

Multi-Agent Planning (MAP) is an active topic within the planning community
as shown by the organization of the 1st CoDMAP3 and the wide range of planners
that participated [32]. The planners vary from fully distributed to centralized
among other features. Our approach uses first a distributed planner and if plan
reuse is needed, a centralized phase.

A MAP approach that uses a preprocessing step is the automated agent decom-
position for multi-robot task planning [10]. In that work there is a preprocessing
step, prior to actual search, that exploits decompositions of the problem in do-
mains with a lower level of interaction, boosting the final performance. ADP [9]
is also related to that work. Our approach factorizes the problem regarding goals
and agents involved, creating independent subtasks for each agent before starting
to plan.

The methodology that uses morphological operations in order to build the
Actuation Maps was previously introduced by [27]. Moreover, it has recently been
shown that similar transformation can be used to obtain Actuation and Visibility
Maps for any-shape robots as well [28].

Earlier in 1997, Ambite and Knoblock [1] worked in a post-processing technique
which rewrites some planning rules and local search techniques to make efficient
the planning process. Thus, they obtained a low-cost plan for problems that were
hard to solve from the point of view of planning.

Another similar problem is the Team Orienting Problem, where robots maxi-
mize the number of covered waypoints visited, with constraints on the total travel
time of each robot. In order to solve this problem and optimize the overall plan-
ning time, an algorithm was proposed that uses a three-tier graph, interleaving
the search for optimal waypoint assignment, ordering of the waypoints and also
considering feasible paths between waypoints while avoiding obstacles [33]. This
algorithm guarantees optimal solutions, while in our work we focus on sub-optimal
planning for multi-robot teams.

Another relevant planning problem in robotics is inspection, which searches for
robot paths that can perceive a set of sensing targets. Neural network approaches
have been proposed [11], and again a preprocessing method was used, answering
visibility queries efficiently both in 2D and 3D scenarios [21]. Here the queries ask
for visibility from specific positions. In our work we preprocess the environment
to find the overall actuation capabilities of the robot from any reachable position.

There are similar environments to our problem defined in previous planning
domains. One it is called VisitAll, whose aim is to visit all the waypoints presented
in the problem by just navigating through them. It was used for the first time
on 7th IPC 4. In our domain we added an actuation action (with an associated
actuation range), which was not considered in the VisitAll domain. Another similar
problem is the Rovers domain, but in this case each agent (rover) can execute a
bigger set of actions when it is placed on a waypoint. Some other examples were
mentioned in the Introduction.

When robots with many degrees of freedom execute successive motions in the
same environment, it usually requires many complex planning instances. By apply-

3 http://agents.fel.cvut.cz/codmap/
4 http://www.plg.inf.uc3m.es/ipc2011-deterministic

http://agents.fel.cvut.cz/codmap/
http://www.plg.inf.uc3m.es/ipc2011-deterministic

32 Nerea Luis1 et al.

ing a preprocessing technique, it is possible to improve efficiency of path planning
for those robots [22]

Finally, a very common robotic application, coverage path planning, has been
widely studied [16]. However, the many cell decomposition-based strategies still
do not objectively consider heterogeneity and thus we do not exactly know how it
creates different feasible tasks for each robot when assigning goals.

11 Conclusions and Future work

In this paper we showed how to combine information from Actuation Maps with
Multi-Agent Planning to solve a multi-robot path planning problem more effi-
ciently skipping the computation of estimated cost during planning. We used Ac-
tuation Maps in a preprocessing step to determine the feasibility of pairs robot-goal
and to extract an estimated cost. That cost is used later to avoid the computation
of relaxed plans during Goal-Assignment. The environment map was discretized
into a grid of waypoints. The goals were distributed thanks to a goal-allocation
algorithm and unfeasible goals identified and discarded from the planning task.
Then, the planning task was factorized for each robot. They generate their indi-
vidual paths that result in a maximal space coverage in terms of actuation. We
also proposed a new version of the MAP algorithm that is able to fix agents’ inter-
actions after the individual planning phase. On the experiments we have designed
a total of eight scenarios, seven for circular robots and one for any-shape robots,
which is another contribution to the paper.

Our approach greatly reduces the GA time, and because GA is one of the
bottlenecks of MAP, we were able to also reduce the overall planning time when
preprocessed information was provided to the MAP algorithm. The gains in perfor-
mance depend greatly on the topology of the environment and the characteristics
of each robot.

Experiments also show that when solving big size multi-agent problems using
planning, it is very helpful to first factorize the problem into subtasks. Thus, the
total planning time will be smaller than when trying to solve the whole problem
at once. Also, factorization is essential when working on problems that explicitly
involve agents’ interactions. Experiments on collision avoidance show the impor-
tance of task factorization and the topology of the scenario in order to successfully
fix collisions. When problems scale and complexity increases, centralized MAP
approaches perform worse than distributed approaches.

As future work, we would like to extend the preprocessing technique to other
domains and consider different -robot or agent- models. Our approach can be easily
extended to path planning tasks or real-time strategy videogames. We gave some
examples of the former such as surveillance tasks or search and rescue tasks. The
latter domain could be interesting when designing bots that play automatically.
Our approach could improve the player/bot performance when extracting infor-
mation from the map to decide which goals are more relevant to achieve first. We
also want to improve the performance of fixing interactions. Plan reuse works well
when collisions only affect to a couple of actions. For biggest plan modifications
plan-reuse is not enough.

Using Pre-Computed Knowledge for Goal Allocation in Multi-Agent Planning 33

Acknowledgements This work has been partially supported by MICINN projects TIN2014-
55637-C2-1-R and TIN2017-88476-C2-2-R, and also financed by the ERDF – European Re-
gional Development Fund through the Operational Programme for Competitiveness and In-
ternationalisation - COMPETE 2020 Programme within project �POCI-01-0145-FEDER-
006961�, and by National Funds through the FCT – Fundação para a Ciência e a Tecnologia
(Portuguese Foundation for Science and Technology) as part of project UID/EEA/50014/2013,
and FCT grant SFRH/BD/52158/2013 through Carnegie Mellon Portugal Program.

References

1. Ambite JL, Knoblock CA (1997) Planning by rewriting: Efficiently generating
high-quality plans.

2. Borrajo D (2013) Plan sharing for multi-agent planning. In: Nissim R, Kovacs
DL, Brafman R (eds) Proceedings of the ICAPS’13 DMAP Workshop, pp
57–65

3. Borrajo D, Fernández S (2015) MAPR and CMAP. In: Proceedings of
the Competition of Distributed and Multi-Agent Planners (CoDMAP-
15), Jerusalem (Israel), URL http://agents.fel.cvut.cz/codmap/results/

CoDMAP15-proceedings.pdf

4. Borrajo D, Fernández S (2018) Efficient approaches for multi-agent planning.
KAIS 14:253–302

5. Borrajo D, Veloso MM (2012) Probabilistically reusing plans in deterministic
planning. In: In Proceedings of ICAPS’12 Workshop on Heuristics and Search
for Domain Independent Planning

6. Borrajo D, Roub́ıčková A, Serina I (2015) Progress in case-based planning.
ACM Comput Surv 47(2):35:1–35:39, DOI 10.1145/2674024, URL http://

doi.acm.org/10.1145/2674024

7. Brafman RI, Domshlak C (2013) On the complexity of planning for agent
teams and its implications for single agent planning. Artificial Intelligence
198:52–71, DOI http://dx.doi.org/10.1016/j.artint.2012.08.005

8. Conitzer V (2010) Comparing multiagent systems research in combinatorial
auctions and voting. AMAI 58(3-4):239–259, DOI 10.1007/s10472-010-9205-y

9. Crosby M (2015) Adp an agent decomposition planner. Proceedings of the
CoDMAP-15 p 4

10. Crosby M, Rovatsos M, Petrick RP (2013) Automated agent decomposition
for classical planning. In: ICAPS

11. Faigl J (2010) Approximate solution of the multiple watchman routes prob-
lem with restricted visibility range. IEEE transactions on neural networks
21(10):1668–79

12. Fikes RE, Nilsson NJ (1971) Strips: A new approach to the application of
theorem proving to problem solving. In: Proceedings of IJCAI, pp 608–620,
URL http://dl.acm.org/citation.cfm?id=1622876.1622939

13. Foulser D, Li M, Yang Q (1992) Theory and algorithms for plan merging.
Artificial Intelligence 57(2-3):143–181

14. Fox M, Long D (2003) PDDL2.1: An extension to PDDL for expressing tem-
poral planning domains. JAIR 20

15. Fox M, Gerevini A, Long D, Serina I (2006) Plan stability: Replanning versus
plan repair. In: Proceedings of ICAPS’06, pp 212–221

http://agents.fel.cvut.cz/codmap/results/CoDMAP15-proceedings.pdf
http://agents.fel.cvut.cz/codmap/results/CoDMAP15-proceedings.pdf
http://doi.acm.org/10.1145/2674024
http://doi.acm.org/10.1145/2674024
http://dl.acm.org/citation.cfm?id=1622876.1622939

34 Nerea Luis1 et al.

16. Galceran E, Carreras M (2013) A survey on coverage path planning for
robotics. Robotics and Autonomous Systems 61(12):1258–1276

17. Garćıa-Olaya A, de la Rosa T, Borrajo D (2011) Using the relaxed plan
heuristic to select goals in oversubscription planning problems. In: Lozano JA,
Gámez JA, Moreno JA (eds) Advances in Artificial Intelligence, pp 183–192

18. Gerkey BP, Matarić M (2004) A formal analysis and taxonomy of task al-
location in multi-robot systems. International Journal of Robotics Research
23(9):939–954

19. Hoffmann J, Nebel B (2001) The FF planning system: Fast plan generation
through heuristic search. JAIR 14:253–302

20. Howey R, Long D, Fox M (2004) VAL: Automatic plan validation, continuous
effects and mixed initiative planning using PDDL. In: ICTAI 2004, pp 294–301

21. Janousek P, Faigl J (2013) Speeding up coverage queries in 3D multi-goal path
planning. ICRA (1):5082–5087, DOI 10.1109/ICRA.2013.6631303

22. Kavraki L, Latombe JC (1994) Randomized preprocessing of configuration
for fast path planning. In: Proceedings of the International Conference on
Robotics and Automation, IEEE, pp 2138–2145

23. Krulwich B (1992) Planning for soft goals. In: Hendler J (ed) Artifi-
cial Intelligence Planning Systems, pp 289 – 290, DOI https://doi.org/10.
1016/B978-0-08-049944-4.50047-1, URL https://www.sciencedirect.com/

science/article/pii/B9780080499444500471

24. Luis N, Borrajo D (2014) Plan Merging by Reuse for Multi-Agent Planning. In:
Proceedings of the 2nd ICAPS Distributed and Multi-Agent Planning work-
shop (DMAP)

25. Mali AD (2000) Plan merging & plan reuse as satisfiability. In: Proceedings of
the 5th European Conference on Planning: Recent Advances in AI Planning.
ECP’99, pp 84–96

26. Muise C, Lipovetzky N, Ramirez M (2015) MAP-LAPKT: Omnipotent multi-
agent planning via compilation to classical planning. In: Competition of Dis-
tributed and Multiagent Planners, URL http://www.haz.ca/papers/muise_

CoDMAP15.pdf

27. Pereira T, Veloso M, Moreira A (2015) Multi-robot planning using robot-
dependent reachability maps. In: Robot 2015: Second Iberian Robotics Con-
ference, Springer, pp 189–201

28. Pereira T, Veloso M, Moreira AP (2016) Visibility maps for any-shape robots.
In: IROS’16, the IEEE/RSJ International Conference on Intelligent Robots
and Systems, vol 29, pp 428–459

29. Pereira T, Luis N, Moreira A, Borrajo D, Veloso M, Fernandez S (2018)
Heterogeneous multi-agent planning using actuation maps. In: 2018 IEEE
International Conference on Autonomous Robot Systems and Competitions
(ICARSC), pp 219–224, DOI 10.1109/ICARSC.2018.8374186

30. Richter S, Westphal M (2010) The LAMA planner: Guiding cost-based any-
time planning with landmarks. JAIR 39:127–177

31. Smith DE (2004) Choosing objectives in over-subscription planning. In:
ICAPS

32. Štolba M, Komenda A, Kovacs DL (eds) (2015) Proceedings of the Competi-
tion of Distributed and Multi-Agent Planners (CoDMAP-15)

33. Thakur D, Likhachev M, Keller J, Kumar V, Dobrokhodov V, Jones K, Wurz
J, Kaminer I (2013) Planning for opportunistic surveillance with multiple

https://www.sciencedirect.com/science/article/pii/B9780080499444500471
https://www.sciencedirect.com/science/article/pii/B9780080499444500471
http://www.haz.ca/papers/muise_CoDMAP15.pdf
http://www.haz.ca/papers/muise_CoDMAP15.pdf

Using Pre-Computed Knowledge for Goal Allocation in Multi-Agent Planning 35

robots. In: IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems (IROS), IEEE, pp 5750–5757

34. Torreño A, Onaindia E, Komenda A, Štolba M (2017) Cooperative
multi-agent planning: A survey. ACM Comput Surv 50(6):84:1–84:32, DOI
10.1145/3128584, URL http://doi.acm.org/10.1145/3128584

35. Veloso MM, Pérez MA, Carbonell JG (1990) Nonlinear planning with parallel
resource allocation. In: Proceedings of the DARPA Workshop on Innovative
Approaches to Planning, Scheduling, and Control, Morgan Kaufmann, pp 207–
212

36. Vidal V (2014) YAHSP3 and YAHSP3-MT in the 8th International Planning
Competition. In: In 8th International Planning Competition (IPC-2014), pp
64—-65

Authors’ biography

Nerea Luis is a PhD student at the Universidad Carlos III
de Madrid. Her thesis is about combining multi-agent planning
and plan-reuse to easily adapt to different scenarios. In 2016,
she was a visitor student at Manuela Veloso’s CORAL group
for 4 months in Carnegie Mellon University (USA). Her current
research interests are multi-agent planning, machine learning
and robotics. She was awarded with the Women Techmakers
scholarship by Google.

Powered by TCPDF (www.tcpdf.org)

Tiago Pereira is a Ph.D. candidate in the CMU-Portugal
Program, being a student in the Electrical and Computer En-
gineering Department both at Carnegie Mellon University and
Faculty of Engineering of University of Porto. He is also a re-
search assistant at INESC TEC. He received a B.S and M.S. in
Electrical and Computer Engineering from University of Porto
in 2012. His research interests include motion planning and co-
ordination of heterogeneous multi-robot systems.

Susana Fernández is currently an Associate Professor at the
Universidad Carlos III de Madrid, since 2007. She received the
B.A. degree in Physics (Universidad Complutense de Madrid,
1989), and a M.Phil. degree in “Logic, Text and Information
Technology” (University of Dundee, Scotland, 1991). She worked
for 10 years as a software engineer in two private companies,
INDRA and Eliop, S.A. She received the Ph.D. degree in Com-
puter Science (Universidad Carlos III de Madrid, 2006). Her
current research interest is in Artificial Intelligence, particu-

larly automated planning, machine learning and multi-agent systems. She has
participated in several competitive projects related to automated planning, prob-
lem solving or agents. She has published more than 20 papers.

http://doi.acm.org/10.1145/3128584

36 Nerea Luis1 et al.

Powered by TCPDF (www.tcpdf.org)

António Moreira is currently an Associated Professor in
Electrical Engineering, developing his research within the Robotic
and Intelligent Systems Centre of INESC TEC (Centre Coor-
dinator). He graduated with a degree in Electrical Engineering

from the University of Porto in 1986. He then pursued graduate studies at the Uni-
versity of Porto, completing a M.Sc. degree in Electrical Engineering - Systems in
1991 and a Ph.D. degree in Electrical Engineering in 1998. From 1986 to 1998 he
also worked as an assistant lecturer in the Electrical Engineering Department of
the University of Porto. His main research areas are Process Control and Robotics.

Daniel Borrajo received his Ph.D. from Universidad Politécnica
de Madrid (1990). Currently, he is a Professor of Computer
Science at Universidad Carlos III de Madrid. He has published
over 200 journal and conference papers, mainly in the fields
of problem solving methods (heuristic search and automated
planning) and machine learning. He has been the Program
Co-chair of the International Conference of Automated Plan-
ning and Scheduling (ICAPS’13), Conference co-chair of the
Symposium of Combinatorial Search (SoCS’12, SoCS’11) and

ICAPS’06, and PC member (including Area chair and Senior PC) of the main
conferences on Artificial Intelligence (e.g., IJCAI, AAAI, ICAPS, ...). His current
research interests lie in goal reasoning, multiagent planning, and machine learning
applied to planning.

Powered by TCPDF (www.tcpdf.org)

Manuela Veloso is the Herbert A. Simon University Profes-
sor in the School of Computer Science at Carnegie Mellon Uni-
versity. She is the Head of the Machine Learning Department.
She researches in Artificial Intelligence, Robotics, and Machine
Learning. She founded and directs the CORAL research labo-
ratory, for the study of autonomous agents that Collaborate,

Observe, Reason, Act, and Learn, www.cs.cmu.edu/~coral. Professor Veloso is
AAAI, Fellow, ACM Fellow, AAAS Fellow, and IEEE Fellow, and the past Pres-
ident of AAAI and of RoboCup. Professor Veloso and her students research a
variety of autonomous robots, including mobile service robots and soccer robots.
See www.cs.cmu.edu/~mmv for further information, including publications.

www.cs.cmu.edu/~coral
www.cs.cmu.edu/~mmv

	Introduction
	General Problem Formulation
	The Coverage problem description
	Architecture
	Preprocessing
	The Multi-agent Planning Algorithm
	Dealing with interactions
	Extending Approach to Any-Shape Robots
	Experiments and results
	Related Work
	Conclusions and Future work

