
Vision-Servoed Localization and Behavior-Based Planning for anAutonomous Quadruped Legged RobotManuela Veloso, Elly Winner, Scott Lenser, James Bruce, and Tucker BalchSchool of Computer ScienceCarnegie Mellon UniversityPittsburgh, PA 15213-3891mmv@cs.cmu.eduAbstractPlanning for real robots to act in dynamic and un-certain environments is a challenging problem. Acomplete model of the world is not viable and anintegration of deliberation and behavior-based reac-tive planning is most appropriate for goal achievementand uncertainty handling. This paper reports on oursuccessful development of the integration of percep-tion, planning, and action for the Sony quadrupedlegged robots. We address the particular robotic soc-cer task, as Sony provided the robots to us specif-ically for the RoboCup robotic soccer competitions.The quadruped legged robots are fully autonomous, somust have onboard vision, localization and agent be-havior. We brie
y present our perception algorithmthat does automated color classi�cation and trackscolored blobs in real time. We then brie
y intro-duce our Sensor Resetting Localization (SRL) algo-rithm which is an extension of Monte Carlo Localiza-tion. SRL is robust to movement modelling errors andto limited computational power. Vision and localiza-tion provide the state input for action selection. Theplanning challenge we addressed resulted in a robustand sensible behavior scheme for the robot that e�ec-tively handles dynamic changes in the accuracy of theperceived information. We developed a two-constraintsystem for utility-based thresholded localization. Oneconstraint speci�es how much time the robot mustspend acting, and the other constraint speci�es howgood its localization information must be before therobot uses it. Finally, we have devised several specialbuilt-in plans to deal with times when urgent actionis needed and the robot cannot a�ord collecting accu-rate perception information. We present results usingthe real robots demonstrating the success of the algo-rithms. Our team of Sony quadruped legged robots,CMTrio-99, won all but one of its games in RoboCup-99, and was awarded third place in the competition.IntroductionThe robots used in this research were generously pro-vided by Sony (Fujita et al. 1999) to be applied tothe speci�c domain of robotic soccer. The robots arethe same as the commercial AIBO robots, but they aremade available to us with slightly di�erent hardware

and programmable. The robot consists of a quadrapeddesigned to look like a small dog. The robot is approx-imately 30cm long and 30cm tall including the head.The neck and four legs each have 3 degrees of freedom.The neck can pan almost 90� to each side, allowing therobot to scan around the �eld for markers. Figure 1shows a picture of the dog pushing a ball.
Figure 1: The Sony quadruped robot dog with a ball.All teams in the RoboCup-99 legged robot leagueused this same hardware platform. The robots are au-tonomous, and have onboard cameras. The onboardprocessor provides image processing, localization andcontrol. The robots are not remotely controlled in anyway, and as of now, no communication is possible inthis multi-robot system. The only state informationavailable for decision making comes from the robot'sonboard colored vision camera and from sensors whichreport on the state of the robot's body.The soccer game consists of two ten-minute halves,each begun with a kicko�. In the kicko�, the ball be-gins in the center of the �eld, and each team may po-sition its robots on its own side of the �eld. After eachgoal, play resumes with another kicko�.Each team consists of three robots. Like our teamlast year, CMTrio-98 (Veloso & Uther 1999), and mostof the other eight RoboCup-99 teams, we address themulti-robot aspect of this domain by assigning di�erent

behaviors to the robots, namely two attackers and onegoaltender. No communication is available and therobots can only see each other through the color oftheir uniforms. No robot identity can be extracted. Asof now, our robot behaviors capture the team aspectof the domain through the di�erent roles.The acting world for these robots is a playing �eldof 280cm in length and 180cm in width. The goals arecentered on either end of the �eld, and are each 60cmwide and 30cm tall. Six unique colored landmarks areplaced around the edges of the �eld (one at each corner,and one on each side of the halfway line) to help therobots localize themselves on the �eld. Figure 2 showsa sketch of the playing �eld.
Robot A team : Blue

Robot B team : Red

Ball : Orange

Light Blue

Light Blue

Pink

Goal(Light Blue)

Goal(Yellow)

Green

Green

Pink

Pink

Pink

Pink

Pink

Yellow

Yellow

Field(Green)

Figure 2: The playing �eld for the RoboCup-99 Sonylegged robot league.In this work, we address the challenges of build-ing complete autonomous robots that can perform ac-tive perception and sensor-based planning. The robotsperceive the world through vision, make decisions toachieve goals, and act by moving in the world.We report on this paper on the three main com-ponents of our research on the integration of sensing,perception processing, and action selection, namely lo-calization, vision, and behavior-based planning. Weprovide results within the particular RoboCup-99 do-main and application.1The vision algorithm is of crucial importance as itprovides the perception information as the observablestate. Our vision system robustly sets the YUV hard-ware color segmentation thresholds, reliably detects re-gions of the same color for object recognition, com-putes the distance of the robot to the objects, andassigns con�dence values to its state identi�cations.The preconditions of several behaviors require theknowledge of the position of the robot on the �eld. Thelocalization algorithm is responsible for processing thevisual information of the �xed colored landmarks ofthe �eld and output an (x; y) location of the robot.1Our extensive videos provide additional invaluable il-lustrative support to the contributions of this paper.

Through Bayesian probabilistic sampling, our local-ization algorithm handles the limited computationalpower available on board of the robot, the inevitablyhighly inaccurate modelling of the robot's movements,and the numerous systematic errors inherent to therobotic soccer multi-agent application.Finally, our behavior-based planning approach in-terestingly provides the robot the ability to controlits knowledge of the world. Behaviors range from be-ing based almost solely on the visual information todepending on accurate localization information. Ourstrategy in summary includes: (i) a two-constraint sys-tem for utility-based thresholded localization, (ii) amode-based behavior architecture that allows for therobot to upgrade and degrade its performance e�ec-tively; (iii) reasonable only fully vision-servoed behav-iors; and (iv) several special localization-dependentbehaviors that signi�cantly increase the robot's goalachievement results. VisionThe vision system processes images captured by therobot's camera to report the locations of various ob-jects of interest relative to the robot's current location.These include the ball, 6 unique location markers, twogoals, teammates, and opponents. The features of theapproach, as presented below, are:1. Image capture/classi�cation: images are cap-tured in YUV color space, and each pixel is classi-�ed in hardware by predetermined color thresholdsfor up to 8 colors.2. Region segmenting: pixels of each color aregrouped together into connected regions.3. Region merging: colored regions are merged to-gether based on satisfaction of a minimum densityfor the merged region set for each color.4. Object �ltering: false positives are �ltered out viaspeci�c geometric �lters, and a con�dence value iscalculated for each object.5. Distance and transformation: the angle and dis-tance to detected objects are calculated relative tothe image plane, and then mapped into ego-centriccoordinates relative to the robot.The onboard camera provides 88x60 images in theYUV space at about 15Hz. These are passed through ahardware color classi�er to perform color classi�cationin real-time based on learned thresholds.When captured by the camera, each pixel's color isdescribed as a 3-tuple in YUV space, where each com-ponent's value can vary from 0 to 255. The color clas-si�er then determines which color classes the pixel is a

Figure 3: An example of our image classi�cation on theright. The image on the left is a composite of objects:a position marker (top), a goal area (middle) and threesoccer balls (bottom).member of, based on a rectangular threshold for eachclass in the two chrominance dimensions (U,V). Thesethresholds can be set independently for every 8 val-ues of intensity (Y). An example of the results of thisclassi�cation is provided in Figure 3.The �nal result of the color classi�cation is a newimage indicating color class membership rather thanthe raw captured camera colors. The 88x60 image hasbits set for which classes, if any, a particular pixel is amember of. This is the input for the next step in thesystem, in which the connected regions of a particularcolor are determined.Multiple color region merging can be an expen-sive operation which severely impacts real-time perfor-mance if key optimizations are not made. We addressthese in two separate stages.The �rst stage is to compute a run length encoded(RLE) version for the classi�ed image. In machine vi-sion applications, signi�cant changes in adjacent imagepixels are relatively infrequent, thus grouping similarvalues of the color classi�ed pixels results in a substan-tial decrease in storage and processing requirements forsubsequent steps. This is because the processing rou-tines can operate on entire runs at a time, rather thanindividual pixels.The region merging method employs a tree-basedunion �nd with path compression. This o�ers per-formance that is not only good in practice but also

provides a hard algorithmic bound that is for all prac-tical purposes linear. The merging is run in place onthe classi�ed RLE image, thanks to a �eld includedin each run indicating its parent in a union tree. Ini-tially, each run labels itself as its parent, resulting in acompletely disjoint forest. The merging procedure pro-duces a disjoint forest and a �nal pass compresses allof the paths in the forest so that each run's parent �eldis pointing directly to the global parent. Now each setof runs pointing to a single parent uniquely identi�es aconnected region, so the parent �eld can be thought ofas a label which is unique to each region (Bruce, Balch,& Veloso).We next extract region information from the mergedRLE map. The bounding box, centroid, and size ofeach region is calculated incrementally in a single passover the forest data structure. During the pass, theregion labels are renumbered so that they immediatelyfollow each other in a region table, which facilitates fastlookup for the calculation of the region statistics. Thisprocess could easily be extended to extract additionalstatistics, such as a convex hull or edge points list.The information currently extracted provided enoughinformation for the higher level manipulations.After the statistics have been calculated, the regionsare separated by color into separate threaded linkedlists in the region table. Finally, they are sorted bysize so that later processing steps can deal with thelarger (and presumably more important) blobs, andignore relatively smaller ones which are most often theresult of noise.The next step attempts to deal with one of the short-comings of object detection via connected color re-gions. Due to partial occlusion, specular highlights,or shadows, it is often the case that a single objectis broken into a few separate but nearby regions. Asingle row of pixels not in the same color class as therest of the object is enough to break connectivity, eventhough the object may occupy many rows. In order tocorrect for cases when nearby regions are not connectedbut should be considered so, a density based mergingscheme was employed. Density is represented here asthe ratio of the number of pixels of the color class inthe connected region to the overall area of its bound-ing box. By this measurement heuristic, two regionsthat have a small separation relative to their sizes willlikely be merged, since they would tend to have rela-tively high density.The next step is to �nally calculate the location ofthe various objects given the colored regions. Varioustop down and geometric object �lters are applied ineach case to limit the occurrence of false positives, aswell as serving the basis for con�dence values.

For the ball, it is determined as the largest orangeblob below the horizon. The con�dence value is calcu-lated as the error ratio of the density of the detectedregion and the actual density of a perfect circle. Thedistance is estimated as the distance required for a cir-cular object to occupy the same area as the observedregion. The �eld markers are detected as pink regionswith green, cyan, or yellow regions nearby. The con�-dence is set as the error ratio of the di�erence betweenthe squared distance between the centers of the regionsand the area of each region (since they are ideally ad-jacent square patches, these two should be equal).The two color pair narrows the marker detection totwo ambiguous cases, since a right and left marker bothshare the same color pair. The additional determinantis the relative observed elevation of the two regions.This makes use of the fact that the markers have pinkon top while on the other side the pink patch is on thebottom. Thus combined with color, and the assump-tion that the robot's 3 d.o.f. head is not upside-down,the two can uniquely determine the marker representedby a pair of regions. In case of multiple pairs which aredetermined to be the same marker, the one of maxi-mal con�dence is chosen. The distance to the markeris estimated from the distance between the centers ofthe two regions, since they are of known size.The goals are detected similarly. They are thelargest yellow or cyan regions with centers below thehorizon. The distance measure is a very coarse ap-proximation based on the angular height of the goalin the camera image, and the merging density is setto a very low value since many occlusions are possi-ble for this large, low lying object. The con�dence isestimated based on the di�erence in comparing the rel-ative width and height in the image to the known ratioof the actual dimensions.The �nal objects detected are opponents and team-mates. Due to the multiple complicated markerspresent on each robot, no distance or con�dence wasestimated, but regions were presented in raw form asa list of patches. These simply indicate the possiblepresence of an opponent or teammate.The �nal step in the vision system that need bementioned is the transformation from image coordi-nates to an ego-centric coordinates. The vision sys-tem was found to perform well in practice, with agood detection rate and reasonably robust toleranceof the unmodeled noise experienced in a competitiondue to competitors and crowds. The distance metricsand con�dence values also proved to be an advantagefor localization and rational behavior in a highly noisyenvironment.

LocalizationOur localization algorithm is based upon a classicalBayesian approach which updates the location of therobot in two stages, one for incorporating robot move-ments and one for incorporating sensor readings. Thisapproach represents the location of the robot as a prob-ability density over possible positions of the robot. Inthe CMTrio-98 localization algorithm, the probabilitydensity is represented using a grid based division of thepose space (Veloso & Uther 1999). Our localization al-gorithm, called Sensor Resetting Localization (SRL),is based upon a popular approach called Monte CarloLocalization (MCL) which represents the probabilitydensity using a sampling approach.Monte Carlo Localization(MCL) (Fox et al. 1999;Dellaert et al. 1999) represents the probability den-sity for the location of the robot as a set of discretesamples. The density of samples within an area is pro-portional to the probability that the robot is in thatarea. Since the points are not distributed evenly acrossthe entire locale space, MCL focusses computationalresources where they are most needed to increase theresolution near the believed location of the robot. Theposition of the robot is calculated from these samplesby taking their mean or some variant of mode. Theuncertainty can be estimated by calculating the stan-dard deviation of the samples. We encountered someproblems implementing MCL for the robot dogs.MCL took too many samples to do global localiza-tion. This resulted in poor localization results whenthe robot did not know its initial location. With thenumber of samples we could actually run on the hard-ware, the samples were too spread out to localize therobot correctly. SRL gets around this by resamplingfrom the sensor readings to focus the samples were theyare needed during global localization.MCL could not handle the large systematic errors inmovement we experienced. Every sensor reading givesMCL a chance to correct a small amount of systematicerror. The ability to handle systematic error decreaseswith smaller numbers of samples like we used. If thesystematic error in movement gets too large, MCL willslowly accumulate more and more error. We need tohandle systematic errors in movement because measur-ing the movement parameters for a robot is time con-suming and di�cult. Systematic errors in movementalso occur when the environment changes in unmod-elled ways. For example, if the robot moves from car-peting to a plastic surface such as the goal, the move-ment of the robot for the same motion commands islikely to change.MCL does not handle unexpected/unmodelled robotmovements very well. The time MCL takes to recover

is proportional to the magnitude of the unexpectedmovement. During this time, MCL reports incorrectlocations. Unexpected movements happen frequentlyin the robotic soccer domain we are working in due tocollisions with the walls and other robots. Collisionsare di�cult to detect on our robots and thus cannotbe modelled. We also incur teleportation due to appli-cation of the rules by the referee. MCL takes a longtime to recover from this, but SRL recovers quickly.SRL is motivated by the desire to use fewer samples,handle larger errors in modelling, and handle unmod-elled movements (Lenser & Veloso). SRL adds a newstep to the sensor update phase of the algorithm. If theprobability of the locale designated by the samples wehave is low given the sensor readings P (Ljs), we replacesome samples with samples drawn from the probabilitydensity given by the sensors P (ljs). We call this sensorbased resampling. The logic behind this step is thatthe average probability of a locale sample is approxi-mately proportional to the probability that the localesample set covers the actual location of the robot, i.e.the probability that we are where we think we are.Movement update.P (lj+1jm; lj) = P (lj) convolved P (l0jm; l)[This stage is the same as Monte Carlo Localization]1. foreach sample s in P (lj)(a) draw sample s0 from P (l0jm; s)(b) replace s with s0Sensor update.P (lj+1js; lj) = P (lj) � P (ljs)=� where � is a constant.[Steps 1-5 of this stage are the same as MCL]1. [optional step] replace some samples from P (lj) withrandom samples2. foreach sample s in P (lj)(a) set weight of sample equal to probability of sensorreading, w = P (ljs)3. foreach sample s in P (lj)(a) calculate and store the cumulative weight of allsamples below the current sample (cw(s))4. calculate total weight of all samples (tw)5. foreach sample s0 desired in P (lj+1)(a) generate a random number(r)between 0 and tw(b) using a binary search, �nd the sample with maxi-mum cw(s) < r(c) add the sample found to P (lj+1)6. calculate number of new samples, ns = (1 �avg sample prob=prob threshold) � num samples7. if(ns > 0) repeat ns times(a) draw sample(s0) from P (ljs)(b) replace sample from P (lj+1) with s0

Sensor Resetting Localization is applicable in do-mains where it is possible to sample from the sensorreadings P (ljs). This is not a problem if landmarks arebeing used as the sensor readings as the sensor distribu-tions are easy to sample from. If all possible locationsof the robot are known, this sensor based samplingcan be done by rejection sampling. However, rejectionsampling increases the run time for resampling in pro-portion to the probability of having to reject a sample.One of the advantages of SRL is that fewer samplescan be used without sacri�cing much accuracy. Thisis possible in part because it is more e�cient whenglobally localizing. When the �rst marker is seen dur-ing global localization, the probability of almost all ofthe samples is very low. Thus the average probabil-ity of a sample is ridiculously small and SRL replacesalmost all the locale samples with samples from thesensors. This results in all of the samples being dis-tributed evenly around the circle determined by themarker. So, if we are using 400 samples, we have 400samples instead of the 1-2 of MCL to represent the cir-cle around the marker. Naturally, this reduces mislead-ing errors during global localization. This also reducesthe time required to converge to the correct localiza-tion since the correct answer has not been thrown outprematurely. After seeing another marker the circlecollapses to a small area where the circles intersect.The average probability of the locale samples now ismuch higher than after seeing the �rst marker sincemore samples have been concentrated in the right placeby the �rst sensor reading. Thus, if the threshold forsensor based resampling is set correctly, no new sam-ples will be drawn due to the second sensor readings.As long as tracking is working, no new samples aregenerated from the sensors and the algorithm behavesexactly like MCL.SRL can handle larger systematic errors in move-ment because once enough error has accumulated, SRLwill replace the current estimate of the robot's locationwith one based on the sensor readings, e�ectively re-setting the localization. Adaptive sample set sizinghelps MCL, but MCL is still more sensitive to system-atic errors in movement and unexpected/unmodelledrobot movements. SRL is also easier to apply to realtime domains since the running time per step is nearlyconstant and easy to bound.SRL can handle larger unmodelled movements thanMCL. The localization algorithm needs to handle ex-tended collisions with other robots and the wall grace-fully. SRL does this by resetting itself if its estimateof current robot position gets too far o� from the sen-sor readings. SRL is able to handle large unmodelledmovements such as movement by the referee easily.

SRL does this by resetting itself the �rst time it getsa sensor reading that con
icts with its estimated posi-tion. MCL would take a long time to correct for longdistance teleportation such as this since enough errorin movement has to occur to move the mean of thesamples to the new location.Localization CapabilitiesWe tested Sensor Resetting Localization on the robotsprovided by Sony. We also did extensive tests in sim-ulation to compare Sensor Resetting Localization withMonte Carlo Localization with and without randomnoise samples added (Lenser & Veloso).We tested SRL on the real robots using the param-eters we used at RoboCup '99. We used 400 samplesfor all tests. In order to execute in real time, we wereforced to ignore about 50% of the sensor readings. Dueto inevitable changes in conditions between measuringmodel parameters and using them, the parameter fordistance moved was o� � 25%, for angle of movement� 10�, and for amount of rotation � :6�=step. Thedeviations reported to the localization were 10% formovement and 15% for vision. We had the test robotrun through a set trajectory of 156 steps while slowlyturning it neck from side to side. We ran 5 times after7 di�erent numbers of steps had been executed. The�nal position of the robot was measured by hand foreach run. We calculated the error in the mean positionover time and the deviation the localization reportedover time. We also calculated an interval in each di-mension by taking the mean reported by the localiza-tion and adding/subtracting 2 standard deviations asreported by the localization. We then calculated thedistance from this interval in each dimension which werefer to as interval error. We report both average in-terval error and root mean squared interval error. Wefeel that root mean squared interval is a more appro-priate measure since it weights larger, more misleadingerrors more heavily. We also calculated the percentageof time that the actual location of the robot fell withinthe 3D box de�ned by the x,y, and � intervals.The table below shows the localization is accuratewithin about 10cm in x and y and 15� in � despite theerroneous parameter values. The actual location of therobot is within the box most of the time and when itis outside the box, it is close to the box. The fact thatthe localization seldom gives misleading information isvery important for making e�ective behaviors. Theerror in position and the deviation reported quicklyconverges to a steady level. The deviation tends togo up at the same time the error goes up which keepsthe interval error low and avoids misleading output.In competition, we observed that the localization algo-

rithm quickly resets itself when unmodelled errors suchas being picked up occur. The actual performance ofthe localization during play tends to be worse since therobot spends much less time looking at the markers.x (mm) y (mm) theta (�)average error 99.94 95.14 14.29avg. interval error 15.18 4.91 2.07rms interval error 34.92 13.94 3.82in box percentage 74.29% 80.00% 57.14%Behavior-Based PlanningThe behavior of the robot is an especially di�cult prob-lem in this domain, in which the robot acts under un-certainty and must be able to quickly and gracefullyimprove and degrade its performance as the availabil-ity of localization information changes.Because the localization system is reliant on visualidenti�cation of landmarks, in order to keep its local-ization information up-to-date, the robot must scanfor landmarks. As the robot walks, the camera ex-periences pitch and roll, which causes the images itcollects to change signi�cantly from one frame to thenext. Because of this, the vision system's identi�cationof objects and the estimate of their distances and an-gles degrades. The localization system depends heav-ily on very accurate information about the landmarks,so our algorithm requires that the robot stop movingwhile looking for landmarks. The process of stoppingand scanning for landmarks usually takes the robotbetween 15 and 20 seconds.Because the vision system is reliable, we assumed,in designing our behavior algorithms, that the infor-mation it provides is correct.Our approach provides the robot with the ability tocontrol its knowledge of the world: in order to learnmore about where it is, it can spend more time look-ing for landmarks. Although having more informationhelps the robot tremendously, soccer, like other dy-namic domains, is time-critical, so every moment spentlooking around is lost time. Opponents can use also therobot's inattention to their advantage.Our strategy includes: i) a two-constraint systemfor utility-based thresholded localization, ii) an archi-tecture that allows the robot to upgrade and degradeits performance quickly and gracefully, iii) behaviorsthat are reasonable even when the robot does notknow where it is, and iv) several special localization-dependent behaviors which dramatically increase therobots' e�ciency.Control over State KnowledgeRobotic soccer is a time-critical game, so it is undesir-able for the robot to stop and look around when it is

not necessary to do so|not only because this wastestime, but also because when the robot isn't paying at-tention to the game, its opponents have a chance toact unimpeded.One possible localization strategy, used by thisyear's team from LRP University in France (Bouchefraet al. 1999), involves localizing the robot very infre-quently, if at all. However, the bene�ts of accuratelocalization are signi�cant.We present a scheme that balances the time requiredto get accurate localization information with the ben-e�ts this information provides.Utility-Based Thresholded Localization Wefound that if we de�ned what a \useful" amount oflocalization information was and allowed the robot tostop and look around every time its localization infor-mation fell below that level, the robot spent most ofits time looking for landmarks. However, if we changedthe de�nition of \useful" information to the point thatthe robot was able to act for a reasonable amount oftime before stopping to look for landmarks, then its lo-calization information was almost never good enoughto use; in our tests, the robot frequently scored own-goals, or tried to push the ball into the walls of the�eld.We use a system of two constraints to force the robotto act for long enough to avoid disrupting its behaviorwhile also requiring that its localization information isaccurate enough to use.
50 100 150 200 250 300 350

Frames
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Minutes

Figure 4: Time taken to score a goal versus how long werequire the robot to act before looking for landmarks.Constraint 1|Enforcing Action: Our �rst con-straint is that the robot spend a certain amount of timeacting before it stops to look for landmarks. If we donot constrain the amount of time the robot spends act-ing, it will stop so frequently to look for localizationinformation that its ability to continue its action will

be disrupted. Each time the robot stops to look forlandmarks, there is some chance that it will have trou-ble �nding the ball when it �nishes localizing and looksfor it again. This happens because the robot acciden-tally nudges the ball away, or because it fails to stopmoving before looking away from the ball. Therefore,stopping more frequently increases the chance that thiswill happen and the robot will have to begin searchingfor the ball, a time-consuming procedure.However, if the robot does not look around for local-ization information, it loses the opportunity to get anduse this valuable information which allows it to scoremuch more quickly.Our scheme uses a counter to require the robot to actfor a speci�ed amount of time before looking for land-marks. The amount of time the robot must act beforelooking could depend on the con�dence the robot hasin its current localization information and on its cur-rent goals. In our scheme, however, it is invariant.We require that the robot act for the time it takesthe image module to process 350 frames of data, orabout 40 seconds. Recall that stopping to look forlandmarks takes the robot between 15 and 20 seconds,not counting the time it takes it to recover the ballafterwards. So we demand that it spend about 2/3 ofits time acting. The results of our experiments, shownin Figure 4 show that this value is good (Winner &Veloso).We chose to count the time in image frames pro-cessed by the vision module because a full system callis more expensive than using this information. Thenumber of frames processed is relatively constant perunit time, and is immediately available to the controlmodule since each processed frame invokes an updatein the control module.Constraint 2|Limited Localization: The sec-ond constraint is how accurate we demand the localiza-tion information to be. We measure accuracy with thestandard deviations returned by the localization mod-ule. If the information is accurate enough, the robotshould not stop to look for landmarks. But if it is notaccurate enough, the robot should not use it.It is not immediately obvious how good our localiza-tion information must be before it is usable. Clearly, ifour demands are too high, the robot will rarely be ableto use the information it has gathered. And if they aretoo low, it will use information that is so inaccurate asto be useless at best, and damaging at worst.Our results, displayed in Figure 5 show that a\good" localization estimate of �, or the angle of therobot on the �eld, have a standard deviation of 30� orless. A \good" localization estimate of x and y, the

A B

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Minutes

Figure 5: Time taken to score a goal versus how low werequire the standard deviation ns of the localization valuesfor � (the robot's orientation) and x and y (its location onthe �eld) to be before using them.coordinates of the robot's location on the �eld, musthave a standard deviation of less than 600mm, or justunder one quarter of the �eld length.Behaviors with No Need for Localization Oneof the best ways of �nding a balance between localiza-tion information and time spent to acquire it is simplyto avoid localizing when it is not necessary. We haveidenti�ed two times when it is unnecessary: when therobot has recently lost sight of the ball, and when ithas no information at all about the location of theball. Our scheme allows the robot to act intelligentlybut does not rely on localization information in eitherof these situations.Recovering a Recently Lost Ball: The robot of-ten loses sight of the ball while it is trying to manipu-late it. This is usually because it has walked past theball. It must search for the ball, but because it hasjust lost sight of the ball, more information is availablefor it to use.Instead of incorporating a costly full-scale worldview into the robot architecture, we implemented avery simple but extremely e�ective algorithm. Whenthe robot loses sight of the ball, it �rst walks backwardsfor almost the entire width of the �eld. If it has walkedpast the ball, this usually allows it to spot it. However,sometimes walking backwards makes the robot turn itsbody, sometimes away from the ball. So, like our teamlast year, CMTrio-98 (Veloso & Uther 1999), this year'srobots turn in the direction in which the ball was lastseen. After this, the robot considers the ball lost andbegins a random search for it.

Random Search: When the robot does not knowwhere the ball is, it must wander the �eld to searchfor it. One way of searching for the ball is to buildan \oriented" search, in which the robot uses localiza-tion information to systematically search each area ofthe �eld. This relies on very accurate localization in-formation and on a complete search of the �eld, bothof which take a lot of time. Instead, we use a verysimple algorithm that is much faster. We wrote a ran-dom search algorithm that does not rely on localizationinformation at all. Until the robot sees the ball, it al-ternates between walking forward a random amountand turning a random amount.Since it is not reliant on localization information, ourrandom search algorithm allows the robot to cover the�eld more quickly, on average, than does a comparisonscheme we built in which the robot attempts to walka circuit of the �eld.Acting with Little InformationFrequently during games, the standard deviations ofthe robot's localization information are so high thatthe information should not be used. As explained pre-viously, the robot should not stop and look every timeits localization information is inaccurate. Therefore,we must make sure that it can act reasonably evenwhen its localization information is not good enoughto use.We wrote an algorithm which allows the robot toscore goals without information about the robot's angleand x and y location on the �eld. The algorithm is asfollows:Until see the goal,walk sideways to the right around the ball;When see the goal,stop walking sideways;Walk forward into the ball.This allows the robot to consistently score goals withno information from the landmark-based localizationmodule at all. However, this takes the robot muchlonger than it does when the robot has such informa-tion.Upgrading PerformanceNot only must the robot be able to progress towards itsgoals when it does not have useful localization infor-mation, but it must be able to improve its performanceas soon as it gets such information. We used severaldi�erent strategies to make sure that the robot's per-formance would be able to improve quickly as well asdegrade gracefully as the availability of good informa-tion changed.Localization-Dependent Performance Enhance-ments We have developed three performance en-

hancements that rely on localization information andthat are robust and reliable even with noisy informa-tion (Winner & Veloso). The �rst helps the robotdecide in which direction to circle around the ball, orwhether to circle at all. The second allows the robotto skew its approach to the ball so that it doesn't haveto spend time circling. The third allows the robot toscore goals even if it is unable to see the goal itself.Mode-Based Architecture We built a control ar-chitecture based on basic modes of behavior we identi-�ed as important. To switch between modes, the robotuses knowledge about basic features of its state, suchas: i) whether it is paused, ii) into which goal it is try-ing to push the ball, iii) whether it is in possession ofthe ball, whether it is close to the ball, and iv) whetherit knows where the goal is. Performance enhancementsinclude switching to a di�erent mode (for example, ifthe robot has good enough localization information, itknows where the goal is without seeing it, so it canappropriately change from circling the ball to pushingit towards the goal), and improving the performanceof the robot within a mode.The modes we have de�ned for the attacker are:1. Head Searching: the robot is searching for the ball byturning its head;2. Searching: the robot is searching for the ball by turningits head and its body;3. Approaching: the robot is approaching the ball;4. Circling: the robot is circling the ball;5. Scoring: the robot is pushing the ball towards the goal;The algorithm we use to switch among these modesis approximately as follows:If robot sees ball and is not close to it,mode = Approaching;If robot does not see ball and did recently,mode = Head Searching;If robot does not see ball and has not recently,mode = Searching;If robot does not know where goal is andis close to ballmode = Circling;If robot knows where goal is and is close to ball,mode = Scoring.We are able to optimize the performance of the low-level implementation of the modes by using localizationinformation. By separating the high-level behaviorfrom the low-level implementation, we ensure that therobot's high-level behaviors do not change frequentlyas the available information changes. Instead, the waythe robot executes these behaviors changes in responseto the lack or availability of localization information.

Special Cases|Urgent ActionIn some cases, the balance between localization and ac-tion does not apply. Although each of these cases couldperformmuch better with localization information, im-mediate action is necessary, so the cost of localizingthoroughly is prohibitively high. We have found short-cuts and compromises that allow the robot to performas well as possible in these special cases, even withoutspending time looking around for landmarks.Approaching the Ball Possession of the ball is acritical part of a soccer game. The team that is ablemore frequently to possess the ball has an incredibleadvantage over its opponents. Therefore, in our strat-egy, when the robot sees the ball, it rushes towards it,not waiting to localize.This strategy has negatives, clearly. If the robotdoes not know where it is on the �eld, it will not knowwhat to do with the ball when it gets to it. Neverthe-less, it is better for a robot to look around when it isin possession of the ball than when it is farther fromthe ball. When the robot is standing near the ball, itis blocking one side of the ball from visibility and at-tacks, and is more able to respond quickly to an attackbecause it is already close by.Kicko� We were surprised to discover, in the ini-tial games of RoboCup-99, how much an advantage isgained by winning the kicko�. When the ball moves toone side of the �eld, it is very di�cult for the robots tomove it to the other side of the �eld. In the RoboCup-99 games, the team that won the kicko� usually scoreda goal, simply because the ball never emerged from theside of the �eld to which it was initially pushed.Because of this, we felt it was crucial to have anextremely aggressive kicko�. We took advantage of thefact that, at each kicko�, the robots were facing theopposite goal by having them run straight towards theball, which is placed in the center of the �eld, betweenthem and the goal. We allowed the robots to run withthe ball without localizing at all for almost half thelength of the �eld{nearly the whole distance betweentheir starting positions and the goal. Even when theerror-prone motion of the robots causes them to strayfar from their projected path towards the goal, they areusually able to drive the ball onto the other robots' sideof the �eld before stopping to localize.This was a very important advantage in almost allof our games, since we were able to win most of thekicko�s. In the one game we lost, we had accidentallyturned this feature o� during the �rst half of the game,and our robots were no longer able to win the majorityof the kicko�s. When we turned it back on in thesecond half, our robots again dominated the kicko�s,

and were therefore able to score a goal and prevent theother team's robots from scoring any.Goalie Another time when swift action is crucial iswhen a robot is playing the position of goaltender.However, this position also requires very accurate lo-calization, since it is so necessary for the goalie to bein the correct position in front of the goal. We foundthat if we allow the goal to rely heavily on the localiza-tion model, the robot spends a lot of time looking forlandmarks instead of looking at the �eld, and so canmiss saving goals.Also, it seems that the localization algorithmdoesn'tprovide su�ciently accurate information for the goal-tender position. It often allows the goalie to be closeto the appropriate position, but even with a standarddeviation of 10cm, given that the goal is 60cm, this caneasily leave large segments of the goal unblocked andunguarded. Not only that, but sometimes the localiza-tion information is wrong, since it relies on seeing thelandmarks, and the goalie wanders out into the �eldbefore discovering that it is in the wrong place andtrying to return.Finally, by avoiding the landmark-based localizationmodule altogether, we were able to �nd a way for thegoaltender not only to avoid looking frequently at land-marks, but also to position itself more accurately infront of the goal. Our �nal algorithm is as follows:Starting Position: Centered in front of the goal,facing the other side of the field.Scan the horizon for the ball;If the ball is seen, run straight after it;If lose sight of the ball for more than 2 frames,turn until own goal is seen;If see own goal, run towards largest area of goal seenuntil it fills visual field;If own goal fills visual fieldturn until opposing goal is seen.This �nal version of the goalie is extremely ag-gressive, and extremely successful. One of the mainstrengths of this algorithm is that it takes advantageof the special situation in which the goal tender �ndsitself|standing very close to one goal, and facing theother. Because the goals are the largest visual featureson the �eld, it is easy to use them to localize this spe-cial position. Because the goalie pushes the ball faraway from the goal, it usually has plenty of time torun back to the goal and turn around before the ballcomes nearby. ConclusionIn this paper, we reported on our work on control-ling the soccer-playing Sony quadruped legged robotsbased on visual perception and probabilistic localiza-tion. We brie
y described the vision and localization

algorithms that allow for the state information to begathered during execution of the game.We then contributed a behavior-based planning ap-proach that actively controls and balances the amountof localization information the robot has. The robotcan score goals relying solely on the limited visual per-ception. The behaviors can also employ as much ofthe localization information as is available and theyupgrade and degrade performance gracefully as avail-ability changes. In addition, the robots include delib-erative preset plans to deal with special cases in whichurgent action is necessary and therefore cannot a�ordthe time to gather accurate state information. We in-clude results of tests that demonstrate the localizationcapabilities and support our parameter settings to con-trol the amount of localization information.Results from our matches in RoboCup-99 at IJCAI-99, Stockholm, also show our algorithms to be e�ective.Our team won all but one of its games, and the oneit lost was lost by only one goal. Our team was theonly one in this year's league to score goals againstopposing teams and never to score a goal against itself.Our goaltender was the only one in this year's leagueto score a goal itself.Acknowledgments: We would like to thank Sony forproviding us with this remarkable platform for our researchin the perception, planning, and action.ReferencesBouchefra, K.; Hugel, V.; Blazevic, P.; Duhaut, D.;and Seghrouchni, A. 1999. Situated agents with re
ex-ive behavior. In Proceedings of IJCAI-99 Workshop onRoboCup, 46{51.Bruce, J.; Balch, T.; and Veloso, M. Fast color imagesegmentation using commodity hardware. Submitted toICRA-2000.Dellaert, F.; Fox, D.; Burgard, W.; and Thrun, S. 1999.Monte Carlo localization for mobile robots. In Proceedingsof IROS-99.Fox, D.; Burgard, W.; Dellaert, F.; and Thrun, S. 1999.Monte Carlo localization: E�cient position estimation formobile robots. In Proceedings of AAAI-99.Fujita, M.; Veloso, M.; Uther, W.; Asada, M.; Kitano, H.;Hugel, V.; Bonnin, P.; Bouramoue, J.-C.; and Blazevic,P. 1999. Vision, strategy, and localization using the Sonylegged robots at RoboCup-98. AI Magazine.Lenser, S., and Veloso, M. Sensor resetting localization forpoorly modelled mobile robots. Submitted to ICRA-2000.Veloso, M., and Uther, W. 1999. The CMTrio-98 Sonylegged robot team. In Asada, M., and Kitano, H., eds.,RoboCup-98: Robot Soccer World Cup II. Berlin: SpringerVerlag. 491{497.Winner, E., and Veloso, M. Robust action under variableuncertainty: An algorithm for robotic soccer. Submittedto Autonomous Agents-2000.

