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In this paper we present two new techniques that have
been used to build a large-vocabulary continuous Hindi
speech recognition system. We present a technique for fast
bootstrapping of initial phone models of a new language. The
training data for the new language is aligned using an existing
speech recognition engine for another language. This aligned
data is used to obtain the initial acoustic models for the
phones of the new language. Following this approach requires
less training data. We also present a technique for generating
baseforms (phonetic spellings) for phonetic languages such as
Hindi. As is inherent in phonetic languages, rules generally
capture the mapping of spelling to phonemes very well.
However, deep linguistic knowledge is required to write all
possible rules, and there are some ambiguities in the language
that are difficult to capture with rules. On the other hand, pure
statistical techniques for baseform generation require large
amounts of training data that are not readily available. We
propose a hybrid approach that combines rule-based and
statistical approaches in a two-step fashion. We evaluate the
performance of the proposed approaches through various
phonetic classification and recognition experiments.

1. Introduction
An automatic speech recognition (ASR) system consists of
two main components—an acoustic model and a language
model. The acoustic model of an ASR system models how
a given word or “phone” 1 is pronounced. In most of the
current ASR systems, the probability of a phone being
spoken is modeled, using Baye�s theorem, as follows:

P�M O� �
P�O M��P�M�

P�O�
, (1)

where O is the observation vector and M is the particular
phone or word being hypothesized. Often, the probabilities
P(M) are assumed to be equal for all of the phones; hence,
the term P(O M) is used to compute the likelihood of the
hypothesized phone. The acoustic model consists of the
speech signal features to be used for O, and a pattern-
matching technique to compare these features against

a set of predetermined patterns of these features
for a given word or phone. Mel-Frequency Cepstral
Coefficients (MFCC) are the most commonly used
features for ASR. They represent the spectral envelope
of the speech signal on the mel-frequency scale, which
is dependent upon the particular sound being spoken.
Hidden Markov model (HMM) and neural network
(NN) are the most common techniques for acoustic
modeling of ASR systems. We use HMMs based on
allophones (context-dependent phones) in our ASR
system. These HMMs model the output probability
distribution (the probability of generating different values
of MFCC in a given allophone state) and the transition
probability (the probability of transition from one
allophone state to another). At the time of speech
recognition, various words are hypothesized against the
speech signal. To compute the likelihood of a given word,
the word is broken into its constituent phones, and the
likelihood of the phones is computed from the HMMs.

1 The term phone represents a basic unit of speech, a speech sound considered as a
physical event. A word consists of one or more phones.
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The combined likelihood of all of the phones represents
the likelihood of the word in the acoustic model.

The language model of an ASR system predicts the
likelihood of a given word sequence appearing in a language.
The most common technique used for this purpose is an
N-gram language model. An N-gram model provides the
probability of the Nth word in a sequence, given a history
of N � 1 words—that is, P(Wi Wi�1Wi�2..Wi�N�1). The
N-gram model is trained over a large text corpus in the
given language to compute these probabilities. For a
hypothesized word, the language model score and the
acoustic model score are combined to find the final
likelihood of the word.

By using both the acoustic model and the language
model, the combined likelihood of the word is computed
as follows:

P�W� � P�O Wi��P�Wi Wi�1Wi�2..Wi�N�1�. (2)

For isolated word recognition, the above likelihood is
computed for all words being considered, and the word
having the highest likelihood is chosen as the recognized
word. In the case of continuous speech recognition, the
likelihood of a word is combined with the likelihood of
other words to compute the combined likelihood of the
sentence being hypothesized.

To train the acoustic model, a phonetically aligned
speech database is required. However, acoustic models are
required in order to automatically align a speech database.
Hence, it becomes a chicken and egg problem. One
possible method is to manually align the speech database;
however, manually aligning a large speech database is very
time-consuming and error-prone. Obtaining initial phone
models for a new language is thus a challenging task.
In [1], Byrne et al. have suggested techniques to create
phone models for languages which do not have a lot of
training data available. They have used knowledge-based
and automatic phone mapping methods to create phone
models for the target language, using phone models of
other languages. Previous approaches [2, 3] to generate
initial phone models include bootstrapping from a
multilingual phone set and the use of codebook lookup.
A codebook specifies the mapping to be used while
performing the bootstrapping. The generation of this
codebook requires linguistic knowledge of the languages.
The technique mentioned in [2] requires a system already
trained in the languages. On the other hand, the method
in [3] requires labeled and segmented data in the language
for which the system is to be trained. Authors in [4]
describe various methods of generating the Chinese phone
models by mapping them to the English phone models.
This requires the collection of specific utterances of
isolated monosyllabic data that is difficult for a language
such as Hindi. Moreover, it may not be the best means for
initializing the phone models that are to be used in large-

vocabulary continuous speech recognition tasks. Cross-
lingual use of recognition systems is also seen in [5],
where the aim is to generate a crude alignment of words
that do not belong to the language of the recognition system.

In this paper, we propose an approach for building good
initial phone models through bootstrapping. We make use
of the existing acoustic models of another language for
bootstrapping. Following the approach proposed in [1],
we define a phone mapping between the two languages to
obtain an initial alignment of the target language speech
data. However, in the case of Hindi, we have special
acoustic classes, e.g., nasalized vowels and stressed
plosives, which require more than one phone from the
base language (English) for bootstrapping. We use this
aligned data to obtain initial phone models of the target
language. While segmenting the aligned data for target
language phones, we use a module called a lexeme context
comparator, which helps in differentiating phones in the
target language which were mapped to same phone in the
base language. The proposed approach requires relatively
lower amounts of speech data for the new language to
build initial phone models.

The second technique presented in this paper relates to
baseform generation. For training the acoustic model,
baseforms for the training words are required along
with the initial phone models. These baseforms are also
required during recognition for each word in the vocabulary.
Since generating baseforms manually for large vocabularies
is a time-consuming process, automatic baseform builders
are important in all speech recognition applications.

Researchers have used a pure rule-based technique
for baseform builders for phonetic languages [6]. The
advantage of this technique is that once all of the rules
are accounted for, the accuracy is very high; however, this
requires deep linguistic knowledge that may be difficult to
obtain [7]. While pronunciation rules can be extracted
from existing online dictionaries, existing online
dictionaries for Hindi are not exhaustive in their word
coverage or on pronunciations. Additionally, each such
online dictionary for Hindi requires a specific format in
which the Hindi characters are encoded, thus making
them even more difficult to use. It is easy to capture the
general linguistic nature of phonetic languages, but their
idiosyncrasies and exceptions are difficult to capture by
rules. For example, in Hindi, deletion of the “schwa” 2 is
very difficult to capture with rules [7]. The colloquial use
of the language develops ambiguities that are too frequent
to ignore in a speech recognition system. Such ambiguities
are also difficult to capture by rules. On the other hand,
using pure statistical techniques requires a large amount
of training data that is not easily available for a new

2 A schwa is a neutral middle vowel which occurs in unstressed syllables; it is
represented by the /AX/ phone in our phone set.
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language. Different statistical approaches have been tried
for baseform builders. Decision trees [8 –11], machine-
learning techniques [12], delimiting, and dynamic time
warping (DTW) [13] are a few of the techniques that have
been studied. All of the statistical techniques require a
large amount of training data for respectable accuracy.
Moreover, their performance is compromised for
“unknown words,” typically proper nouns [9]. In order
to improve the statistical techniques, other knowledge
sources such as acoustics are used in conjunction with the
spellings to obtain better results [14]. Pure acoustic-based
baseform builders have also been built [15]. However, the
techniques that use acoustics are restricted in their usage,
since they require a recognition engine for the language
and are better used for generating speaker-dependent
pronunciations.

In this paper we present a hybrid approach that
combines rule-based and statistical techniques in a novel
two-step fashion. We use a rule-based technique to
generate an initial set of baseforms and then modify them
using a statistical technique. We show that this approach
is extremely useful for phonetic languages such as Hindi.
A detailed description of the pronunciation aspects of
Hindi is presented in Section 3. The phonetic nature of
the language can be exploited to a greater extent by using
the rule-based approach, while the statistical technique
can be used to improve on this. We experimented with
two different techniques as the statistical component of
our hybrid system— one of them uses modification
probabilities, while the other uses context-dependent
decision trees.

The rest of the paper is organized as follows. In Section 2,
we describe our approach for bootstrapping the initial phone
models. Our approach for a hybrid baseform builder is
described in Section 3. The experiments conducted to
evaluate the performance of the two approaches are
presented in Section 4. Results corresponding to the
experiments are discussed in Section 5, and we conclude
in Section 6.

2. Bootstrapping of phone models
In the bootstrapping approach, an already existing acoustic
model of a speech recognition system for a different
language is used to obtain initial phone models for a new
language. In the literature [2, 4], there are primarily two
approaches used for bootstrapping. We explain these
approaches using English as the base language and Hindi
as the new or target language:

● Bootstrapping through alignment of target language speech
data In the first approach, phonetic transcription of the
target language text is written using the phone set of
the base language. This is achieved by using a mapping
defined between the two phone sets, which is detailed

in the subsection on phone set mapping. The speech
data in the target language is aligned using the speech
recognition system of the base language. Initial phone
models for the target language can then be built from
the aligned speech data. The Hindi phone set is
presented in Figure 1. For example,

BHARAT –/BH AA R AX TX/ (actual);
BHARAT –/B AA R AX TH/ (using English phone set).

In this case, the phones /BH/ and /B/ in the target
language are both mapped to phone /B/ in the base
language. Hence, to initially obtain the aligned data for
/BH/, the data aligned with /B/ is randomly distributed
between /BH/ and /B/. Phone /TX/ in the target
language is mapped to phone /TH/ in the base language.

● Bootstrapping through alignment of base language speech
data In the second approach, speech data of the base
language itself is aligned using its speech recognition
system. The aligned speech data of the base language is
used as the aligned speech data for the target language
using the mapping between the two phone sets. For
example,

BAR – /B AA R/.

The aligned data for /B/ is randomly distributed to
obtain the aligned data for /BH/ and /B/.

Proposed approach
We have proposed a new technique for bootstrapping
which provides more accurate initial phone models for the
target language. We have modified the first approach as
described above, so that the aligned speech data for two
similar phones in the target language can be easily
separated, for example for phones /BH/ and /B/. We
propose to use both the phone sets, i.e., the phone sets of
base and target languages, to avoid the confusion between
the phones in the target language which are mapped to
the same phone in the base language.

Figure 2 shows the technique that is used to align Hindi
speech by using an English speech recognition system. A
mapping h� from a Hindi phone set denoted by � to an
English phone set denoted by � is used to generate the
pronunciation of Hindi words by the English phone set.
Using linguistic knowledge, this mapping is based on the
acoustic closeness of the two phones. The mapping is such
that each phone � � � is mapped to one and only one
phone in �. A vocabulary created by such a mapping is
used to align Hindi speech data. Since more than one
element in � may map to a single element in �, h� is a
many-to-one mapping in general and hence cannot always
be used in reverse to obtain � from �. Therefore, in order
to recreate the alignment labels with Hindi phones, an
inverse mapping h�1� will not be feasible. A lexeme
context comparator is used to generate the correct labels
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from � � �. This uses the context to resolve the
ambiguity which arises from the one-to-many mapping
h�1 �. To illustrate the requirement of a lexeme context
comparator, we take the example of two Hindi words,

and . The baseforms for these words are shown
in Table 1. For both words, the alignment would be

generated for the phone /B/. However, this /B/ must be
replaced by /BH/ if the word is and by /B/ if the
word is . This information is not available by using
the mapping h�1 �. Therefore, a lexeme comparator is
used to examine the lexemes of the words and disambiguate
for such cases.

The algorithm can be stated in the steps mentioned below:

1. For a feature vector labeled with a phone � � �, form
a subset � � � using the inverse mapping h�1� [since
h�1� is a one-to-many mapping in general].

2. If � is a singleton, change the label of the feature
vector to the element � � �.

3. If not, from the lexeme context of the feature vector,
compare the two phonetic spellings of the two lexemes
(one written with phones in � and other with phones in
�) to which this vector belongs. Using this information,
handle the disambiguity and choose the phone from �

that satisfies the mapping h�1� for the lexeme—for
example, /B/ and /BH/.

This technique would generate the aligned Hindi speech
corpus without the need for a Hindi speech recognizer.
Although this alignment may not provide exact phone

Figure 1

Hindi phonemes for characters in Hindi. Mappings are shown using an English phone set.
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boundaries, it would serve the purpose of building the
initial phone models. The inaccurate phone boundaries
are a result of phonetic space differences in the two
languages owing to the different acoustic characteristics of
the languages. This depends on the two languages; if the
languages are acoustically similar, we can have accurate
phone boundaries using the above technique. It should be
noticed that using the phone set of the target language in
the lexeme context comparator not only separates the
aligned data for /B/ and /BH/ but also provides the right
context information for other phones in the aligned
speech corpus. This context information would otherwise
have been abused because of the many-to-one phone
mapping from target language to base language.

Phone set mapping
The International Phonetic Association (IPA) [16] has
defined phone sets for labeling speech databases for
sounds of a large number of languages, including Hindi.
However, there are some sounds in Hindi which are not
included in the IPA phone set but are important when
building phone models that are to be used for the purpose
of automatic speech recognition. In continuous speech
recognition tasks, the purpose of defining a phonetic space
is to form well-defined, non-overlapping clusters for each
phoneme in the acoustic space. This clustering makes it
easier for the system to recognize the phone to which an
input utterance of speech belongs. For the same number
of data and phoneme models, a better phone set is one
that gives a higher classification rate and is able to
distinguish the words present in the vocabulary of the
language. We define a Hindi phone set which can cover all
the different sounds that occur in Hindi. This phone set
takes into consideration the fact that even though Hindi is
a phonetic language, from an acoustic point of view some
phones such as plosives have different acoustic properties
when they occur at the end of the word. Taking these into
account, we have constructed a Hindi phone set consisting
of 61 phones (including the inter-word silence D$ and
long pause silence X) to represent the sounds in Hindi. It
is seen that of these 61 phones, 39 are already present in
English. Figure 1 shows the corresponding characters as
written in Hindi script. In the figure, h(�) represents the
mapping of Hindi phones to the corresponding English
phones for aligning the Hindi data using English acoustic
models, and �(�) represents the mapping to obtain the
initial phone models for the Hindi phones from English
data. In addition to ten English vowels, Hindi has nine
nasalized vowels (AAN, AEN, AWN, AXN, EYN, IYN,
OWN, UHN, UWN). Each plosive phone (B, D, K, P, T)
has an additional phone (BD, DD, KD, PD, TD) to
represent the acoustic dissimilarity when they occur at the
end of a word. The bootstrapping approach described in
the preceding subsection requires a mapping from the

phones of the base language to the phones of the target
language. A phone set mapping is defined using the
linguistic knowledge of the two languages. We define three
categories of mapping as follows:

● Exact mapping Some of the phones may be common to
both the base and the target language. For example,
many vowels such as /AX/, /AA/, and /IY/ are common
to English and Hindi, and they have an exact mapping
from one language to the other. The mappings h� and
�� are the same for such phones.

● Merging Some of the phones in the target language may
have sounds from more than one phone in the base
language. For example, Hindi has some nasalized vowels
such as /AAN/ and /EYN/, which are a combination of
the corresponding vowel and nasal sound /N/. For these
phones, one-to-many mapping is defined from such
Hindi phones to their English counterparts. For
example, the Hindi phone /GH/ is a combination of
the English phones /GD/ and /HH/ while creating the
mapping ��. The mapping for such phones differs in
the case of h� and ��.

● Approximation Some of the phones in the target
language may not be present in the base language at all.
Such phones are simply mapped to the closest phone in
the base language. For example, phone /TX/ in Hindi
( —BH AA R AX TX) is mapped to phone /TH/ in
English (B AA R AX TH). The mappings h� and ��
are the same for such phones.

Refining phone set mapping
We now present a method that is used to improve the
initial phone set mapping ��. This method is based on a
measure of phonetic similarity between the phones in �

and the phones in �. One possible measure of similarity is
the distance between the phones in the MFCC domain.
Each phone of � is modeled by a normal distribution, and
the phonetic distance of a phone � � � from a phone
� � � is defined as

D��, �� �

�
vi��

�vi � m
�
� 2

���
,

where v i represents a 24-dimensional MFCC vector
belonging to � and m

�
is the mean vector corresponding

Table 1 Baseforms for two Hindi words.

Hindi word Hindi baseform English baseform

BH AA R AX TD B AA R AX TD

B AX HH UH TD B AX HH UH TD
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to �. However, we used a distance measure based on the
log likelihood of the phone models in � for each test
vector in � � �. The mean of log likelihoods is taken as
the measure of acoustic similarity between the phones in
the two languages. This measure is calculated for each
phone � � � over all of the phones in � that are
considered to be close to �. The mapping �� is refined
if the acoustic similarity measure shows that a phone �

is closer to some phone �� than it is to �, to which it
was initially mapped. The log-likelihood-based distance
measure produces better results. As a result of the
refinement, we changed the mapping of /DDN/ from
/DD � HH/ to /DD � R/ and of /DXH/ from /DD � HH/
to /DD � HH � R/.

In Section 4, we describe the phonetic classification
experiment which illustrates the improved performance of
the initial phone models that have been discussed in this
section.

3. Hybrid baseform builder for phonetic
languages
We present a technique for generating baseforms for
phonetic languages such as Hindi. As is inherent in
phonetic languages, rules generally capture the spelling-
to-phoneme mapping very well. However, deep linguistic
knowledge is required to write all of the possible rules,
and there are some ambiguities in the language that are
difficult to capture with rules. On the other hand, pure
statistical techniques for baseform generation require
a large amount of training data, which is not readily
available. We propose a hybrid approach that combines
rule-based and statistical approaches in a two-step fashion.
We evaluate the performance of the proposed approaches
through various phonetic classification and recognition
experiments.

Issues specific to Hindi
Hindi is a phonetic language, which implies that there
is generally a strong correlation between its written and
spoken form. It has adopted various Arabic and Persian
words which introduce characters that are pronounced
differently by different speakers, e.g., – and – .
Hindi also has a few distinct phones which are
characterized by more than one sound being spoken
simultaneously. For such phones, such as stressed plosives
(/DXH/, /DXX/, and /DHH/) and nasalized vowels,
acoustic data from multiple phones is required for
bootstrapping. In written Hindi, each consonant is
associated with an inherent schwa, which is not explicitly
presented. Other vowels are overtly written diacritically
or nondiacritically around the consonant. Depending on
the context, the schwa is at times absent, resulting in an
implicit stop, as explained in the subsection on limitations
of rule-based techniques. Contexts which lead to the

deletion of the schwa require deep linguistic knowledge.
For example, written Hindi has a special characteristic of
half-consonants. These are the consonants without the
schwa sound discussed in the subsection on rule-based
baseform generation.

Statistical baseform generation
Many statistical techniques have been tried for baseform
builders, as mentioned in Section 1. The statistical
approach that we have used is based on context-dependent
decision trees [17]. In this approach, a tree is built for
each letter. Training a tree for a particular letter involves
partitioning the training data (corresponding phone or
phone sequence) into several leaf nodes, depending on
the letter and phone context. This training data represents
letter-to-phone or phone sequence mappings for all words
in the dictionary. The partitioning is achieved by splitting
the data at each node into two subnodes which are
maximally heterogeneous. Heterogeneity between two
nodes is defined as the difference in the number of
occurrences of a given phone or phone sequence. We stop
the partitioning when the heterogeneity between the two
subnodes is less than an empirically decided threshold
value, or when the size of the data at the node is less than
an empirically decided threshold value. The phonetic
context comprises five previous phones, and the letter
context is specified by five previous and five succeeding
letters. The set of phonetic questions is mentioned in the
subsection on initial phone models, while the questions on
letter context are of the form “Is the letter at context
position �1 ‘b’ ?” Such questions are used to partition the
data. Once such a tree is built, leaves of each tree specify
a probability distribution for letter-to-phone mapping for a
particular phonetic and letter context. Generating
baseforms from these context-dependent trees involves
traversing the tree for each letter and generating the
baseform for the input word. The performance of the
statistical approach is described in Section 5.

Generation of rule-based baseforms
Specifying rules to build baseforms from input spelling
works for a large number of words for phonetic languages.
The knowledge of phone sets and pronunciations of each
phone, along with the linguistic knowledge of the language,
is used to specify rules that convert spellings to sounds.
Rules are of the form that a given letter and its context
in a word are mapped to a particular phoneme sequence.
The Hindi phonetic character set that we have used is
described in detail in [18]. All of the 33 consonant
characters in written Hindi also have a corresponding
representation as half-consonants. The only difference
between the sounds of the consonants and the
corresponding half-consonants is that the former almost
always have the sound of the vowel /AX/ present in them.
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The half-consonants have just the sound of that phone.
Appending the schwa sound to the sounds of their
corresponding half-consonants generates the sounds
for consonants; for example, – are a corresponding
consonant and half-consonant pair. The rules that we have
used are a simple mapping of these consonants to their
corresponding consonant sounds.

Incorporating redundancy through parallelism
Using the mappings of characters to phones, we have built
a rule-based baseform builder for the Hindi language.
However, the mappings have to be one-to-many in order
to generate alternate pronunciations. In Hindi, multiple
pronunciations exist for two reasons:

1. Though the language has specific pronunciations for
each literal and it does not change with the context,
people often speak a character differently (most
common pairs are – , – , and – ). This is
because Hindi has adopted various Arabic words that
are pronounced differently by different speakers.

2. Hindi is often erroneously written; characters may be
interchanged, the most common being – and – .

To handle these statistically significant mispronunciations
(misspellings), rules must be modified to build multiple
baseforms whenever such characters are encountered.
Thus, we build parallel baseforms for all words that have
these characters, creating a saturated baseform vocabulary
which is a superset of the true baseform vocabulary. This
increases the size of the baseform vocabulary, and hence
the search time also increases during decoding. However,
better acoustic scores are expected when the desired
lexeme is present in the baseform vocabulary than when
only one baseform is available for each word. In Section 5,
we see the effect of parallel baseforms on the recognition
accuracy and also on the search time.

Limitations of rule-based techniques
As mentioned in the previous subsection, we need
alternate baseforms to capture the varied pronunciations
required for a speech recognition task. However, since
these rules have to be made to include all contexts for a
character, they incorporate redundancy in the generated
baseforms. Thus, in order to prune these redundant
cases, we need a statistical technique to differentiate the
contexts where the parallelism generated is redundant and
where it is useful. Also, though the structure of Hindi is
phonetic, it has certain implicit stops that render the
phonetic spelling not completely obvious from the word
spelling. This can be illustrated by the example of the
two Hindi words and . The rule-based baseform
builder would generate the phone /UH/ corresponding to

the vowel , /S AX/ corresponding to the consonant
character , a phone /N/ corresponding to the consonant

, and /EY/ corresponding to . This would give the
phonetic spelling of as / UH S AX N EY /, and that
for would be /S AX N/. The former spelling should
actually have been / UH S N EY /. The implicit stop in

is not reflected in , since it is actually pronounced
as . To capture such variations in similar character
sequences, we train a statistical model that determines
the absence of implicit stops after consonants and hence
makes corresponding changes to the rule-based baseform
generated earlier. This is detailed in the next section.

Framework for a hybrid baseform builder
As illustrated in Figure 3, the input to a hybrid baseform
builder is the spelling of the word. A rule-based system is
used to generate all possible baseforms for this word. The
phonetic structure of the language is captured by the rule-
based system. The rules used are fairly simple and are
easy to derive without deep linguistic knowledge. In the
second step, the baseforms generated by this rule-based
system along with the spelling are input to a statistical
baseform modification system. We define a set of unruly
phones for the language which comprises phones for
which the parallelism incorporated is redundant in certain
cases or for which the rules are too complex to be derived
without deep linguistic knowledge. Thus, the statistical
technique takes care of the complex rules and the
ambiguities. Since we capture only the complex rules and
the ambiguities by the statistical approach, we do not
require a large body of training data, but only the data
specific to these phones. Moreover, since we are using the
statistical technique over the rule-based baseforms, we
have a richer context to train the model (left and right
phone context) than in previous approaches [14] that
learned letter-to-sound mappings using the left and right
letter context and only left phone context. The output of
this statistical system is the baseform set for the input
word.

As shown in Figure 3, spelling-to-sound rules are used
to generate the initial baseform for the input word .

Figure 3

Hybrid baseform builder framework.

Input
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baseform

Correct

baseform 

Hybrid baseform builder
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to-sound
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In the next step, statistical modification is applied over
only the /AX/ (schwa) phone to modify the rule-based
baseform. The deletion of the /AX/ phone requires
complex rules in Hindi, as explained in the subsection on
limitations of rule-based techniques. Thus, we capture a
complex rule of Hindi using statistics in our hybrid approach.

Probabilistic baseform modification
We use statistical techniques to modify the baseforms
generated by a rule-based technique. During training,
given the baseforms generated by rule-based techniques
and the true baseform vocabulary, we learn which
alternate baseforms are redundant and which baseforms
are to be modified. In this section we show how the
context of the unruly phone in a baseform can be used to
learn about the correctness or existence of that particular
phone in the baseform.

If the phone set P1, P2, . . . , PN denoted by � has a
subset of unruly phones Pu1, Pu2, . . . , PuK (phones that do
not have an exact spelling-to-sound rule) denoted by 	,
we can build statistical techniques to modify those rule-
based baseforms that have these phones present in them.
The first step in using statistical training for improving
the performance of a rule-based baseform builder is to
identify the unruly set 	. For Hindi, these phones are AX,

PH, F, JH, and Z. The aim is to use information on the
context of these phones when they appear in the baseform
of a word generated by rule-based techniques. Depending
on the context, as illustrated in Figure 4, the baseform is
not modified at all; only the phone under consideration
is modified in the baseform, or the baseform itself is
discarded. To train such a system for baseform correction,
for each phone Pui in the unruly set 	, the following steps
are followed:

1. Build a training set of baseforms by manually
correcting the baseforms in which the phone Pui

appears.
2. Record five previous and five succeeding phones

{Pc�5, Pc�4, Pc�3, Pc�2, Pc�1, Pc1, Pc2, Pc3, Pc4, Pc5}
of Pui to obtain its context. If the context exceeds the
baseform length, include X as the context phone at
those positions.

3. Create two sets of context tables, one which
corresponds to contexts in which the phone Pui would
remain in the correct baseform, and the second set in
which the phone Pui should be modified to make the
baseform correct.

4. Assign modification probabilities to the phone set
{P1, P2, . . . , PN} for each context location by counting
the number of occurrences of the phones in the
context tables.

Using this training procedure, all conditional
probabilities of modification for all contexts and for all
phones in the subset are calculated. Therefore, for each
phone Pui,

pkj 
 probability of modification of the phone Pui

when the phone at context position k is Pj , (3)

where k 
 �5, .., 5 and j 
 1, 2, .., 61.
At the time of baseform modification, when a new

baseform having a phone Pui is encountered, the training
probabilities are used to find the score sui of modification
of the phone given the complete context of phone Pui in
this baseform, using the weighted sum as

sui � �
k
�5

5

wk� �
j
1

61

�j pkj� , (4)

where �j 
 1 when the phone at position k is Pj , else
�j 
 0; wk is the weight at the context position k; and
�k
�5

5 wk 
 1, with a position nearer to the phone in
question being given a higher weight.

If the calculated score is higher than an empirically
chosen threshold, the baseform is modified, or else it is
left unchanged. As shown in Figure 4, modifications can
be of two types, depending on the phone Pui. Either the

Figure 4

Context-dependent statistical technique to modify rule-based base-

forms.
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baseform itself is discarded, being judged as a redundant
alternate baseform, or the phone Pui is deleted to correct
the baseform.

As shown in Table 2, the baseforms for words in the
first column are checked for the presence of unruly
phones. The third column shows the unruly phone in the
corresponding baseform. The context of this unruly phone
is extracted (as shown in the fourth column); on the
basis of the probabilistic modification for this context, a
decision is taken to delete the unruly phone, to delete
the baseform, or to leave the baseform unchanged. This
method of first generating baseforms using the spelling-to-
sound rules and then using the contexts in these baseforms
to modify them has the advantage that we need training
data only for baseforms that have the phones in the unruly
set 	 in them. Thus, less training data is required; also,
use of the statistical training mentioned above corrects
most of the baseforms, as shown in Section 5.

Decision trees for baseform modification
Counting the number of occurrences of phones in the
contexts is not the best way to estimate p, because there
are ten contexts and 61 phones in Hindi that create 610
different positions to search for the context-based
decision. In this section we illustrate the use of decision
trees for determining the modifications to be done to
baseforms having phones in the unruly set 	. A decision
tree is built for each phone in the unruly set. Creating
such decision trees involves asking questions to a set of
training baseforms. These questions partition the set of
baseforms at each node into the best possible context
that would differentiate between the modifiable and
nonmodifiable baseform. For each phone Pui in the unruly
set 	, we store the rule-based baseforms and correct
baseforms that have the phone Pui. Next we describe how
questions are selected at each node.

Best question selection criterion
The best questions at any node are the one that divides
the data into two sets of nearly the same size and the one
whose sets differ most in terms of baseforms that have the

phone to be modified and phone not to be modified. The
set of questions that we use are the ones being used in
[13]. Each question is of the type “Does the phone at
position �3 belong to the subset P, PH, B, BH, M?” All
questions result in a binary yes/no answer, and each node
correspondingly has two children. To decide the best
question at any node in the tree, we use the following score:

s �
�mY � mN � uY � uN�

mY � mN � uY � uN

, (5)

where mY is the number of cases in which a question
results in a yes answer and the phone has to be modified;
mN is the number of cases in which a question results in a
no answer and the phone has to be modified; uY is the
number of cases in which a question results in a yes
answer and the phone need not be modified; and uN is the
number of cases in which a question results in a no answer
and the phone need not be modified. The question that
gives highest score is chosen as the best question for that
node.

Creating the tree
For all training baseforms at a root node, questions are
asked and scores calculated using Equation (5). The best
question is used to divide the data into two distinguishing
sets. The process is continued until the following criterion
of stopping is reached: A node is turned into a leaf when
no question yields a score good enough to be constituted
as intelligible or if the number of baseforms at the node
is too small to divide. After the tree is built, each leaf
represents a set of contexts that must be satisfied in order
to reach it. Each leaf is marked either as modifiable or
unmodifiable depending on the answer to the previous
question.

Baseform modification
When a new baseform is presented to the system, the tree
is traversed, and, on the basis of the context of the unruly
phone in the baseform, a leaf node is reached. Each leaf
node is marked as either modifiable or unmodifiable.
If the leaf reached by traversing the tree is marked
modifiable, the unruly phone for which the tree was

Table 2 Context details and modification results.

Hindi
word

Baseform Unruly
phone

Context
�5 �4 �3 �2 �1 1 2 3 4 5

Modification
suggested

AA DH AX M IY AX X X X AA DH M IY X X X Delete phone AX

DH AX M AX X X X X DH M X X X X Don�t modify

Z AX HH AA Z Z X X X X X AX HH AA Z X Delete baseform
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traversed is modified and the correct baseform is
generated. Modifications in the baseform depend on the
nature of the unruly phone present in the baseform. The
phone can be deleted to make the baseform correct (in
the case of AX), or the alternate baseform can be deleted
(in the case of JH–Z, PH–F). On the other hand, if the
leaf reached has been marked as unmodifiable, the input
baseform is considered by the decision tree to be correct
and is left unchanged.

4. Experiments
In this section we describe the experiments conducted to
evaluate the performance of the proposed approaches. We
use 24-dimensional Mel-Frequency Cepstral Coefficients
(MFCC) as the feature vector of the speech data. To
capture the dynamics of the speech signal, four previous
and four succeeding MFCC vectors are concatenated to
the current MFCC vector, and linear discriminant analysis
(LDA) is applied on the concatenated vector to reduce
the dimensionality of the feature vector from 24 � 9 to 60
dimensions. The vectors so obtained are used to model
the output distribution of Hidden Markov Models (HMM).
The acoustic models are trained over 200 hours of speech
data collected from more than 500 speakers [19].

Initial phone models
We bootstrapped the initial phone model of the Hindi
phone set, consisting of 61 phones from the phone model
of the IBM U.S. English speech recognition system
ViaVoice*, which has 52 phones. An initial phone set
mapping was defined between the two phone sets using
the approach described in Section 2. Using this mapping,
the proposed bootstrapping approach described in Section 2
was used to obtain the aligned Hindi speech data. This
data was used to refine the initial mapping.

The initial phone models so obtained were used to
generate context-dependent phone models. Context-
dependent trees are used to divide the phonetically
aligned data. The context of a phone comprises five
phones previous to and five phones succeeding the phone
in consideration. Using the speech corpus, 3,718 context-
dependent phones were built, and a set of 115 questions

were used to build the context-dependent tree. An
example of the questions asked could be “Does the phone
at context position �1 belong to set { AX, AA, AE }?”
Every question results in a yes or no answer. Data at the
given node is split depending upon the answer to the
question. The question selected as the best question gives
the highest gain in likelihood after splitting. Splitting is
stopped if either the number of vectors for a given node
is less than a threshold or the likelihood gain from
splitting the data of the node is less than a threshold. The
leaves of the tree represent the phone with a particular
context. The system generated a total of 3,718 context-
dependent phones.

Hybrid baseform builder
Two experiments were conducted to measure the
performance of the hybrid baseform builder. The first
experiment measures the correctness of the generated
baseforms, and the second experiment uses the generated
baseforms in a Hindi speech recognition task. In both
experiments, we compare the performance of the hybrid
baseform builder with the pure rule-based approach and
the pure statistical approach. Data preparation is the same
for both experiments. Human experts have created a
phonetic dictionary consisting of 12,350 Hindi words;
of these, 11,510 words were used as the training set
and 840 words were used to test the system. The rule-based
baseforms were generated from the 11,510 training words.
These baseforms, along with the true baseforms of the
training set, were used to train the statistical component
of the hybrid system for the five unruly phones mentioned
in Section 3. The true baseforms of the training set of
11,510 words were used to train the pure statistical system.
Tests were performed on the remaining 840 words. With
test words as the input, four dictionaries were created
using the four techniques of baseform generation: pure
rule-based technique, hybrid technique with probabilistic
modification, hybrid technique with decision-tree-based
statistical component, and pure statistical system. Each
of the four dictionaries contained different numbers of
baseforms owing to the ability of the method to identify
and discard redundant baseforms.

Table 3 Phonetic classification rates for Hindi data using the Hindi phone models created by the English data.

Hindi phonetic space method Hindi data labeling method Classification rate
(%)

Context-based Random 16.23
Random Random 21.29
Random Lexeme context 23.82
Modified with distance Modified with distance 26.99
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Measuring correctness of baseforms
In this experiment, we measure the correctness of the
baseforms generated. The metric used for measuring the
accuracy of the proposed approach is the baseform error
rate. A baseform error occurs when the correct baseform
is not present in the generated baseform vocabulary. The
manually generated baseforms provided the standard for
comparison in our experiment. The baseform vocabulary
generated by the human experts for the 840-word test set
consisting of 978 baseforms was compared with each of
the four dictionaries.

Speech recognition experiment
Since one of the goals of the baseform builder is to
generate baseforms that are used in a speech recognition
system, the second experiment uses the generated baseforms
in a recognition experiment. We have used the IBM speech
recognizer for the Hindi language as the base recognition
system [20]. This is a large-vocabulary, speaker-independent
continuous speech recognition system. The Language
Model has been trained on a text corpus of 20 million
words that represents text from different domains. It
consists of a trigram model with an open vocabulary
and an unknown word probability of 0.00025. The
vocabularies generated by the four techniques for
the set of 840 words were used in the recognition
experiment. The test set for the recognition experiment
consisted of ten speakers, each with 200 continuous
speech utterances of Hindi from this vocabulary of
840 words. This constituted a total of about three
hours of speech. The baseform vocabulary created by
human experts for these 840 words was used to compare
the recognition accuracy with the four techniques.

5. Results
In this section, we present the results obtained for the
various experiments which are described in the preceding
section.

Phone models
Table 3 shows the results for phonetic classification of
the Hindi data over the Hindi phonetic space generated
through bootstrapping. Normally the phonetic classification
rate is seen to be around 40 –50% for most of the
languages [3] with a trained system. The rate of 27%
obtained for the Hindi language without using context-
dependent models is a promising reason for using the
phone models generated by the method described. The
distance-measure technique provides an insight into the
measure of closeness between the phone sets of the two
languages. This is used to modify the mapping in order
to create a better phonetic representation of the Hindi
phones in the English data space. This modified mapping
provides a 13% relative improvement in the rate of

classification. Also, the use of lexeme context to label
the Hindi data is a rapid way of generating the labeled
data for a new language. Its advantage is reflected by an
improved classification rate of 23.82% compared with no
use of lexeme context information and random distribution
of the data among phones that had a many-to-one mapping
in ��.

Baseform builder

Baseform correctness experiment
Table 4 shows the improvement by using the statistical
approach and decision trees over the rule-based
baseforms. It is seen that the number of correctly
generated baseforms increases and redundant baseforms
are removed.

For an equivalent amount of training data, a completely
statistical system gives better accuracy than our hybrid
system; however, the generated baseform vocabulary size
is considerably higher, as shown in Table 4. This increase
in the size of baseform vocabulary for the statistical
system has implications for the speech recognition task
in that more decoding time is required.

Speech recognition experiment
Results in Table 5 suggest that using the decision for
modifying baseforms yields the highest recognition
accuracy for the baseform builder. Moreover, owing to the
reduction in the size of the baseform vocabulary, the time

Table 4 Correct baseforms generated.

Baseform type Vocabulary
size

Correct
baseforms

(%)

Rule-based 1006 68.51
Probabilistic modification 1006 73.93
Decision-tree-

based modification 912 80.47
Pure statistical 1698 85.38

Table 5 Recognition rates for the different vocabularies.

Baseform type Vocabulary
size

Recovery rate
(%)

Time
(s)

Rule-based 1006 81.97 3605
Probabilistic

modification 1006 85.26 3228
Decision-tree-based

modification 991 85.46 3218
Pure statistical 1698 83.29 3443
Correct 978 85.33 3152
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taken for decoding is also reduced. It is observed that the
hybrid technique can generate a smaller and yet better
vocabulary from the rule-based baseforms. The baseform
vocabulary created by human experts for these 840 words
was used to compare the recognition results for vocabularies
of the four techniques with that of the true baseforms. The
last row of Table 5 specifies the recognition rates that are
achieved for the manually generated baseform vocabulary.

6. Conclusion
In this paper we have presented two novel techniques that
were used to build a continuous large-vocabulary Hindi
speech recognition system. A new technique for
bootstrapping the initial phone models has been
presented. Another approach for a hybrid baseform
builder was presented which can be used to automatically
generate baseforms for phonetic languages. Recognition
rates have been reported, and the improvement due to the
proposed techniques has been highlighted.

*Trademark or registered trademark of International Business
Machines Corporation.
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