
Robotic Motion Planning:
A* and D* Search

Robotics Institute 16-735
http://voronoi.sbp.ri.cmu.edu/~motion

Howie Choset
http://voronoi.sbp.ri.cmu.edu/~choset

16-735, Howie Choset with slides from G. Ayorker Mills-Tettey, Vincent Lee-Shue Jr. Prasad Narendra
Atkar, and Kevin Tantisevi

Outline

• Overview of Search Techniques
• A* Search
• D* Search

Graphs

Collection of Edges and Nodes (Vertices)

A tree

Search in Path Planning

• Find a path between two locations in an unknown, partially
known, or known environment

• Search Performance
– Completeness
– Optimality → Operating cost
– Space Complexity
– Time Complexity

Search

• Uninformed Search
– Use no information obtained from the environment
– Blind Search: BFS (Wavefront), DFS

• Informed Search
– Use evaluation function
– More efficient
– Heuristic Search: A*, D*, etc.

Uninformed Search

Graph Search from A to N

BFS

Informed Search: A*

Notation
• n → node/state
• c(n1,n2) → the length of an edge connecting between n1 and n2

• b(n1) = n2 → backpointer of a node n1 to a node n2.

Informed Search: A*

• Evaluation function, f(n) = g(n) + h(n)
• Operating cost function, g(n)

– Actual operating cost having been already traversed
• Heuristic function, h(n)

– Information used to find the promising node to traverse
– Admissible → never overestimate the actual path cost

Cost on a grid

A*: Algorithm

The search requires 2 lists to
store information about nodes

1) Open list (O) stores nodes for
expansions

2) Closed list (C) stores nodes
which we have explored

Dijkstra’s Search: f(n) = g(n)

1. O = {S}

2. O = {1, 2, 4, 5}; C = {S} (1,2,4,5 all back point to S)

3. O = {1, 4, 5}; C = {S, 2} (there are no adjacent nodes not in C)

4. O = {1, 5, 3}; C = {S, 2, 4} (1, 2, 4 point to S; 5 points to 4)

5. O = {5, 3}; C = {S, 2, 4, 1}

6. O = {3, G}; C = {S, 2, 4 1} (goal points to 5 which points to 4 which points to S)

Two Examples Running A*

GOAL

3
3 3

3

3

3 3

1

1 22

3

3

3

2

2

0 Star
t

2

24
1

1

1 1

1

1 1

1 1

A

B

CD

E F

G H I

J K

L

Example (1/5)

h(x)

c(x)

Legend

Priority = g(x) + h(x)

g(x) = sum of all previous arc costs, c(x),
from start to x

Example: c(H) = 2GOAL

3
3 3

3

3

3 3

1

1 22

3

3

3

2

2

0 Start

2

24
1

1

1 1

1

1 1

1 1

A

B

CD

E F

G H I

J K

L

Note:

Example (2/5)

C(4)

A(4)

B(3)

A(4)

I(5)

G(7)

C(4)

H(3)

First expand the start node

If goal not found,
expand the first node
in the priority queue
(in this case, B)

Insert the newly expanded
nodes into the priority queue
and continue until the goal is
found, or the priority queue is
empty (in which case no path
exists)

Note: for each expanded node,
you also need a pointer to its respective
parent. For example, nodes A, B and C
point to Start

GOAL

3
3 3

3

3

3 3

1

1 22

3

3

3

2

2

0 Start

2

24
1

1

1 1

1

1 1

1 1

A

B

CD

E F

G H I

J K

L

Example (3/5)

C(4)

A(4)

B(3)

A(4)

I(5)

G(7)

C(4)

H(3) No expansion

F(7)

C(4)

I(5)

G(7)

D(5)

E(3) GOAL(5)

We’ve found a path to the goal:
Start => A => E => Goal
(from the pointers)

Are we done?GOAL

3
3 3

3

3

3 3

1

1 22

3

3

3

2

2

0 Start

2

24
1

1

1 1

1

1 1

1 1

A

B

CD

E F

G H I

J K

L

Example (4/5)

C(4)

A(4)

B(3)

A(4)

I(5)

G(7)

C(4)

H(3) No expansion

F(7)

C(4)

I(5)

G(7)

D(5)

E(3) GOAL(5)

There might be a shorter path, but assuming
non-negative arc costs, nodes with a lower priority
than the goal cannot yield a better path.

In this example, nodes with a priority greater than or
equal to 5 can be pruned.

Why don’t we expand nodes with an equivalent priority?
(why not expand nodes D and I?)

GOAL

3
3 3

3

3

3 3

1

1 22

3

3

3

2

2

0 Start

2

24
1

1

1 1

1

1 1

1 1

A

B

CD

E F

G H I

J K

L

Example (5/5)

C(4)

A(4)

B(3)

A(4)

I(5)

G(7)

C(4)

H(3) No expansion

F(7)

C(4)

I(5)

G(7)

D(5)

E(3) GOAL(5)

We can continue to throw away nodes with
priority levels lower than the lowest goal found.

As we can see from this example, there was a
shorter path through node K. To find the path, simply
follow the back pointers.

Therefore the path would be:
Start => C => K => Goal

L(5)

J(5)

K(4) GOAL(4)

If the priority queue still wasn’t empty, we would
continue expanding while throwing away nodes
with priority lower than 4.
(remember, lower numbers = higher priority)

GOAL

3
3 3

3

3

3 3

1

1 22

3

3

3

2

2

0 Start

2

24
1

1

1 1

1

1 1

1 1

A

B

CD

E F

G H I

J K

L

A*: Example (1/6)

Heuristics

A = 14 H = 8

B = 10 I = 5

C = 8 J = 2

D = 6 K = 2

E = 8 L = 6

F = 7 M = 2

G = 6 N = 0

Legend
operating cost

A*: Example (2/6)

Heuristics
A = 14, B = 10, C = 8, D = 6, E = 8, F = 7, G = 6
H = 8, I = 5, J = 2, K = 2, L = 6, M = 2, N = 0

A*: Example (3/6)

Heuristics
A = 14, B = 10, C = 8, D = 6, E = 8, F = 7, G = 6
H = 8, I = 5, J = 2, K = 2, L = 6, M = 2, N = 0

Since A → B is smaller than
A → E → B, the f-cost value
of B in an open list needs not
be updated

A*: Example (4/6)

Heuristics
A = 14, B = 10, C = 8, D = 6, E = 8, F = 7, G = 6
H = 8, I = 5, J = 2, K = 2, L = 6, M = 2, N = 0

A*: Example (5/6)

Heuristics
A = 14, B = 10, C = 8, D = 6, E = 8, F = 7, G = 6
H = 8, I = 5, J = 2, K = 2, L = 6, M = 2, N = 0

Closed List Open List - Priority Queue
A(0)

H(14)
F(14)

E(3)

L(15)

Update Add new node

F(21) >

M(12)

B(14)I(6)
J(10)

N(13)

K(16)
G(19)

M(16) >

A*: Example (6/6)

Heuristics
A = 14, B = 10, C = 8, D = 6, E = 8, F = 7, G = 6
H = 8, I = 5, J = 2, K = 2, L = 6, M = 2, N = 0

Since the path to N from M is
greater than that from J, the
optimal path to N is the one
traversed from J

Closed List Open List - Priority Queue
A(0)

B(14)
H(14)

E(3)

F(14)
I(6)

Update Add new node

J(10)

N(13)

L(15)
K(16)
G(19)

M(10)

N(14)

L(24)

>

>

Goal

A*: Example Result

Generate the path
from the goal node
back to the start
node through the
back-pointer
attribute

Non-opportunistic

1. Put S on priority Q and expand it
2. Expand A because its priority value is 7
3. The goal is reached with priority value 8
4. This is less than B’s priority value which is 13

A*: Performance Analysis

• Complete provided the finite boundary condition and that every path cost is
greater than some positive constant δ

• Optimal in terms of the path cost
• Memory inefficient → IDA*
• Exponential growth of search space with respect to the length of solution

How can we use it in a partially known, dynamic
environment?

A* Replanner – unknown map

• Optimal
• Inefficient and impractical in

expansive environments – the goal is
far away from the start and little map
information exists (Stentz 1994)

How can we do better in a partially known
and dynamic environment?

D* Search (Stentz 1994)

• Stands for “Dynamic A* Search”
• Dynamic: Arc cost parameters can change during the problem

solving process—replanning online
• Functionally equivalent to the A* replanner
• Initially plans using the Dijkstra’s algorithm and allows intelligently

caching intermediate data for speedy replanning

• Benefits
– Optimal
– Complete
– More efficient than A* replanner in expansive and complex

environments
• Local changes in the world do not impact on the path much
• Most costs to goal remain the same
• It avoids high computational costs of backtracking

D* Example (1/22)

• The robot moves in 8 directions
• The arc cost values, c(X,Y) are small for clear cells

and are prohibitively large for obstacle cells

Obstacle cell (e.g. c(X1,X9)) = 10000Obstacle cell (e.g. c(X1,X8)) = 10000

Free cell (e.g. c(X1,X3)) = 1.4Free cell (e.g. c(X1,X2)) = 1

Diagonal TraversalHorizontal/Vertical Traversal

x2

x7x6x7

x5x1x8

x3x9

• X, Y → states of a robot
• b(X) = Y → backpointer of a state X to a next state Y
• c(X,Y) → arc cost of a path from X to Y
• t(X) → tag (i.e. NEW,OPEN, and CLOSED) of a state X
• h(X) → path cost
• k(X) → estimate of shortest path cost

D* Algorithm
h(G)=0;
do
{

kmin=PROCESS-STATE();
}while(kmin != -1 && start state not removed from Qu);
if(kmin == -1)

{ goal unreachable; exit;}
else{

do{

do{
trace optimal path();

}while (goal is not reached && map == environment);

if (goal_is_reached)
{ exit;}
else
{

Y= State of discrepancy reached trying to move from some State X;
MODIFY-COST(Y,X,newc(Y,X));
do
{

kmin=PROCESS-STATE();
}while(k(Y) < h(Y) && kmin != -1);
if(kmin==-1)

exit();
}

}while(1);
}

D* Algorithm

• PROCESS-STATE()
– Compute optimal path to the goal
– Initially set h(G) = 0 and insert it into the OPEN list
– Repeatedly called until the robot’s state X is removed from the OPEN list

• MODIFY-COST()
– Immediately called, once the robot detects an error in the arc cost function

(i.e. discover a new obstacle)
– Change the arc cost function and enter affected states on the OPEN list

c(X,Y)=cval

if t(X) =CLOSED then INSERT (X,h(X))

Return GET-MIN ()

MODIFY-COST(X,Y,cval)

X = MIN-STATE()

if X= NULL then return –1

kold = GET-KMIN(); DELETE(X);

if kold< h(X) then

for each neighbor Y of X:

if h(Y) <= kold and h(X) > h(Y) + c(Y,X) then

b(X) = Y; h(X) = h(Y)+c(Y,X);

if kold= h(X) then

for each neighbor Y of X:

if t(Y) = NEW or

(b(Y) =X and h(Y) ≠ h(X)+c (X,Y)) or

(b(Y) ≠ X and h(Y) > h(X)+c (X,Y)) then

b(Y) = X ; INSERT(Y, h(X)+c(X,Y))

else

for each neighbor Y of X:

if t(Y) = NEW or

(b(Y) =X and h(Y) ≠ h(X)+c (X,Y)) then

b(Y) = X ; INSERT(Y, h(X)+c(X,Y))

else

if b(Y) ≠ X and h(Y) > h(X)+c (X,Y) then

INSERT(X, h(X))

else

if b(Y) ≠ X and h(X) > h(Y)+c (X,Y) and

t(Y) = CLOSED and h(Y) > kold then

INSERT(Y, h(Y))

Return GET-KMIN ()

PROCESS-STATE()

Other Procedures

INSERT(X,hnew)
if t(X) = NEW then k(X)=hnew

if t(X) = OPEN then k(X)=min(k(X),hnew)

if t(X) = CLOSED then k(X)=min(k(X),hnew) and
t(X)= OPEN

Sort open list based on increasing k values;

MIN-STATE()
Return X if k(X) is minimum for all states on
open list

GET-KMIN()
Return the minimum value of k for all states on
open list

D* Example (2/22) Initially, all states have the tag NEW

All h and k values will be measured as
“distance” in grid to goal

Clear

Obstacle

Goal

Start

Gate

h =
k =
b=

h =
k =
b=

h =
k =
b=

h =
k =
b=

h =
k =
b=

h =
k =
b=

h =
k =
b=

h =
k =
b=

h =
k =
b=

h =
k =
b=

h =
k =
b=

h =
k =
b=

h =
k =
b=

h =
k =
b=

h =
k =
b=

h =
k =
b=

h =
k =
b=

h =
k =
b=

h =
k =
b=

h =
k =
b=

h =
k =
b=

h =
k =
b=

h =
k =
b=

h =
k =
b=

h =
k =
b=

h =
k =
b=

h =
k =
b=

h =
k =
b=

h =
k =
b=

h =
k =
b=

h =
k =
b=

h =
k =
b=

h =
k =
b=

h =
k =
b=

h =
k =
b=

h =
k =
b=

h =
k =
b=

h =
k =
b=

h =
k =
b=

h =
k =
b=

h =
k =
b=

h =
k =
b=

1 2 3 4 5 6 7

6

5

4

3

2

1

D* Example (3/22) Put goal node onto the queue, also
called the open list, with h=0 and k=0.
The k value is used as the priority in the
queue. So, initially this looks like an
Dijkstra’s Search

(7,6) 0
State kh =

k =
b=

h =
k =
b=

h =
k =
b=

h =
k =
b=

h =
k =
b=

h =
k =
b=

h = 0
k = 0
b=

h =
k =
b=

h =
k =
b=

h =
k =
b=

h =
k =
b=

h =
k =
b=

h =
k =
b=

h =
k =
b=

h =
k =
b=

h =
k =
b=

h =
k =
b=

h =
k =
b=

h =
k =
b=

h =
k =
b=

h =
k =
b=

h =
k =
b=

h =
k =
b=

h =
k =
b=

h =
k =
b=

h =
k =
b=

h =
k =
b=

h =
k =
b=

h =
k =
b=

h =
k =
b=

h =
k =
b=

h =
k =
b=

h =
k =
b=

h =
k =
b=

h =
k =
b=

h =
k =
b=

h =
k =
b=

h =
k =
b=

h =
k =
b=

h =
k =
b=

h =
k =
b=

h =
k =
b=

1 2 3 4 5 6 7

6

5

4

3

2

1

D* Example (4/22) Pop the goal node off the open list and expand it so its
neighbors (6,6), (6,5) and (7,5) are placed on the
open list. Since these states are new, their k and h
values are the same, which is set to the increment in
distance from the previous pixel because they are free
space. Here, k and h happen to be distance to goal.

(6,6) 1
State k

(7,5) 1
(6,5) 1.4

h =
k =
b=

h =
k =
b=

h =
k =
b=

h =
k =
b=

h =
k =
b=

h = 1
k = 1

b= (7,6)

h = 0
k = 0
b=

h =
k =
b=

h =
k =
b=

h =
k =
b=

h =
k =
b=

h =
k =
b=

h = 1.4
k = 1.4
b= (7,6)

h = 1
k = 1

b= (7,6)

h =
k =
b=

h =
k =
b=

h =
k =
b=

h =
k =
b=

h =
k =
b=

h =
k =
b=

h =
k =
b=

h =
k =
b=

h =
k =
b=

h =
k =
b=

h =
k =
b=

h =
k =
b=

h =
k =
b=

h =
k =
b=

h =
k =
b=

h =
k =
b=

h =
k =
b=

h =
k =
b=

h =
k =
b=

h =
k =
b=

h =
k =
b=

h =
k =
b=

h =
k =
b=

h =
k =
b=

h =
k =
b=

h =
k =
b=

h =
k =
b=

h =
k =
b=

1 2 3 4 5 6 7

6

5

4

3

2

1

“Open” – on priority queue “Closed”“Closed” & currently being expanded

if kold= h(X) then for each neighbor Y of X:
if t(Y) = NEW or
(b(Y) =X and h(Y) ≠ h(X)+c (X,Y)) or

(b(Y) ≠ X and h(Y) > h(X)+c (X,Y))
then b(Y) = X ; INSERT(Y, h(X)+c(X,Y))

D* Example (5/22)
Expand (6,6) node so (5,6)
and (5,5) are placed on the open list

State k
(7,5) 1
(6,5) 1.4
(5,6) 2
(5,5) 2.4

h =
k =
b=

h =
k =
b=

h =
k =
b=

h =
k =
b=

h = 2
k = 2

b= (6,6)

h = 1
k = 1

b= (7,6)

h = 0
k = 0
b=

h =
k =
b=

h =
k =
b=

h =
k =
b=

h =
k =
b=

h = 2.4
k = 2.4
b= (6,6)

h = 1.4
k = 1.4
b= (7,6)

h = 1
k = 1

b= (7,6)

h =
k =
b=

h =
k =
b=

h =
k =
b=

h =
k =
b=

h =
k =
b=

h =
k =
b=

h =
k =
b=

h =
k =
b=

h =
k =
b=

h =
k =
b=

h =
k =
b=

h =
k =
b=

h =
k =
b=

h =
k =
b=

h =
k =
b=

h =
k =
b=

h =
k =
b=

h =
k =
b=

h =
k =
b=

h =
k =
b=

h =
k =
b=

h =
k =
b=

h =
k =
b=

h =
k =
b=

h =
k =
b=

h =
k =
b=

h =
k =
b=

h =
k =
b=

1 2 3 4 5 6 7

6

5

4

3

2

1

“Open” – on priority queue “Closed”“Closed” & currently being expanded

if kold= h(X) then for each neighbor Y of X:
if t(Y) = NEW or
(b(Y) =X and h(Y) ≠ h(X)+c (X,Y)) or

(b(Y) ≠ X and h(Y) > h(X)+c (X,Y))
then b(Y) = X ; INSERT(Y, h(X)+c(X,Y))

D* Example (6/22)
Expand (7,5) so (6,4)
and (7,4) are placed on the open list

State k
(6,5) 1.4
(5,6) 2
(7,4) 2
(6,4) 2.4
(5,5) 2.4

“Open” – on priority queue “Closed”“Closed” & currently being expanded

h =
k =
b=

h =
k =
b=

h =
k =
b=

h =
k =
b=

h = 2
k = 2

b= (6,6)

h = 1
k = 1

b= (7,6)

h = 0
k = 0
b=

h =
k =
b=

h =
k =
b=

h =
k =
b=

h =
k =
b=

h = 2.4
k = 2.4
b= (6,6)

h = 1.4
k = 1.4
b= (7,6)

h = 1
k = 1

b= (7,6)

h =
k =
b=

h =
k =
b=

h =
k =
b=

h =
k =
b=

h =
k =
b=

h = 2.4
k = 2.4
b= (7,5)

h = 2
k = 2

b= (7,5)

h =
k =
b=

h =
k =
b=

h =
k =
b=

h =
k =
b=

h =
k =
b=

h =
k =
b=

h =
k =
b=

h =
k =
b=

h =
k =
b=

h =
k =
b=

h =
k =
b=

h =
k =
b=

h =
k =
b=

h =
k =
b=

h =
k =
b=

h =
k =
b=

h =
k =
b=

h =
k =
b=

h =
k =
b=

h =
k =
b=

h =
k =
b=

1 2 3 4 5 6 7

6

5

4

3

2

1

if kold= h(X) then for each neighbor Y of X:
if t(Y) = NEW or
(b(Y) =X and h(Y) ≠ h(X)+c (X,Y)) or

(b(Y) ≠ X and h(Y) > h(X)+c (X,Y))
then b(Y) = X ; INSERT(Y, h(X)+c(X,Y))

D* Example (7/22) When (4,6) is expanded, (3,5) and (3,6) are
put on the open list but since the states
(3,5) and (3,6) were obstacles their h value
is high and since they are new, when they
are inserted onto the open list, their k and h
values are the same.

“Open” – on priority queue “Closed”“Closed” & currently being expanded

State k
(7,3) 3
(6,3) 3.4
(4,5) 3.4
(5,3) 3.8
(4,4) 3.8

4.2(4,3)
10000

(3,5) 10000
(3,6)

h =
k =
b=

h =
k =
b=

h =10000
k =10000
b=(4,6)

h = 3
k = 3

b= (5,6)

h = 2
k = 2

b= (6,6)

h = 1
k = 1

b= (7,6)

h = 0
k = 0
b=

h =
k =
b=

h =
k =
b=

h=10000
k=10000
b=(4,6)

h = 3.4
k = 3.4
b= (5,6)

h = 2.4
k = 2.4
b= (6,6)

h = 1.4
k = 1.4
b= (7,6)

h = 1
k = 1

b= (7,6)

h =
k =
b=

h =
k =
b=

h =
k =
b=

h = 3.8
k = 3.8
b= (5,5)

h = 2.8
k = 2.8
b= (6,5)

h = 2.4
k = 2.4
b= (7,5)

h = 2
k = 2

b= (7,5)

h =
k =
b=

h =
k =
b=

h =
k =
b=

h = 4.2
k = 4.2
b= (5,4)

h = 3.8
k = 3.8
b= (6,4)

h = 3.4
k = 3.4
b= (7,4)

h = 3
k = 3

b= (7,4)

h =
k =
b=

h =
k =
b=

h =
k =
b=

h =
k =
b=

h =
k =
b=

h =
k =
b=

h =
k =
b=

h =
k =
b=

h =
k =
b=

h =
k =
b=

h =
k =
b=

h =
k =
b=

h =
k =
b=

h =
k =
b=

1 2 3 4 5 6 7

6

5

4

3

2

1

if kold= h(X) then for each neighbor Y of X:
if t(Y) = NEW or
(b(Y) =X and h(Y) ≠ h(X)+c (X,Y)) or

(b(Y) ≠ X and h(Y) > h(X)+c (X,Y))
then b(Y) = X ; INSERT(Y, h(X)+c(X,Y))

D* Example (8/22) The search ends when the start node is expanded.
Note that there are still some remaining nodes on
the open list and there are some nodes which have
not been touched at all.

State k
(1,2) 7.6
(1,3) 8.0
(1,1) 8.0

10000
(3,5) 10000
(3,6)

10000
(4,2) 10000
(3,4)

(3,3)
(2,3)

10000
10000

h =
k =
b=

h =
k =
b=

h =10000
k =10000

b=(4,6)

h = 3
k = 3

b= (5,6)

h = 2
k = 2

b= (6,6)

h = 1
k = 1

b= (7,6)

h = 0
k = 0
b=

h =
k =
b=

h =
k =
b=

h=10000
k=10000

b=(4,6)

h = 3.4
k = 3.4
b= (5,6)

h = 2.4
k = 2.4
b= (6,6)

h = 1.4
k = 1.4
b= (7,6)

h = 1
k = 1

b= (7,6)

h =
k =
b=

h =
k =
b=

h=10000
k=10000

b=(4,5)

h = 3.8
k = 3.8
b= (5,5)

h = 2.8
k = 2.8
b= (6,5)

h = 2.4
k = 2.4
b= (7,5)

h = 2
k = 2

b= (7,5)

h = 8.0
k = 8.0
b=(2,2)

h=10000
k=10000

b=(3,2)

h=10000
k=10000

b=(4,4)

h = 4.2
k = 4.2
b= (5,4)

h = 3.8
k = 3.8
b= (6,4)

h = 3.4
k = 3.4
b= (7,4)

h = 3
k = 3

b= (7,4)

h = 7.6
k = 7.6
b=(2,2)

h = 6.6
k = 6.6
b=(3,2)

h = 5.6
k = 5.6
b=(4,3)

h=10000
k=10000

b=(5,3)

h = 4.8
k = 4.8
b= (6,3)

h =4.4
k =4.4
b=(7,3)

h = 4
k = 4

b= (7,3)

h = 8.0
k = 8.0
b=(2,2)

h = 7.0
k = 7.0
b=(3,2)

h = 6.6
k = 6.6
b= (3,2)

h = 6.2
k = 6.2
b=(5,2)

h = 5.8
k = 5.8
b= (6,2)

h = 5.4
k = 5.4
b=(7,2)

h = 5
k = 5

b=(7,2)

1 2 3 4 5 6 7

6

5

4

3

2

1

“Open” – on priority queue “Closed”“Closed” & currently being expanded

if kold= h(X) then for each neighbor Y of X:
if t(Y) = NEW or
(b(Y) =X and h(Y) ≠ h(X)+c (X,Y)) or

(b(Y) ≠ X and h(Y) > h(X)+c (X,Y))
then b(Y) = X ; INSERT(Y, h(X)+c(X,Y))

D* Example (9/22)

h =
k =
b=

h =
k =
b=

h =10000
k =10000

b=(4,6)

h = 3
k = 3

b= (5,6)

h = 2
k = 2

b= (6,6)

h = 1
k = 1

b= (7,6)

h = 0
k = 0
b=

h =
k =
b=

h =
k =
b=

h=10000
k=10000

b=(4,6)

h = 3.4
k = 3.4
b= (5,6)

h = 2.4
k = 2.4
b= (6,6)

h = 1.4
k = 1.4
b= (7,6)

h = 1
k = 1

b= (7,6)

h =
k =
b=

h =
k =
b=

h=10000
k=10000

b=(4,5)

h = 3.8
k = 3.8
b= (5,5)

h = 2.8
k = 2.8
b= (6,5)

h = 2.4
k = 2.4
b= (7,5)

h = 2
k = 2

b= (7,5)

h = 8.0
k = 8.0
b=(2,2)

h=10000
k=10000

b=(3,2)

h=10000
k=10000

b=(4,4)

h = 4.2
k = 4.2
b= (5,4)

h = 3.8
k = 3.8
b= (6,4)

h = 3.4
k = 3.4
b= (7,4)

h = 3
k = 3

b= (7,4)

h = 7.6
k = 7.6
b=(2,2)

h = 6.6
k = 6.6
b=(3,2)

h = 5.6
k = 5.6
b=(4,3)

h=10000
k=10000

b=(5,3)

h = 4.8
k = 4.8
b= (6,3)

h =4.4
k =4.4
b=(7,3)

h = 4
k = 4

b= (7,3)

h = 8.0
k = 8.0
b=(2,2)

h = 7.0
k = 7.0
b=(3,2)

h = 6.6
k = 6.6
b= (3,2)

h = 6.2
k = 6.2
b=(5,2)

h = 5.8
k = 5.8
b= (6,2)

h = 5.4
k = 5.4
b=(7,2)

h = 5
k = 5

b=(7,2)

1 2 3 4 5 6 7

6

5

4

3

2

1

State k
(1,2) 7.6
(1,3) 8.0
(1,1) 8.0

10000
(3,5) 10000
(3,6)

10000
(4,2) 10000
(3,4)

(3,3)
(2,3)

10000
10000

Determine optimal path by
following gradient of h values

D* Example (10/22) The robot starts moving along
the optimal path, but discovers
that pixel (4,3) is an obstacle!!

State k
(1,2) 7.6
(1,3) 8.0
(1,1) 8.0

10000
(3,5) 10000
(3,6)

10000
(4,2) 10000
(3,4)

(3,3)
(2,3)

10000
10000

Robot

h =
k =
b=

h =
k =
b=

h =10000
k =10000

b=(4,6)

h = 3
k = 3

b= (5,6)

h = 2
k = 2

b= (6,6)

h = 1
k = 1

b= (7,6)

h = 0
k = 0
b=

h =
k =
b=

h =
k =
b=

h=10000
k=10000

b=(4,6)

h = 3.4
k = 3.4
b= (5,6)

h = 2.4
k = 2.4
b= (6,6)

h = 1.4
k = 1.4
b= (7,6)

h = 1
k = 1

b= (7,6)

h =
k =
b=

h =
k =
b=

h=10000
k=10000

b=(4,5)

h = 3.8
k = 3.8
b= (5,5)

h = 2.8
k = 2.8
b= (6,5)

h = 2.4
k = 2.4
b= (7,5)

h = 2
k = 2

b= (7,5)

h = 8.0
k = 8.0
b=(2,2)

h=10000
k=10000

b=(3,2)

h=10000
k=10000

b=(4,4)

h = 4.2
k = 4.2
b= (5,4)

h = 3.8
k = 3.8
b= (6,4)

h = 3.4
k = 3.4
b= (7,4)

h = 3
k = 3

b= (7,4)

h = 7.6
k = 7.6
b=(2,2)

h = 6.6
k = 6.6
b=(3,2)

h = 5.6
k = 5.6
b=(4,3)

h=10000
k=10000

b=(5,3)

h = 4.8
k = 4.8
b= (6,3)

h =4.4
k =4.4
b=(7,3)

h = 4
k = 4

b= (7,3)

h = 8.0
k = 8.0
b=(2,2)

h = 7.0
k = 7.0
b=(3,2)

h = 6.6
k = 6.6
b= (3,2)

h = 6.2
k = 6.2
b=(5,2)

h = 5.8
k = 5.8
b= (6,2)

h = 5.4
k = 5.4
b=(7,2)

h = 5
k = 5

b=(7,2)

1 2 3 4 5 6 7

6

5

4

3

2

1

D* Example
(11a/22)

h =
k =
b=

h =
k =
b=

h =10000
k =10000

b=(4,6)

h = 3
k = 3

b= (5,6)

h = 2
k = 2

b= (6,6)

h = 1
k = 1

b= (7,6)

h = 0
k = 0
b=

h =
k =
b=

h =
k =
b=

h=10000
k=10000

b=(4,6)

h = 3.4
k = 3.4
b= (5,6)

h = 2.4
k = 2.4
b= (6,6)

h = 1.4
k = 1.4
b= (7,6)

h = 1
k = 1

b= (7,6)

h =
k =
b=

h =
k =
b=

h=10000
k=10000

b=(4,5)

h = 3.8
k = 3.8
b= (5,5)

h = 2.8
k = 2.8
b= (6,5)

h = 2.4
k = 2.4
b= (7,5)

h = 2
k = 2

b= (7,5)

h = 8.0
k = 8.0
b=(2,2)

h=10000
k=10000

b=(3,2)

h=10000
k=10000

b=(4,4)

h=4.2
k = 4.2

b= (5,4)

h = 3.8
k = 3.8
b= (6,4)

h = 3.4
k = 3.4
b= (7,4)

h = 3
k = 3

b= (7,4)

h = 7.6
k = 7.6
b=(2,2)

h = 6.6
k = 6.6
b=(3,2)

h = 5.6
k = 5.6
b=(4,3)

h=10000
k=10000

b=(5,3)

h = 4.8
k = 4.8
b= (6,3)

h =4.4
k =4.4
b=(7,3)

h = 4
k = 4

b= (7,3)

h = 8.0
k = 8.0
b=(2,2)

h = 7.0
k = 7.0
b=(3,2)

h = 6.6
k = 6.6
b= (3,2)

h = 6.2
k = 6.2
b=(5,2)

h = 5.8
k = 5.8
b= (6,2)

h = 5.4
k = 5.4
b=(7,2)

h = 5
k = 5

b=(7,2)

1 2 3 4 5 6 7

6

5

4

3

2

1

Increase by a large number the transition cost to (4,3) for all nodes adjacent to (4,3). Next, put all nodes affected by
the increased transition costs (all nine neighbors) on the open list including (4,3). Note that some neighbors of (4,3),
and (4,3) itself have lower k values than most elements on the open list already. Therefore, these nodes will be
popped first.

Now, things will start to
get interesting!

State k

(1,2) 7.6
(1,3) 8.0
(1,1) 8.0

10000
(3,5) 10000
(3,6)

10000
(4,2) 10000
(3,4)

(3,3)
(2,3)

10000
10000

(3,2) 5.6
(5,2) 4.8
(4,3) 4.2
(4,4) 3.8
(5,3) 3.8
(5,4) 2.8

Modify-Cost (X, Y, cval)
c(X,Y)=cval
if t(X) =CLOSED then INSERT (X,h(X))

D* Example
(11b/22)

(5,4) is popped first because its k value is the smallest. Since its k and h are the same, consider each neighbor of (5,4). One
such neighbor is (4,3). (4, 3)’s back pointer points to (5,4) but its original h value is not the sum of (5,4)’s h value plus the
transition cost, which was just raised due to the obstacle. Therefore, (4,3) is put on the open list but with a high h value. Note
that since (4,3) is already on the open list, its k value remains the same. Now, the node (4,3) is a called a raise state
because h>k.

Now, things will start to
get interesting!

h =
k =
b=

h =
k =
b=

h =10000
k =10000

b=(4,6)

h = 3
k = 3

b= (5,6)

h = 2
k = 2

b= (6,6)

h = 1
k = 1

b= (7,6)

h = 0
k = 0
b=

h =
k =
b=

h =
k =
b=

h=10000
k=10000

b=(4,6)

h = 3.4
k = 3.4
b= (5,6)

h = 2.4
k = 2.4
b= (6,6)

h = 1.4
k = 1.4
b= (7,6)

h = 1
k = 1

b= (7,6)

h =
k =
b=

h =
k =
b=

h=10000
k=10000

b=(4,5)

h = 3.8
k = 3.8
b= (5,5)

h = 2.8
k = 2.8
b= (6,5)

h = 2.4
k = 2.4
b= (7,5)

h = 2
k = 2

b= (7,5)

h = 8.0
k = 8.0
b=(2,2)

h=10000
k=10000

b=(3,2)

h=10000
k=10000

b=(4,4)

h=10000
k = 4.2

b= (5,4)

h = 3.8
k = 3.8
b= (6,4)

h = 3.4
k = 3.4
b= (7,4)

h = 3
k = 3

b= (7,4)

h = 7.6
k = 7.6
b=(2,2)

h = 6.6
k = 6.6
b=(3,2)

h = 5.6
k = 5.6
b=(4,3)

h=10000
k=10000

b=(5,3)

h = 4.8
k = 4.8
b= (6,3)

h =4.4
k =4.4
b=(7,3)

h = 4
k = 4

b= (7,3)

h = 8.0
k = 8.0
b=(2,2)

h = 7.0
k = 7.0
b=(3,2)

h = 6.6
k = 6.6
b= (3,2)

h = 6.2
k = 6.2
b=(5,2)

h = 5.8
k = 5.8
b= (6,2)

h = 5.4
k = 5.4
b=(7,2)

h = 5
k = 5

b=(7,2)

1 2 3 4 5 6 7

6

5

4

3

2

1

State k

(1,2) 7.6
(1,3) 8.0
(1,1) 8.0

10000
(3,5) 10000
(3,6)

10000
(4,2) 10000
(3,4)

(3,3)
(2,3)

10000
10000

(3,2) 5.6
(5,2) 4.8
(4,3) 4.2
(4,4) 3.8
(5,3) 3.8

if kold= h(X) then for each neighbor Y of X:
if t(Y) = NEW or
(b(Y) =X and h(Y) ≠ h(X)+c (X,Y)) or
(b(Y) ≠ X and h(Y) > h(X)+c (X,Y)) then
b(Y) = X ; INSERT(Y, h(X)+c(X,Y))

D* Example
(11c/22)

Next, we pop (5,3) but this will not affect anything because none of the surrounding pixels are new, and the h values of
the surrounding pixels are correct. A similar non-action happens for (4,4).

Now, things will start to
get interesting!

State k

(1,2) 7.6
(1,3) 8.0
(1,1) 8.0

10000
(3,5) 10000
(3,6)

10000
(4,2) 10000
(3,4)

(3,3)
(2,3)

10000
10000

(3,2) 5.6
(5,2) 4.8
(4,3) 4.2

h =
k =
b=

h =
k =
b=

h =10000
k =10000

b=(4,6)

h = 3
k = 3

b= (5,6)

h = 2
k = 2

b= (6,6)

h = 1
k = 1

b= (7,6)

h = 0
k = 0
b=

h =
k =
b=

h =
k =
b=

h=10000
k=10000

b=(4,6)

h = 3.4
k = 3.4
b= (5,6)

h = 2.4
k = 2.4
b= (6,6)

h = 1.4
k = 1.4
b= (7,6)

h = 1
k = 1

b= (7,6)

h =
k =
b=

h =
k =
b=

h=10000
k=10000

b=(4,5)

h = 3.8
k = 3.8
b= (5,5)

h = 2.8
k = 2.8
b= (6,5)

h = 2.4
k = 2.4
b= (7,5)

h = 2
k = 2

b= (7,5)

h = 8.0
k = 8.0
b=(2,2)

h=10000
k=10000

b=(3,2)

h=10000
k=10000

b=(4,4)

h=10000
k = 4.2

b= (5,4)

h = 3.8
k = 3.8
b= (6,4)

h = 3.4
k = 3.4
b= (7,4)

h = 3
k = 3

b= (7,4)

h = 7.6
k = 7.6
b=(2,2)

h = 6.6
k = 6.6
b=(3,2)

h = 5.6
k = 5.6
b=(4,3)

h=10000
k=10000

b=(5,3)

h = 4.8
k = 4.8
b= (6,3)

h =4.4
k =4.4
b=(7,3)

h = 4
k = 4

b= (7,3)

h = 8.0
k = 8.0
b=(2,2)

h = 7.0
k = 7.0
b=(3,2)

h = 6.6
k = 6.6
b= (3,2)

h = 6.2
k = 6.2
b=(5,2)

h = 5.8
k = 5.8
b= (6,2)

h = 5.4
k = 5.4
b=(7,2)

h = 5
k = 5

b=(7,2)

1 2 3 4 5 6 7

6

5

4

3

2

1

if kold= h(X) then for each neighbor Y of X:
if t(Y) = NEW or
(b(Y) =X and h(Y) ≠ h(X)+c (X,Y)) or
(b(Y) ≠ X and h(Y) > h(X)+c (X,Y)) then
b(Y) = X ; INSERT(Y, h(X)+c(X,Y))

D* Example
(12/22)

for each neighbor Y of X:
if t(Y) = NEW or b(Y) =X and h(Y) ≠ h(X)+c (X,Y)) then b(Y) = X ; INSERT(Y, h(X)+c(X,Y))

else if b(Y) ≠ X and h(Y) > h(X)+c (X,Y) then INSERT(X, h(X))
else if b(Y) ≠ X and h(X) > h(Y)+c (X,Y) and t(Y) = CLOSED and h(Y) > kold then INSERT(Y, h(Y))

h =
k =
b=

h =
k =
b=

h =10000
k =10000

b=(4,6)

h = 3
k = 3

b= (5,6)

h = 2
k = 2

b= (6,6)

h = 1
k = 1

b= (7,6)

h = 0
k = 0
b=

h =
k =
b=

h =
k =
b=

h=10000
k=10000

b=(4,6)

h = 3.4
k = 3.4
b= (5,6)

h = 2.4
k = 2.4
b= (6,6)

h = 1.4
k = 1.4
b= (7,6)

h = 1
k = 1

b= (7,6)

h =
k =
b=

h =
k =
b=

h=10000
k=10000

b=(4,5)

h = 3.8
k = 3.8
b= (5,5)

h = 2.8
k = 2.8
b= (6,5)

h = 2.4
k = 2.4
b= (7,5)

h = 2
k = 2

b= (7,5)

h = 8.0
k = 8.0
b=(2,2)

h=10000
k=10000

b=(3,2)

h=10000
k=10000

b=(4,4)

h=10000

k = 4.2
b= (5,4)

h = 3.8
k = 3.8
b= (6,4)

h = 3.4
k = 3.4
b= (7,4)

h = 3
k = 3

b= (7,4)

h = 7.6
k = 7.6
b=(2,2)

h = 6.6
k = 6.6
b=(3,2)

h = 10005.6

k = 5.6
b=(4,3)

h=10000
k=10000

b=(5,3)

h = 4.8
k = 4.8
b= (6,3)

h =4.4
k =4.4
b=(7,3)

h = 4
k = 4

b= (7,3)

h = 8.0
k = 8.0
b=(2,2)

h = 7.0
k = 7.0
b=(3,2)

h = 6.6
k = 6.6
b= (3,2)

h = 6.2
k = 6.2
b=(5,2)

h = 5.8
k = 5.8
b= (6,2)

h = 5.4
k = 5.4
b=(7,2)

h = 5
k = 5

b=(7,2)

1 2 3 4 5 6 7

6

5

4

3

2

1

State k

(1,2) 7.6
(1,3) 8.0
(1,1) 8.0

10000
(3,5) 10000
(3,6)

10000
(4,2) 10000
(3,4)

(3,3)
(2,3)

10000
10000

(3,2) 5.6

if kold< h(X) then
for each neighbor Y of X:

if h(Y) <= kold and h(X) > h(Y) + c(Y,X) then
b(X) = Y; h(X) = h(Y)+c(Y,X);

Pop (4,3) off the queue. Because k<h, our objective is to try to decrease the h value. This is akin to finding a
better path from (4,3) to the goal, but this is not possible because (4,3) is an obstacle. For example, (5,3) is a
neighbor of (4,3) whose h value is less than (4,3)’s k value, but the h value of (4,3) is “equal” to the h value of
(5,3) plus the transition cost, therefore, we cannot improve anything coming from (4,3) to (5,3). This is also true
for (5,4) and (4,4). So, we cannot find a path through any of (4,3)’s neighbors to reduce h. Next, we expand
(4,3), which places all pixels whose back pointers point to (4,3) [in this case, only (3,2)] on the open list with a
high h value. Now, (3,2) is also a raise state. Note that the k value of (3,2) is set to the minimum of its old and
new h values (this setting happens in the insert function). Next, we pop (5,2) but this will not affect anything
because none of the surrounding pixels are new, and the h values of the surrounding pixels are correct

D* Example
(13/22)

State k

(1,3) 8.0
(1,1) 8.0

10000
(3,5) 10000
(3,6)

10003.8
(4,2) 10004.2
(3,4)

(3,3)
(2,3)

10004.2
10006

(3,1) 6.6
(2,2) 6.6
(2,1) 7.0
(1,2) 7.6

(4,1) 6.2
h =
k =
b=

h =
k =
b=

h =10000
k =10000

b=(4,6)

h = 3
k = 3

b= (5,6)

h = 2
k = 2

b= (6,6)

h = 1
k = 1

b= (7,6)

h = 0
k = 0
b=

h =
k =
b=

h =
k =
b=

h=10000
k=10000

b=(4,6)

h = 3.4
k = 3.4
b= (5,6)

h = 2.4
k = 2.4
b= (6,6)

h = 1.4
k = 1.4
b= (7,6)

h = 1
k = 1

b= (7,6)

h =
k =
b=

h =
k =
b=

h=10000
k=10000

b=(4,5)

h = 3.8
k = 3.8
b= (5,5)

h = 2.8
k = 2.8
b= (6,5)

h = 2.4
k = 2.4
b= (7,5)

h = 2
k = 2

b= (7,5)

h = 8.0
k = 8.0
b=(2,2)

h=10000
k=10000

b=(3,2)

h=10000
k=10000

b=(4,4)

h=10000

k = 4.2
b= (5,4)

h = 3.8
k = 3.8
b= (6,4)

h = 3.4
k = 3.4
b= (7,4)

h = 3
k = 3

b= (7,4)

h = 7.6
k = 7.6
b=(2,2)

h=10000

k = 6.6
b=(3,2)

h = 10000

k = 5.6
b=(4,1)

h=10000
k=10000

b=(5,3)

h = 4.8
k = 4.8
b= (6,3)

h =4.4
k =4.4
b=(7,3)

h = 4
k = 4

b= (7,3)

h = 8.0
k = 8.0
b=(2,2)

h = 10000

k = 7.0
b=(3,2)

h = 10000

k = 6.6
b= (3,2)

h = 6.2
k = 6.2
b=(5,2)

h = 5.8
k = 5.8
b= (6,2)

h = 5.4
k = 5.4
b=(7,2)

h = 5
k = 5

b=(7,2)

1 2 3 4 5 6 7

6

5

4

3

2

1

if kold< h(X) then
for each neighbor Y of X:

if h(Y) <= kold and h(X) > h(Y) + c(Y,X) then
b(X) = Y; h(X) = h(Y)+c(Y,X);

for each neighbor Y of X:
if t(Y) = NEW or b(Y) =X and h(Y) ≠ h(X)+c (X,Y)) then b(Y) = X ; INSERT(Y, h(X)+c(X,Y))

else if b(Y) ≠ X and h(Y) > h(X)+c (X,Y) then INSERT(X, h(X))
else if b(Y) ≠ X and h(X) > h(Y)+c (X,Y) and t(Y) = CLOSED and h(Y) > kold then INSERT(Y, h(Y))

Pop (3,2) off the queue. Since k<h, see if there is a neighbor whose h value is less than the k value of (3,2) – if there is,
we’ll redirect the backpointer through this neighbor. However, no such neighbor exists. So, look for a neighboring pixel
whose back pointer does not point to (3,2), whose h value plus the transition cost is less than the (3,2)’s h value, which
is on the closed list, and whose h value is greater than the (3,2)’s k value. The only such neighbor is (4,1). This could
potentially lead to a lower cost path. So, the neighbor (4,1) is chosen because it could potentially reduce the h value of
(3,2). We put this neighbor on the open list with its current h value. It is called a lower state because h = k. The pixels
whose back pointers point to (3,2) and have an “incorrect” h value, ie. The h value of the neighboring pixel is not equal to
the h value of (3,2) plus its transition cost, are also put onto the priority queue with maximum h values (making them
raise states). These are (3,1), (2,1), and (2,2). Note that the k values of these nodes are set to the minimum of the new
h value and the old h value.

D* Example
(14/22)

Pop (4,1) off the open list and expand it. Since (4,1)’s h and k values are the same, look at the
neighbors whose pack pointers do not point to (4,1) to see if passing through (4,1) reduces any of the
neighbor’s h values. This redirects the backpointers of (3,2) and (3,1) to pass through (4,1) and then
puts them onto the priority queue.

Because (3,2) was “closed”, its new k value is the smaller of its old and new h values and since k==h, it
is now a lower state, ie, new k = min (old h, new h). Because (3,1) was “open” (on the priority queue),
its new k value is the smaller of its old k value and its new h value, ie, new k = min (old k, new h). See
insert for details.

State k

(1,3) 8.0
(1,1) 8.0

10000
(3,5) 10000
(3,6)

10003.8
(4,2) 10004.2
(3,4)

(3,3)
(2,3)

10004.2
10006

(2,2) 6.6
(2,1) 7.0
(1,2) 7.6
(3,2) 7.6

(3,1) 6.6
h =
k =
b=

h =
k =
b=

h =10000
k =10000

b=(4,6)

h = 3
k = 3

b= (5,6)

h = 2
k = 2

b= (6,6)

h = 1
k = 1

b= (7,6)

h = 0
k = 0
b=

h =
k =
b=

h =
k =
b=

h=10000
k=10000

b=(4,6)

h = 3.4
k = 3.4
b= (5,6)

h = 2.4
k = 2.4
b= (6,6)

h = 1.4
k = 1.4
b= (7,6)

h = 1
k = 1

b= (7,6)

h =
k =
b=

h =
k =
b=

h=10000
k=10000

b=(4,5)

h = 3.8
k = 3.8
b= (5,5)

h = 2.8
k = 2.8
b= (6,5)

h = 2.4
k = 2.4
b= (7,5)

h = 2
k = 2

b= (7,5)

h = 8.0
k = 8.0
b=(2,2)

h=10000
k=10000

b=(3,2)

h=10000
k=10000

b=(4,4)

h=10000

k = 4.2
b= (5,4)

h = 3.8
k = 3.8
b= (6,4)

h = 3.4
k = 3.4
b= (7,4)

h = 3
k = 3

b= (7,4)

h = 7.6
k = 7.6
b=(2,2)

h=10000

k = 6.6
b=(3,2)

h = 7.6
k = 7.6
b=(4,1)

h=10000
k=10000

b=(5,3)

h = 4.8
k = 4.8
b= (6,3)

h =4.4
k =4.4
b=(7,3)

h = 4
k = 4

b= (7,3)

h = 8.0
k = 8.0
b=(2,2)

h = 10000

k = 7.0
b=(3,2)

h = 7.2
k = 6.6
b= (4,1)

h = 6.2
k = 6.2
b=(5,2)

h = 5.8
k = 5.8
b= (6,2)

h = 5.4
k = 5.4
b=(7,2)

h = 5
k = 5

b=(7,2)

1 2 3 4 5 6 7

6

5

4

3

2

1

if kold= h(X) then for each neighbor Y of X:
if t(Y) = NEW or
(b(Y) =X and h(Y) ≠ h(X)+c (X,Y)) or
(b(Y) ≠ X and h(Y) > h(X)+c (X,Y))

then b(Y) = X ; INSERT(Y, h(X)+c(X,Y))

D* Example
(15/22)

Pop (3,1) off the open list. Since k (6.6) < h (7.2), ask is there a neighbor whose h value is less

than the k value of (3,1). Here, (4,1) is. Now, if the transition cost to (4,1) + the h value of (4,1) is
less than the h value of (3,1), then reduce the h value of (3,1). However, this is not the case.

However, (3,1) can be used to form a reduced cost path for its neighbors, so put (3,1) back on
the priority queue with k set to the minimum of its old h value and new h value. Thus, it now also
becomes a lower state.

State k

(1,3) 8.0
(1,1) 8.0

10000
(3,5) 10000
(3,6)

10003.8
(4,2) 10004.2
(3,4)

(3,3)
(2,3)

10004.2
10006

(2,2) 6.6
(2,1) 7.0

(1,2) 7.6
(3,2) 7.6

(3,1) 7.2

h =
k =
b=

h =
k =
b=

h =10000
k =10000

b=(4,6)

h = 3
k = 3

b= (5,6)

h = 2
k = 2

b= (6,6)

h = 1
k = 1

b= (7,6)

h = 0
k = 0
b=

h =
k =
b=

h =
k =
b=

h=10000
k=10000

b=(4,6)

h = 3.4
k = 3.4
b= (5,6)

h = 2.4
k = 2.4
b= (6,6)

h = 1.4
k = 1.4
b= (7,6)

h = 1
k = 1

b= (7,6)

h =
k =
b=

h =
k =
b=

h=10000
k=10000

b=(4,5)

h = 3.8
k = 3.8
b= (5,5)

h = 2.8
k = 2.8
b= (6,5)

h = 2.4
k = 2.4
b= (7,5)

h = 2
k = 2

b= (7,5)

h = 8.0
k = 8.0
b=(2,2)

h=10000
k=10000

b=(3,2)

h=10000
k=10000

b=(4,4)

h=10000

k = 4.2
b= (5,4)

h = 3.8
k = 3.8
b= (6,4)

h = 3.4
k = 3.4
b= (7,4)

h = 3
k = 3

b= (7,4)

h = 7.6
k = 7.6
b=(2,2)

h=10000

k = 6.6
b=(3,2)

h = 7.6
k = 7.6
b=(4,1)

h=10000
k=10000

b=(5,3)

h = 4.8
k = 4.8
b= (6,3)

h =4.4
k =4.4
b=(7,3)

h = 4
k = 4

b= (7,3)

h = 8.0
k = 8.0
b=(2,2)

h = 10000

k = 7.0
b=(3,2)

h = 7.2
k = 7.2
b= (4,1)

h = 6.2
k = 6.2
b=(5,2)

h = 5.8
k = 5.8
b= (6,2)

h = 5.4
k = 5.4
b=(7,2)

h = 5
k = 5

b=(7,2)

1 2 3 4 5 6 7

6

5

4

3

2

1

if kold< h(X) then
for each neighbor Y of X:

if h(Y) <= kold and h(X) > h(Y) + c(Y,X) then
b(X) = Y; h(X) = h(Y)+c(Y,X);

for each neighbor Y of X:
if t(Y) = NEW or b(Y) =X and h(Y) ≠ h(X)+c (X,Y)) then b(Y) = X ; INSERT(Y, h(X)+c(X,Y))

else if b(Y) ≠ X and h(Y) > h(X)+c (X,Y) then INSERT(X, h(X))
else if b(Y) ≠ X and h(X) > h(Y)+c (X,Y) and t(Y) = CLOSED and h(Y) > kold then INSERT(Y, h(Y))

D* Example (16/22)
Pop (2,2) off the queue and expand it. This increases the h
values of the nodes that pass through (2,2) and puts them back
on the open list. It turns out that the relevant nodes (1,1), (1,2)
and (1,3) are already on the open list so in effect, their position
in the open list remains the same, but their h values are
increased making them raise states.

State k

(1,3) 8.0
(1,1) 8.0

10000
(3,5) 10000
(3,6)

10000
(4,2) 10004.2
(3,4)

(3,3)
(2,3)

10004.2
10006

(2,1) 7.0
(3,1) 7.2
(1,2) 7.6
(3,2) 7.6

h =
k =
b=

h =
k =
b=

h =10000
k =10000

b=(4,6)

h = 3
k = 3

b= (5,6)

h = 2
k = 2

b= (6,6)

h = 1
k = 1

b= (7,6)

h = 0
k = 0
b=

h =
k =
b=

h =
k =
b=

h=10000
k=10000

b=(4,6)

h = 3.4
k = 3.4
b= (5,6)

h = 2.4
k = 2.4
b= (6,6)

h = 1.4
k = 1.4
b= (7,6)

h = 1
k = 1

b= (7,6)

h =
k =
b=

h =
k =
b=

h=10000
k=10000

b=(4,5)

h = 3.8
k = 3.8
b= (5,5)

h = 2.8
k = 2.8
b= (6,5)

h = 2.4
k = 2.4
b= (7,5)

h = 2
k = 2

b= (7,5)

h = 10000

k = 8.0
b=(2,2)

h=10000
k=10000

b=(3,2)

h=10000
k=10000

b=(4,4)

h=10000

k = 4.2
b= (5,4)

h = 3.8
k = 3.8
b= (6,4)

h = 3.4
k = 3.4
b= (7,4)

h = 3
k = 3

b= (7,4)

h = 10000

k = 7.6
b=(2,2)

h=10000

k = 6.6
b=(3,2)

h = 7.6
k = 7.6
b=(4,1)

h=10000
k=10000

b=(5,3)

h = 4.8
k = 4.8
b= (6,3)

h =4.4
k =4.4
b=(7,3)

h = 4
k = 4

b= (7,3)

h = 10000

k = 8.0
b=(2,2)

h = 10000

k = 7.0
b=(3,2)

h = 7.2
k = 7.2
b= (4,1)

h = 6.2
k = 6.2
b=(5,2)

h = 5.8
k = 5.8
b= (6,2)

h = 5.4
k = 5.4
b=(7,2)

h = 5
k = 5

b=(7,2)

1 2 3 4 5 6 7

6

5

4

3

2

1

if kold< h(X) then
for each neighbor Y of X:

if h(Y) <= kold and h(X) > h(Y) + c(Y,X) then
b(X) = Y; h(X) = h(Y)+c(Y,X);

for each neighbor Y of X:
if t(Y) = NEW or b(Y) =X and h(Y) ≠ h(X)+c (X,Y)) then b(Y) = X ; INSERT(Y, h(X)+c(X,Y))

else if b(Y) ≠ X and h(Y) > h(X)+c (X,Y) then INSERT(X, h(X))
else if b(Y) ≠ X and h(X) > h(Y)+c (X,Y) and t(Y) = CLOSED and h(Y) > kold then INSERT(Y, h(Y))

D* Example (17/22)
Pop (2,1) off the queue.

Because k<h and it cannot reduce the cost
to any of its neighbors, this has no effect.

State k

(1,3) 8.0
(1,1) 8.0

10000
(3,5) 10000
(3,6)

10000
(4,2) 10000
(3,4)

(3,3)
(2,3)

10004.2
10006

(3,1) 7.2
(1,2) 7.6
(3,2) 7.6

h =
k =
b=

h =
k =
b=

h =10000
k =10000

b=(4,6)

h = 3
k = 3

b= (5,6)

h = 2
k = 2

b= (6,6)

h = 1
k = 1

b= (7,6)

h = 0
k = 0
b=

h =
k =
b=

h =
k =
b=

h=10000
k=10000

b=(4,6)

h = 3.4
k = 3.4
b= (5,6)

h = 2.4
k = 2.4
b= (6,6)

h = 1.4
k = 1.4
b= (7,6)

h = 1
k = 1

b= (7,6)

h =
k =
b=

h =
k =
b=

h=10000
k=10000

b=(4,5)

h = 3.8
k = 3.8
b= (5,5)

h = 2.8
k = 2.8
b= (6,5)

h = 2.4
k = 2.4
b= (7,5)

h = 2
k = 2

b= (7,5)

h = 10000

k = 8.0
b=(2,2)

h=10000
k=10000

b=(3,2)

h=10000
k=10000

b=(4,4)

h=10000

k = 4.2
b= (5,4)

h = 3.8
k = 3.8
b= (6,4)

h = 3.4
k = 3.4
b= (7,4)

h = 3
k = 3

b= (7,4)

h = 10000

k = 7.6
b=(2,2)

h=10000

k = 6.6
b=(3,2)

h = 7.6
k = 7.6
b=(4,1)

h=10000
k=10000

b=(5,3)

h = 4.8
k = 4.8
b= (6,3)

h =4.4
k =4.4
b=(7,3)

h = 4
k = 4

b= (7,3)

h = 10000

k = 8.0
b=(2,2)

h = 10000

k = 7.0
b=(3,2)

h = 7.2
k = 7.2
b= (4,1)

h = 6.2
k = 6.2
b=(5,2)

h = 5.8
k = 5.8
b= (6,2)

h = 5.4
k = 5.4
b=(7,2)

h = 5
k = 5

b=(7,2)

1 2 3 4 5 6 7

6

5

4

3

2

1

if kold< h(X) then
for each neighbor Y of X:

if h(Y) <= kold and h(X) > h(Y) + c(Y,X) then
b(X) = Y; h(X) = h(Y)+c(Y,X);

for each neighbor Y of X:
if t(Y) = NEW or b(Y) =X and h(Y) ≠ h(X)+c (X,Y)) then b(Y) = X ; INSERT(Y, h(X)+c(X,Y))

else if b(Y) ≠ X and h(Y) > h(X)+c (X,Y) then INSERT(X, h(X))
else if b(Y) ≠ X and h(X) > h(Y)+c (X,Y) and t(Y) = CLOSED and h(Y) > kold then INSERT(Y, h(Y))

D* Example (18/22)
Pop (3,1) off the queue and expand it. This has the
effect of redirecting the back pointers of (2,2) and (2,1)
through (3,1) and putting them back on the open list with
a k value equal to the minimum of the old and new h
values. Because k equals h, they are now lower states.

State k

(1,3) 8.0
(1,1) 8.0

10000
(3,5) 10000
(3,6)

10000
(4,2) 10004.2
(3,4)

(3,3)
(2,3)

10004.2
10006

(1,2) 7.6
(3,2) 7.6

(2,1) 8.2
(2,2) 8.6

h =
k =
b=

h =
k =
b=

h =10000
k =10000

b=(4,6)

h = 3
k = 3

b= (5,6)

h = 2
k = 2

b= (6,6)

h = 1
k = 1

b= (7,6)

h = 0
k = 0
b=

h =
k =
b=

h =
k =
b=

h=10000
k=10000

b=(4,6)

h = 3.4
k = 3.4
b= (5,6)

h = 2.4
k = 2.4
b= (6,6)

h = 1.4
k = 1.4
b= (7,6)

h = 1
k = 1

b= (7,6)

h =
k =
b=

h =
k =
b=

h=10000
k=10000

b=(4,5)

h = 3.8
k = 3.8
b= (5,5)

h = 2.8
k = 2.8
b= (6,5)

h = 2.4
k = 2.4
b= (7,5)

h = 2
k = 2

b= (7,5)

h = 10000

k = 8.0
b=(2,2)

h=10000
k=10000

b=(3,2)

h=10000
k=10000

b=(4,4)

h=10000

k = 4.2
b= (5,4)

h = 3.8
k = 3.8
b= (6,4)

h = 3.4
k = 3.4
b= (7,4)

h = 3
k = 3

b= (7,4)

h = 10000

k = 7.6
b=(2,2)

h=8.6
k = 8.6
b=(3,1)

h = 7.6
k = 7.6
b=(4,1)

h=10000
k=10000

b=(5,3)

h = 4.8
k = 4.8
b= (6,3)

h =4.4
k =4.4
b=(7,3)

h = 4
k = 4

b= (7,3)

h = 10000

k = 8.0
b=(2,2)

h = 8.2
k = 8.2
b=(3,1)

h = 7.2
k = 7.2
b= (4,1)

h = 6.2
k = 6.2
b=(5,2)

h = 5.8
k = 5.8
b= (6,2)

h = 5.4
k = 5.4
b=(7,2)

h = 5
k = 5

b=(7,2)

1 2 3 4 5 6 7

6

5

4

3

2

1

if kold= h(X) then for each neighbor Y of X:
if t(Y) = NEW or
(b(Y) =X and h(Y) ≠ h(X)+c (X,Y)) or
(b(Y) ≠ X and h(Y) > h(X)+c (X,Y))

then b(Y) = X ; INSERT(Y, h(X)+c(X,Y))

D* Example (19/22)
Pop (1,2) off the queue and expand it. Since it cannot
reduce the cost of any of its neighbors, and since the
neighbors who could reduce its cost are still on the
open list, this has no effect.

State k

(1,3) 8.0
(1,1) 8.0

10000
(3,5) 10000
(3,6)

10000
(4,2) 10000
(3,4)

(3,3)
(2,3)

10004.2
10006

(3,2) 7.6

(2,1) 8.2
(2,2) 8.6

h =
k =
b=

h =
k =
b=

h =10000
k =10000

b=(4,6)

h = 3
k = 3

b= (5,6)

h = 2
k = 2

b= (6,6)

h = 1
k = 1

b= (7,6)

h = 0
k = 0
b=

h =
k =
b=

h =
k =
b=

h=10000
k=10000

b=(4,6)

h = 3.4
k = 3.4
b= (5,6)

h = 2.4
k = 2.4
b= (6,6)

h = 1.4
k = 1.4
b= (7,6)

h = 1
k = 1

b= (7,6)

h =
k =
b=

h =
k =
b=

h=10000
k=10000

b=(4,5)

h = 3.8
k = 3.8
b= (5,5)

h = 2.8
k = 2.8
b= (6,5)

h = 2.4
k = 2.4
b= (7,5)

h = 2
k = 2

b= (7,5)

h = 10000

k = 8.0
b=(2,2)

h=10000
k=10000

b=(3,2)

h=10000
k=10000

b=(4,4)

h=10000

k = 4.2
b= (5,4)

h = 3.8
k = 3.8
b= (6,4)

h = 3.4
k = 3.4
b= (7,4)

h = 3
k = 3

b= (7,4)

h = 10000

k = 7.6
b=(2,2)

h=8.6
k = 8.6
b=(3,1)

h = 7.6
k = 7.6
b=(4,1)

h=10000
k=10000

b=(5,3)

h = 4.8
k = 4.8
b= (6,3)

h =4.4
k =4.4
b=(7,3)

h = 4
k = 4

b= (7,3)

h = 10000

k = 8.0
b=(2,2)

h = 8.2
k = 8.2
b=(3,1)

h = 7.2
k = 7.2
b= (4,1)

h = 6.2
k = 6.2
b=(5,2)

h = 5.8
k = 5.8
b= (6,2)

h = 5.4
k = 5.4
b=(7,2)

h = 5
k = 5

b=(7,2)

1 2 3 4 5 6 7

6

5

4

3

2

1

if kold< h(X) then
for each neighbor Y of X:

if h(Y) <= kold and h(X) > h(Y) + c(Y,X) then
b(X) = Y; h(X) = h(Y)+c(Y,X);

for each neighbor Y of X:
if t(Y) = NEW or b(Y) =X and h(Y) ≠ h(X)+c (X,Y)) then b(Y) = X ; INSERT(Y, h(X)+c(X,Y))

else if b(Y) ≠ X and h(Y) > h(X)+c (X,Y) then INSERT(X, h(X))
else if b(Y) ≠ X and h(X) > h(Y)+c (X,Y) and t(Y) = CLOSED and h(Y) > kold then INSERT(Y, h(Y))

State k
(1,3) 8.0
(1,1) 8.0

10000
(3,5) 10000
(3,6)

10000
(4,2) 10000
(3,4)

(3,3)
(2,3)

10000
10006

(2,1) 8.2
(2,2) 8.6

h =
k =
b=

h =
k =
b=

h =10000
k =10000

b=(4,6)

h = 3
k = 3

b= (5,6)

h = 2
k = 2

b= (6,6)

h = 1
k = 1

b= (7,6)

h = 0
k = 0
b=

h =
k =
b=

h =
k =
b=

h=10000
k=10000

b=(4,6)

h = 3.4
k = 3.4
b= (5,6)

h = 2.4
k = 2.4
b= (6,6)

h = 1.4
k = 1.4
b= (7,6)

h = 1
k = 1

b= (7,6)

h =
k =
b=

h =
k =
b=

h=10000
k=10000

b=(4,5)

h = 3.8
k = 3.8
b= (5,5)

h = 2.8
k = 2.8
b= (6,5)

h = 2.4
k = 2.4
b= (7,5)

h = 2
k = 2

b= (7,5)

h = 10000

k = 8.0
b=(2,2)

h=10000
k=10000

b=(3,2)

h=10000
k=10000

b=(4,4)

h=10000

k = 4.2
b= (5,4)

h = 3.8
k = 3.8
b= (6,4)

h = 3.4
k = 3.4
b= (7,4)

h = 3
k = 3

b= (7,4)

h = 10000

k = 7.6
b=(2,2)

h=8.6
k = 8.6
b=(3,1)

h = 7.6
k = 7.6
b=(4,1)

h=10000
k=10000

b=(5,3)

h = 4.8
k = 4.8
b= (6,3)

h =4.4
k =4.4
b=(7,3)

h = 4
k = 4

b= (7,3)

h = 10000

k = 8.0
b=(2,2)

h = 8.2
k = 8.2
b=(3,1)

h = 7.2
k = 7.2
b= (4,1)

h = 6.2
k = 6.2
b=(5,2)

h = 5.8
k = 5.8
b= (6,2)

h = 5.4
k = 5.4
b=(7,2)

h = 5
k = 5

b=(7,2)

1 2 3 4 5 6 7

6

5

4

3

2

1

D* Example (20/22)
Pop (3,2) off the queue and expand it.
Since it cannot reduce the cost of any of
its neighbors this has no effect.

Since (3,2) is the robot’s current position,
the search ends here.

if kold= h(X) then for each neighbor Y of X:
if t(Y) = NEW or
(b(Y) =X and h(Y) ≠ h(X)+c (X,Y)) or
(b(Y) ≠ X and h(Y) > h(X)+c (X,Y))

then b(Y) = X ; INSERT(Y, h(X)+c(X,Y))

D* Example (21/22) Determine optimal path from the
current location to the goal by
following gradient of h values

h =
k =
b=

h =
k =
b=

h =10000
k =10000

b=(4,6)

h = 3
k = 3

b= (5,6)

h = 2
k = 2

b= (6,6)

h = 1
k = 1

b= (7,6)

h = 0
k = 0
b=

h =
k =
b=

h =
k =
b=

h=10000
k=10000

b=(4,6)

h = 3.4
k = 3.4
b= (5,6)

h = 2.4
k = 2.4
b= (6,6)

h = 1.4
k = 1.4
b= (7,6)

h = 1
k = 1

b= (7,6)

h =
k =
b=

h =
k =
b=

h=10000
k=10000

b=(4,5)

h = 3.8
k = 3.8
b= (5,5)

h = 2.8
k = 2.8
b= (6,5)

h = 2.4
k = 2.4
b= (7,5)

h = 2
k = 2

b= (7,5)

h = 10000

k = 8.0
b=(2,2)

h=10000
k=10000

b=(3,2)

h=10000
k=10000

b=(4,4)

h=10000

k = 4.2
b= (5,4)

h = 3.8
k = 3.8
b= (6,4)

h = 3.4
k = 3.4
b= (7,4)

h = 3
k = 3

b= (7,4)

h = 10000

k = 7.6
b=(2,2)

h=8.6
k = 8.6
b=(3,1)

h = 7.6
k = 7.6
b=(4,1)

h=10000
k=10000

b=(5,3)

h = 4.8
k = 4.8
b= (6,3)

h =4.4
k =4.4
b=(7,3)

h = 4
k = 4

b= (7,3)

h = 10000

k = 8.0
b=(2,2)

h = 8.2
k = 8.2
b=(3,1)

h = 7.2
k = 7.2
b= (4,1)

h = 6.2
k = 6.2
b=(5,2)

h = 5.8
k = 5.8
b= (6,2)

h = 5.4
k = 5.4
b=(7,2)

h = 5
k = 5

b=(7,2)

1 2 3 4 5 6 7

6

5

4

3

2

1

State k
(1,3) 8.0
(1,1) 8.0

10000
(3,5) 10000
(3,6)

10000
(4,2) 10000
(3,4)

(3,3)
(2,3)

10000
10006

(2,1) 8.2
(2,2) 8.6

D* Example (22/22)

h =
k =
b=

h =
k =
b=

h =10000
k =10000

b=(4,6)

h = 3
k = 3

b= (5,6)

h = 2
k = 2

b= (6,6)

h = 1
k = 1

b= (7,6)

h = 0
k = 0
b=

h =
k =
b=

h =
k =
b=

h=10000
k=10000

b=(4,6)

h = 3.4
k = 3.4
b= (5,6)

h = 2.4
k = 2.4
b= (6,6)

h = 1.4
k = 1.4
b= (7,6)

h = 1
k = 1

b= (7,6)

h =
k =
b=

h =
k =
b=

h=10000
k=10000

b=(4,5)

h = 3.8
k = 3.8
b= (5,5)

h = 2.8
k = 2.8
b= (6,5)

h = 2.4
k = 2.4
b= (7,5)

h = 2
k = 2

b= (7,5)

h = 10000

k = 8.0
b=(2,2)

h=10000
k=10000

b=(3,2)

h=10000
k=10000

b=(4,4)

h=10000

k = 4.2
b= (5,4)

h = 3.8
k = 3.8
b= (6,4)

h = 3.4
k = 3.4
b= (7,4)

h = 3
k = 3

b= (7,4)

h = 10000

k = 7.6
b=(2,2)

h=8.6
k = 8.6
b=(3,1)

h = 7.6
k = 7.6
b=(4,1)

h=10000
k=10000

b=(5,3)

h = 4.8
k = 4.8
b= (6,3)

h =4.4
k =4.4
b=(7,3)

h = 4
k = 4

b= (7,3)

h = 10000

k = 8.0
b=(2,2)

h = 8.2
k = 8.2
b=(3,1)

h = 7.2
k = 7.2
b= (4,1)

h = 6.2
k = 6.2
b=(5,2)

h = 5.8
k = 5.8
b= (6,2)

h = 5.4
k = 5.4
b=(7,2)

h = 5
k = 5

b=(7,2)

1 2 3 4 5 6 7

6

5

4

3

2

1

The robot then travels from its
current location to the goal

We continue from (3,2)

D* Algorithm: Raise and Lower States
• k(X) → the priority of the state in an open list
• LOWER state

– k(X) = h(X)
– Propagate information about path cost reductions (e.g. due to a reduced arc

cost or new path to the goal) to its neighbors
– For each neighbor Y of X, if t(Y) = NEW or h(Y) > h(X) + c(X,Y) then

• Set h(Y) := h(X) + c(X,Y)
• Set b(Y) = X
• Insert Y into an OPEN list with k(Y) = h(Y) so that it can propagate cost changes to

its neighbors

• RAISE state
– k(X) < h(X)
– Propagate information about path cost increases (e.g. due to an increased

arc cost) to its neighbors
– For each neighbor Y of a RAISE state X,

• If t(Y) = NEW or (b(Y) = X and h(Y) ≠ h(X) + c(X,Y)) then
insert Y into the OPEN list with k(Y) = h(X)+c(X,Y)

• Else if (b(Y) ≠ X and h(Y) > h(X) + c(X,Y)) then
insert X into the OPEN list with k(X) = h(X)

• Else if (b(Y) ≠ X and h(X) > h(Y) + c(X,Y)) then
insert Y into the OPEN list with k(Y) = h(Y)

Focused D*

• Introduce the focussing heuristic g(X,R) being an estimated path cost
from robot location R to X

• f(X,R) = k(X)+g(X,R) is an estimated path cost from R through X to G
• Instead of k(X), sort the OPEN list by biased function values, fB(X,Ri) =

f(X,Ri)+d(Ri,R0), where d(Ri,R0) is the accrued bias function
– Focussed D* assumes that the robot generally moves a little after it discovers

discrepancies

Source Citation
• Atkar, P. N. and V. S. Lee Jr. (2001). “D* Algorithm”, Presentation slide in sensor-

based robot motion planning, CMU, October, 2001.
• Russell, S. and P. Norvig (1995). Artificial Intelligence: A modern approach,

Prentice Hall.
• Sensor-based robot motion planning lecture (2002).
• Stentz, A. (1994). "Optimal and efficient path planning for partially-known

environments." Proceedings of the IEEE International Conference on Robotics
and Automation, May, 1994.

• Stentz, A. (1995). “The focussed D* algorithm for real-time replanning.”
Proceedings of the International Joint Conference on Artificial Intelligence, August,
1995.

