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Robotic Motion Planning:
Bug Algorithms

(with some discussion on curve tracing and sensors)

Robotics Institute 16-735
http://voronoi.sbp.ri.cmu.edu/~motion

Howie Choset
http://voronoi.sbp.ri.cmu.edu/~choset
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What’s Special About Bugs

• Many planning algorithms assume global knowledge

• Bug algorithms assume only local knowledge of the environment 
and a global goal

• Bug behaviors are simple:
– 1) Follow a wall (right or left)
– 2) Move in a straight line toward goal

• Bug 1 and Bug 2 assume essentially tactile sensing

• Tangent Bug deals with finite distance sensing
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A Few General Concepts

• Workspace W
– ℜ(2) or ℜ(3) depending on the robot
– could be infinite (open) or bounded (closed/compact)

• Obstacle WOi

• Free workspace Wfree = W \ ∪
i
WOi
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Insect-inspired • known direction to goal

•robot can measure 
distance d(x,y) between 
pts x and y

• otherwise local sensing
walls/obstacles  &  encoders

• reasonable world

1) finitely many obstacles 
in any finite area

2) a line will intersect an 
obstacle finitely many times

3) Workspace is bounded 

W ⊂ Br(x), r < ∞

Br(x) = { y∈ℜ(2) | d(x,y) < r }

The Bug Algorithms

Goal

Start

provable results...
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Buginner Strategy

“Bug 0” algorithm

how ?

• known direction to goal

• otherwise local sensing
walls/obstacles  &  encoders

Some notation:

qstart and qgoal

“hit point” qH
i

“leave point qL
i

A path is a sequence of hit/leave
pairs bounded by qstart and qgoal
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Buginner Strategy

1) head toward goal

2) follow obstacles until you can 
head toward the goal again

3) continue

path ?

“Bug 0” algorithm • known direction to goal

• otherwise local sensing
walls/obstacles  &  encoders
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Buginner Strategy

1) head toward goal

2) follow obstacles until you can 
head toward the goal again

3) continue

assume a left-
turning robot

OK ?

The turning direction might 
be decided beforehand…

“Bug 0” algorithm
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Bug Zapper

1) head toward goal

2) follow obstacles until you can 
head toward the goal again

3) continue

What map will foil Bug 0 ? “Bug 0” algorithm
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Bug Zapper

1) head toward goal

2) follow obstacles until you can 
head toward the goal again

3) continue

What map will foil Bug 0 ? “Bug 0” algorithm

start

goal
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A better bug?

But add some memory!
• known direction to goal

• otherwise local sensing
walls/obstacles  &  encoders

improvement ideas?
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1) head toward goal

2) if an obstacle is encountered, 
circumnavigate it and remember 
how close you get to the goal

3) return to that closest point (by 
wall-following) and continue

Bug 1

“Bug 1” algorithm

Vladimir Lumelsky & Alexander Stepanov:  Algorithmica 1987

• known direction to goal

• otherwise local sensing
walls/obstacles  &  encoders

But some computing power!
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1) head toward goal

2) if an obstacle is encountered, 
circumnavigate it and remember 
how close you get to the goal

3) return to that closest point (by 
wall-following) and continue

Bug 1

“Bug 1” algorithm

Vladimir Lumelsky & Alexander Stepanov:  Algorithmica 1987

But some computing power!
• known direction to goal

• otherwise local sensing
walls/obstacles  &  encoders
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BUG 1 More formally

• Let qL
0

= qstart; i = 1
• repeat

– repeat
• from qL

i-1 move toward qgoal

– until goal is reached or obstacle encountered at qH
i

– if goal is reached, exit
– repeat

• follow boundary recording pt qL
i with shortest distance to goal

– until qgoal is reached or qH
i is re-encountered

– if goal is reached, exit
– Go to qL

i
– if move toward qgoal moves into obstacle

• exit with failure
– else

• i=i+1
• continue
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Bug 1 analysis

Bug 1:  Path Bounds What are upper/lower bounds on the 
path length that the robot takes?

D = straight-line distance from start to goal

Pi = perimeter of the i th obstacle

Lower bound:

Upper bound:
D

P1

P2

What’s the shortest 
distance it might travel?

What’s the longest 
distance it might travel?

What is an environment where your upper bound is required?

“Quiz”
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Bug 1 analysis

Bug 1:  Path Bounds What are upper/lower bounds on the 
path length that the robot takes?

D = straight-line distance from start to goal

Pi = perimeter of the i th obstacle

Lower bound:

Upper bound:
D

P1

P2

What’s the shortest 
distance it might travel?

What’s the longest 
distance it might travel?

What is an environment where your upper bound is required?

“Quiz”

D + 1.5 Σ Pi
i

D
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How Can We Show Completeness?

• An algorithm is complete if, in finite time, it finds a path if such a path 
exists or terminates with failure if it does not.

• Suppose BUG1 were incomplete
– Therefore, there is a path from start to goal

• By assumption, it is finite length, and intersects obstacles a finite number of times.
– BUG1 does not find it

• Either it terminates incorrectly, or, it spends an infinite amount of time
• Suppose it never terminates

– but each leave point is closer to the obstacle than corresponding hit point
– Each hit point is closer than the last leave point
– Thus, there are a finite number of hit/leave pairs; after exhausting them, the robot will 

proceed to the goal and terminate
• Suppose it terminates (incorrectly)
• Then, the closest point after a hit must be a leave where it would have to move into 

the obstacle
– But, then line from robot to goal must intersect object even number of times (Jordan curve 

theorem)
– But then there is another intersection point on the boundary closer to object.  Since we 

assumed there is a path, we must have crossed this pt on boundary which contradicts the 
definition of a leave point.
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Another step forward?

Call the line from the starting 
point to the goal the m-line

“Bug 2” Algorithm
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A better bug?

Call the line from the starting 
point to the goal the m-line

1) head toward goal on the m-line

“Bug 2” Algorithm
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A better bug?

Call the line from the starting 
point to the goal the m-line

1) head toward goal on the m-line

2) if an obstacle is in the way, 
follow it until you encounter the 
m-line again.

“Bug 2” Algorithm
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A better bug?

1) head toward goal on the m-line

2) if an obstacle is in the way, 
follow it until you encounter the 
m-line again.

3) Leave the obstacle and continue 
toward the goal

OK ?

m-line
“Bug 2” Algorithm
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A better bug?

1) head toward goal on the m-line

2) if an obstacle is in the way, 
follow it until you encounter the 
m-line again.

3) Leave the obstacle and continue 
toward the goal

NO! How do we fix this?

Goal

Start

“Bug 2” Algorithm
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A better bug?

1) head toward goal on the m-line

2) if an obstacle is in the way, 
follow it until you encounter the 
m-line again closer to the goal.

3) Leave the obstacle and continue 
toward the goal

Goal

Start

“Bug 2” Algorithm

Better or worse than Bug1?
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BUG 2 More formally

• Let qL
0

= qstart; i = 1
• repeat

– repeat
• from qL

i-1 move toward qgoal along the m-line
– until goal is reached or obstacle encountered at qH

i
– if goal is reached, exit
– repeat

• follow boundary
– until qgoal is reached or qH

i is re-encountered or
m-line is re-encountered, x is not qH

i,  d(x,qgoal) < d(qH
i,qgoal) and way 

to goal is unimpeded
– if goal is reached, exit
– if qH

i is reached, return failure
– else

• qL
i = m

• i=i+1
• continue
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head-to-head comparison

Draw worlds in which Bug 2 does better than Bug 1 (and vice versa).

Bug 2 beats Bug 1

or thorax-to-thorax, perhaps

Bug 1 beats Bug 2
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head-to-head comparison

Draw worlds in which Bug 2 does better than Bug 1 (and vice versa).

Bug 2 beats Bug 1

or thorax-to-thorax, perhaps

Bug 1 beats Bug 2

?
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head-to-head comparison

Draw worlds in which Bug 2 does better than Bug 1 (and vice versa).

Bug 2 beats Bug 1

or thorax-to-thorax, perhaps

Bug 1 beats Bug 2
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BUG 1 vs. BUG 2

• BUG 1 is an exhaustive search algorithm
– it looks at all choices before commiting

• BUG 2 is a greedy algorithm
– it takes the first thing that looks better

• In many cases, BUG 2 will outperform BUG 1, but

• BUG 1 has a more predictable performance overall
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Bug 2 analysis

Bug 2:  Path Bounds What are upper/lower bounds on the 
path length that the robot takes?

D = straight-line distance from start to goal

Pi = perimeter of the i th obstacle

Lower bound:

Upper bound:

What’s the shortest 
distance it might travel?

What’s the longest 
distance it might travel?

“Quiz”

D

What is an environment where your upper bound is required?
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Bug 2 analysis

Bug 2:  Path Bounds What are upper/lower bounds on the 
path length that the robot takes?

D = straight-line distance from start to goal

Pi = perimeter of the i th obstacle

Lower bound:

Upper bound:

What’s the shortest 
distance it might travel?

What’s the longest 
distance it might travel?

“Quiz”

D + Σ Pi
i

D

ni = # of s-line intersections of the  i th obstacle

ni
2

What is an environment where your upper bound is required?
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Bug 2 analysis

Bug 2:  Path Bounds What are upper/lower bounds on the 
path length that the robot takes?

D = straight-line distance from start to goal

Pi = perimeter of the i th obstacle

Lower bound:

Upper bound:

What’s the shortest 
distance it might travel?

What’s the longest 
distance it might travel?

“Quiz”

D + Σ Pi
i

D

ni = # of s-line intersections of the  i th obstacle

ni
2

to ∞ What is an environment where your upper bound is required?
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A More Realistic Bug

• As presented: global beacons plus contact-based wall following

• The reality: we typically use some sort of range sensing device 
that lets us look ahead (but has finite resolution and is noisy).

• Let us assume we have a range sensor

• distance fn: ρ(x,θ) = minλ>=0 d(x, x+λ[cθ,sθ]) 
s.t. x+λ[cθ,sθ]) ∈ ∪

i
WOi

• Note we write ρ: ℜ(2) × S(1) → ℜ
– what is S(1) ?

• Saturated distance: ρR(x,θ) = ρ(x,θ) if ρ(x,θ) < R, else ∞
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Move to Goal

• Distance d(a,b) = ((ax – bx)2 + (ay – by)2) ½

• Gradient descent of  d(a,b), i.e., decrease distance to the goal

goal

robot
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Circumnavigating Obstacles: 
Curve Tracing

Predict: Tangent

Correct: Something else
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Normal (and hence Tangent) to 
Obstacle
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Circumnavigate Obstacles: 
Boundary Following

Safety distance W*

D(x) = min d(x,c)

Normal is parallel to VD(x)

Increase/Decrease/Same

Tangent is orthogonal to both

c(t) = v    v is in (n(c(t))

.

.
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Raw Distance Function

Saturated raw distance function
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Implicit Function Theorem

G(x) = D(x) – W*

Roots of G(x) trace the offset curve

DG(x) = DD(x), which is like a gradient in Euclidean spaces

Null of DG(x) is tangent, hence perp of DD(x) is too
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Correction


