Robotic Motion Planning: Configuration Space

Robotics Institute 16-735 http://www.cs.cmu.edu/~motionplanning

Howie Choset http://www.cs.cmu.edu/~choset

What if the robot is not a point?

The Scout should probably not be modeled as a point...

Nor should robots with extended linkages that may contact obstacles...

What is the position of the robot?

Configuration Space

- A key concept for motion planning is a **configuration**:
	- *a complete specification of the position of every point in the system*
- \bullet A simple example: a robot that translates but does not rotate in the plane:
	- what is a sufficient representation of its configuration?
- • The space of all configurations is the **configuration space** or **Cspace.**

Robot Manipulators

What are this arm's forward kinematics?

(How does its position depend on its joint angles?)

Robot Manipulators

What are this arm's forward kinematics?

Find (x,y) in terms of α and β ...

 $c_{\alpha} = \cos(\alpha)$, $s_{\alpha} = \sin(\alpha)$ Keeping it "simple"

$$
c_{\beta} = \cos(\beta) , s_{\beta} = \sin(\beta)
$$

 $c_{+} = \cos(\alpha + \beta)$, $s_{+} = \sin(\alpha + \beta)$

Manipulator kinematics

$$
\begin{pmatrix} \mathbf{X} \\ \mathbf{y} \end{pmatrix} = \begin{pmatrix} L_1 c_{\alpha} \\ L_1 s_{\alpha} \end{pmatrix} + \begin{pmatrix} L_2 c_+ \\ L_2 s_+ \end{pmatrix}
$$
 Position

 $c_{\alpha} = \cos(\alpha)$, $s_{\alpha} = \sin(\alpha)$ $c_{\beta} = \cos(\beta)$, $s_{\beta} = \sin(\beta)$ $c_{+} = \cos(\alpha + \beta)$, $s_{+} = \sin(\alpha + \beta)$ Keeping it "simple"

Inverse Kinematics

Inverse kinematics -- finding joint angles from Cartesian coordinates via a geometric or algebraic approach...

Given (x,y) and L_1 and L_2 , what are the values of α , β , γ ?

Inverse Kinematics

Inverse kinematics -- finding joint angles from Cartesian coordinates via a geometric or algebraic approach...

$$
\gamma = \cos^{-1}\left(\frac{x^2 + y^2 - L_1^2 - L_2^2}{2L_1L_2}\right)
$$

\n
$$
\beta = 180 - \gamma
$$

\n
$$
\alpha = \sin^{-1}\left(\frac{L_2 \sin(\gamma)}{x^2 + y^2}\right) + \tan^{-1}(y/x)
$$

\n
$$
\alpha = \tan^{2}(y,x)
$$

 $(1,0) = 1.3183, -1.06$ $(-1,0) = 1.3183, 4.45$

But it's not usually this ugly...

Configuration Space


```
Puma \mathbb{Z} . Inv. Kinematics
                                                   % Solve for theta(4)
%V113 = \cos(\text{theta}(1))^*Ax + \sin(\text{theta}(1))^*Ay;
% Solve for theta(1)
                                                  V323 = \cos(\text{theta}(1))^*Ay - \sin(\text{theta}(1))^*Ax;
                                                  V313 = cos(theta(2)+theta(3))*V113 + 
r=sqrt(Px^2 + Py^2);
                        FIGURE 3.17 The Unimation PUMA 560
                                                          sin(theta(2)+theta(3))*Az;
if (n1 == 1),
                                                   theta(4) = atan2((n4*V323),(n4*V313));
    theta(1)= atan2(Py,Px) + asin(d3/r);else% Solve for theta(5)
    theta(1) = \text{atan2}(Py, Px) + pi - \text{asin}(d3/r);endnum = -cos(theta(4))*V313 - V323*sin(theta(4));
                                                   den = -V113*sin(theta(2)+theta(3)) + 
%Az*cos(theta(2)+theta(3));
% Solve for theta(2)
                                                   theta(5) = atan2(num,den);
V114= Px*cos(theta(1)) + Py*sin(theta(1));
                                                   % Solve for theta(6)
r=sqrt(V114^2 + Pz^2);
Psi = acos((a2^2-d4^2-a3^2+V114^2+Pz^2)/
                                                  V112 = cos(theta(1)) * Ox + sin(theta(1)) * Oy;(2.0*a2*r));
                                                  V132 = \sin(\text{theta}(1)) * 0x - \cos(\text{theta}(1)) * 0y;theta(2) = atan2(Pz,V114) + n2*Psi;
                                                  V312 = V112*cos(theta(2)+theta(3)) + 
                                                          Oz*sin(theta(2)+theta(3));
%V332 = -V112*sin(theta(2)+theta(3)) + 
% Solve for theta(3)
                                                           Oz*cos(theta(2)+theta(3));
                                                  V412 = V312*cos(theta(4)) - V132*sin(theta(4));num = cos(theta(2))*V114+sin(theta(2))*Pz-a2;
                                                  V432 = V312*sin(theta(4)) + V132*cos(theta(4));
den = cos(theta(2)) * Pz - sin(theta(2)) * V114;num = -V412*cos(theta(5)) - V332*sin(theta(5));
theta(3) = \text{atan2}(a3, d4) - \text{atan2(num, den)};
                                                  den = - V432;
                                                   theta(6) = atan2(num,den); it's usuall much worse!
```
Some Other Examples of C-Space

- \bullet A rotating bar fixed at a point
	- what is its C-space?
	- what is its workspace
- \bullet A rotating bar that translates along the rotation axis
	- what is its C-space?
	- what is its workspace
- \bullet A two-link manipulator
	- what is its C-space?
	- what is its workspace?
	- Suppose there are joint limits, does this change the C-space?
	- The workspace?

What is the Dimension of Configuration Space?

- • The dimension is the number of parameter necessary to uniquely specify configuration
- • One way to do this is to explicitly generate a parameterization (e.g with our 2-bar linkage)
- \bullet Another is to start with too many parameters and add (independent) constraints
	- suppose I start with 4 points in the plane (= 8 parameters), A, B, C, D
	- $-$ Rigidity requires d(A,B) = c_1 (1 constraints)
	- Rigidity requires d(A,C) = $\rm c^{}_2$ and d(B,C) = $\rm c^{}_3$ (2 constraints)
	- Rigidity requires d(A,D) = $\rm c_{\rm 4}$ and d(B,D) = $\rm c_{\rm 5}$ and ??? (?? constraints)
	- HOW MANY D.O.F?
- • QUZ :
	- HOW MANY DOF DO YOU NEED TO MOVE FREELY IN 3-space?

Obstacles in C-Space

- •Let *q* denote a point in a configuration space *Q*
- • The path planning problem is to find a mapping c:[0,1][→] *Q* s.t. no configuration along the path intersects an obstacle
- \bullet Recall a workspace obstacle is *WOi*
- • A *configuration space obstacle QOi* is the set of configurations *q* at which the robot intersects *WOi, that is*

$$
- \mathcal{QO}_i = \{ q \in \mathcal{Q} \mid R(q) \bigcap \mathcal{WO}_i \neq \emptyset \}.
$$

•The *free configuration space (*or just *free space*) *Qfree is*

$$
\mathcal{Q}_{\text{free}} = \mathcal{Q} \backslash \left(\bigcup \mathcal{Q} \mathcal{O}_i \right).
$$

The free space is generally an open set

A *free path* is a mapping c:[0,1] \rightarrow Q_{free}

A *semifree path* is a mapping c: $[0,1] \rightarrow cl(Q_{free})$

Example of a World (and Robot)

16-735, Howie Choset with slides from G.D. Hager and Z. Dodds

Configuration Space: Accommodate Robot Size

16-735, Howie Choset with slides from G.D. Hager and Z. Dodds

Trace Boundary of Workspace

 $\mathcal{QO}_i = \{q \in \mathcal{Q} \mid R(q) \bigcap \mathcal{WO}_i \neq \emptyset \}.$

Pick a reference point…

Translate-only, non-circularly symmetric

 $\mathcal{QO}_i = \{q \in \mathcal{Q} \mid R(q) \bigcap \mathcal{WO}_i \neq \emptyset \}.$

Pick a reference point…

Any reference point

16-735, Howie Choset with slides from G.D. Hager and Z. Dodds

Any refernece point

Taking the cross section of configuration space in which the robot is rotated 45 degrees...

Any reference point

Taking the cross section of configuration space in which the robot is rotated 45 degrees...

Star Algorithm: Polygonal Obstacles

16-735, Howie Choset with slides from G.D. Hager and Z. Dodds

16-735, Howie Choset with slides from G.D. Hager and Z. Dodds

Once you have the C-obstacle, where do you put it?

 \bullet Leave it as an exercise for homework…

Configuration Space "Quiz"

Configuration Space Obstacle

Reference *configuration*

How do we get from A to B ?

An obstacle in the robot's workspace

The C-space representation of this obstacle…

Two Link Path

Thanks to Ken Goldberg

Two Link Path

Properties of Obstacles in C-Space

- \bullet If the robot and WO_i *are* _________, *then*
	- *Convex then QO_i is convex*
	- *Closed then QO_i is closed*
	- *Compact then QO_i is compact*
	- *Algebraic then QO_i is algebraic*
	- *Connected then QOi* is connected

Additional dimensions

What would the configuration space of a rectangular robot (red) in this world look like? Assume it can translate *and* rotate in the plane.

(The blue rectangle is an obstacle.)

16-735, Howie Choset with slides from G.D. Hager and Z. Dodds

a 2d possibility

A problem?

Requires one more d…

16-735, Howie Choset with slides from G.D. Hager and Z. Dodds

too conservative !what instead?

When the robot is at one orientation

16-735, Howie Choset with slides from G.D. Hager and Z. Dodds

When the robot is at another orientation

16-735, Howie Choset with slides from G.D. Hager and Z. Dodds

Additional dimensions

What would the configuration space of a rectangular robot (red) in this world look like?

16-735, Howie Choset with slides from G.D. Hager and Z. Dodds

this is twisted...

2D Rigid Object

16-735, Howie Choset with slides from G.D. Hager and Z. Dodds

The Configuration Space (*C*-space)

Moving a Piano

Open vs. Closed Chains

- \bullet Serial (or open) chain mechanisms can usually be understood simply by looking at how they are put together (like our 2-link manipulator)
- \bullet Closed chain mechanisms have additional internal constraints --- the links form closed loops, e.g.

Suppose 4 revolute, 2 prismatic, 6 links

Gruebler's formula: N(k-n-1) + Σ f_i

 $N = DOF$ of space (here 3) f = dof of joints (here 1) n=# of joints; k # of links