13 Robot Motion Planning
Getting Where You Want to Be

One of the ultimate goals in robotics is to design autonomous robots: robots
that you can tell what to do without having to say how to do it. Among other
things, this means a robot has to be able to plan its own motion.

To be able to plan a motion, a robot must have some knowledge about
the environment in which it is moving. For example, a mobile robot mov-
ing around in a factory must know where obstacles are located. Some of this
information—where walls and machines are located—can be provided by a
floor plan. For other information the robot will have to rely on its sensors. It
should be able to detect obstacles that are not on the floor plan—people, for
instance. Using the information about the environment, the robot has to move
to its goal position without colliding with any of the obstacles.

This motion planning problem has to be solved whenever any kind of robot
wants to move in physical space. The description above assumed that we have
an autonomous robot moving around in some factory environment. That kind
of robot is still quite rare compared to the robot arms that are now widely
employed in industry.

A robot arm, or articulated robot, consists of a number of links, connected
by joints. Normally, one end of the arm—its base—is firmly connected to the
ground, while the other end carries a hand or some kind of tool. The number
of links varies between three to six or even more. The joints are usually of two
types, the revolute joint type that allows the links to rotate around the joint,
much like an elbow, or the prismatic joint type that allows one of the links to
slide in and out. Robot arms are mostly used to assemble or manipulate parts of
an object, or to perform tasks like welding or spraying. To do this, they must be
able to move from one position to another, without colliding with the environ-
ment, the object they are operating on, or—an interesting complication—with
themselves.

In this chapter we introduce some of the basic notions and techniques used in
motion planning. The general motion planning problem is quite difficult, and
we shall make some simplifying assumptions.
The most drastic simplification is that wé will look at a 2-dimensional mo- 265

Chapter 13 tion planning problem. The environment will be a planar region with polygonal
ROBOT MOTION PLANNING Obstacles, and the robot itself will also be polygonal. We also assume that the
environment is static—there are no people walking in the way of our robot—
and known to the robot. The restriction to planar robots is not as severe as it
appears at first sight: for a robot moving around on a work floor, a floor plan
showing the location of walls, tables, machines, and so on, is often sufficient
to plan a motion.

The types of motions a robot can execute depend on its mechanics. Some
robots can move in any direction, while others are constrained in their mo-
tions. Car-like robots, for instance, cannot move sideways—otherwise parallel
parking would be less challenging. In addition, they often have a certain min-
imum turning radius. The geometry of the motions of car-like robots is quite
complicated, so we will restrict ourselves to robots that can move in arbitrary
directions. In fact, we will mainly look at robots that can translate only; at the
end of the chapter we’ll briefly consider the case of robots that can also change
their orientation by rotation.

13.1 Work Space and Configuration Space

10 + Let ® be a robot moving around in a 2-dimensional environment, or work
+ space, consisting of a set $ = {®,,..., B} of obstacles. We assume that X
is a simple polygon. A placement, or configuration, of the robot can now be
R(6,4) specified by a translation vector. We denote the robot translated over a vector
! (x,y) by R (x,y). For instance, if the robot is the polygon with vertices (1,~1)s
......................... (1,1), (0,3), (—1,1), and (—1,—1), then the vertices of R(6,4) are (7,3),
y , 1 (7,5), (6,7), (5,5), and (5,3). With this notation, a robot can be specified by
A\ R(0,0) ; L .
T g listing the vertices of R (0,0).
| \ . An alternative way to view this is in terms of a reference point. This is
:I% s T T most intuitive if the origin (0,0) lies in the interior of ®(0,0). By definition,
this point is then called the reference point of the robot. We can specify a
reference point placement of ®_ by simply stating the coordinates of the reference point if the
robot is in the given placement. Thus R (x,y) specifies that the robot is placed
with its reference point at (x,y). In general, the reference point does not have
10 1 to be inside the robot: it can also be a point outside the robot, which we might
imagine to be attached to the robot by an invisible stick. By definition, this
point is at origin for (0,0).

Now suppose the robot can change its orientation by rotation, say around its
reference point. We then need an extra parameter, ¢, to specify the orientation
of the robot. We let R (x,y,0) denote the robot with its reference point at (x,)
and rotated through an angle ¢. So what is specified initially is % (0,0,0).

In general, a placement of a robot is specified by a number of parameters that
corresponds to the number of degrees of freedom (DOF) of the robot. This
number is two for planar robots that can only translate, and it is three for planar
266 robots thacan rotate as well as translate. The number of parameters we need

for a robot in 3-dimensional space is higher, of course: a translating robot in
R? has three degrees of freedom, and a robot that is free to translate and rotate
in R? has six degrees of freedom.

The parameter space of a robot & _ is usually called its configuration space. It
is denoted by C(R). A point p in this configuration space corresponds to a
certain placement K (p) of the robot in the work space.

In the example of a translating and rotating robot in the plane the configu-
ration space is 3-dimensional. A point (x,y,¢) in this space corresponds to the
placement & (x,y,®) in the work space. The configuration space is not the Eu-
clidean 3-dimensional space; it is the space R? x [0 : 360). Because rotations
over zero and 360 degrees are equivalent, the configuration space of a rotating
robot has a special topology, which is like a cylinder.

The configuration space of a translating robot in the plane is the 2-dimen-
sional Euclidean plane, and therefore identical to the work space. Still, it is
useful to distinguish the two notions: the work space is the space where the
robot actually moves around—the real world, so to speak—and the configura-
tion space is the parameter space of the robot. A polygonal robot in the work
space is represented by a point in configuration space, and any point in config-
uration space corresponds to some placement of an actual robot in work space.

We now have a way to specify a placement of the robot, namely by specify-
ing values for the parameters determining the placement or, in other words,
by specifying a point in configuration space. But clearly not all points in con-
figuration space are possible; points corresponding to placements where the
robot intersects one of the obstacles in § are forbidden. We call the part of
the configuration space consisting of these points the forbidden configuration
space, or forbidden space for short. It is denoted by Ciorb(R.,S). The rest of the
configuration space, which consists of the points corresponding to free place-
ments—placements where the robot does not intersect any obstacle—is called
the free configuration space, or free space, and it is denoted by Ciee(R.,S).

A path for the robot maps to a curve in the configuration space, and vice
versa: every placement along the path simply maps to the corresponding point
in configuration space. A collision-free path maps to a curve in the free space.
Figure 13.1 illustrates this for a translating planar robot. On the left the work
space is shown, with a collision-free path from the initial position to the goal
position of the robot. On the right the configuration space is shown, with the
grey area indicating the forbidden part of it. The unshaded area in between
the grey area is the free space. For clarity, the obstacles are still shown in the
configuration space, although they have no meaning there. The curve corre-
sponding to the collision-free path is also shown.

We have seen how to map placements of the robot to points in the config-
uration space, and paths of the robot to curves in that space. Can we also map
obstacles to configuration space? The answer is yes: an obstacle P is mapped
to the set of points p in configuration space such that & (p) intersects P. The
resulting set is called the Conﬁguration-spac§ obstacle, or C-obstacle for short,
of P.

Section 13.1
WORK SPACE AND CONFIGURATION
SPACE

267

Chapter 13
ROBOT MOTION PLANNING

Figure 13.1

A path in the work space and the
corresponding curve in the
configuration space

268

work space configuration space

reference point

C-obstacles may overlap even when the obstacles in the work space are dis-
joint. This happens when there are placements of the robot where it intersects
more than one obstacle at the same time.

There is one subtle issue that we have ignored so far: does the robot collide
with an obstacle when it touches that obstacle? In other words, do we define
the obstacles to be topologically open or closed sets? In the remainder we will
choose the first option: obstacles are open sets, so that the robot is allowed to
touch them. This is of little importance in this chapter, but it will become useful
in Chapter 15. In practice a movement where the robot passes very close to an
obstacle cannot be considered safe because of possible errors in robot control.
Such movements can be avoided by slightly enlarging all the obstacles before
the computation of a path.

13.2 A Point Robot

Before we try to plan the motion of a polygonal robot in the plane, let’s have
a look at point robots. Given the mapping from work space to configuration
space that we saw in the previous section this is not such a strange idea. Fur-
thermore, it’s always good to start with a simple case. As before, we denote the
robot by R and we denote the obstacles by Py, ... ,F;. The obstacles are poly-
gons with disjoint interiors, whose total number of vertices is denoted by n. For
a point robot, the work space and the configuration space are identical. (That
is to say, if we make the natural assumption that its reference point is the point
robot itself. Otherwise the configuration space is a translated copy of the work
space.)

Rather than finding a path from a particular start position to a particular
goal position we will construct a data structure storing a representation of the
free space. This data structure can then be used to compute a path between
any two given start and goal positions. Such an approach is useful if the work
space of the robot does not change and many paths have to be computed.

To simplify4the description we restrict the motion of the robot to a large bound-

ing box B that contains the set of polygons. In other words, we add one extra
infinitely large obstacle, which is the area outside B. The free configuration
space (ree NOW consists of the part of B not covered by any obstacle:

t
Ciree = B\ U?’

i=l

The free space is a possibly disconnected region, which may have holes. Our
goal is to compute a representation of the free space that allows us to find a
path for any start and goal position. We will use the trapezoidal map for this.
Recall from Chapter 6 that the trapezoidal map of a set of non-intersecting
line segments inside a bounding box is obtained by drawing two vertical ex-
tensions from every segment endpoint, one going upward until a segment (or
the bounding box) is hit, and one going downward until a segment (or the
bounding box) is hit. In Chapter 6 we developed a randomized algorithm,
TRAPEZOIDALMAP, that computes the trapezoidal map of a set of n segments
in O(nlogn) expected time. The following algorithm, which computes a rep-
resentation of the free space, uses this algorithm as a subroutine.

Algorithm COMPUTEFREESPACE(S)

Input. A set S of disjoint polygons.

Qutput. A trapezoidal map of Ciree (%K., S) for a point robot ..

1. Let E be the set of edges of the polygons in S.

2. Compute the trapezoidal map T(E) with algorithm TRAPEZOIDALMAP
described in Chapter 6.

3. Remove the trapezoids that lie inside one of the polygons from 7 (E) and
return the resulting subdivision.

The algorithm is illustrated in Figure 13.2. Part (a) of the figure shows the
trapezoidal map of the obstacle edges inside the bounding box; this is what is
computed in line 2 of the algorithm. Part (b) shows the map after the trapezoids
inside the obstacles have been removed in line 3.

(a) (b)

By

There is one detail left: how do we find the trapezoids inside the obsta-
cles, which have to be removed? This is not so difficult, because after running
TRAPEZOIDALMAP we know for each trapezoid the edge that bounds it from
the top, and we known to which obstacle that edge belongs. To decide whether
or not to remove the trapezoid, it suffices to check whether the edge bounds the
obstacle from above or from below. The latfer test takes only constant time,

Section 13.2
A POINT RoBOT

\ vertical
/ extensions

Figure 13.2
Computing a trapezoidal map of the
free space

269

270

Chapter 13

ROBOT MOTION PLANNING

Pstart

Pgoal

Figure 13.3
A road map

because the edges of the obstacles are listed in order along the boundary so
that the obstacle lies to a specific, known side of the edges.

The expected time taken by TRAPEZOIDALMAP is O(nlogn), so we get
the following result.

Lemma 13.1 A trapezoidal map of the free configuration space for a point
robot moving among a set of disjoint polygonal obstacles with n edges in total
can be computed by a randomized algorithm in O(nlogn) expected time.

In what follows, we will denote the trapezoidal map of the free space by
T(Cfree)-

How do we use T(Ciee) to find a path from a start position pyan to a goal
position pgoat?

If pytat and pgoal are in the same trapezoid of the map, this is easy: the
robot can simply move to its goal in a straight line.

If the start and goal position are in different trapezoids, however, then
things are not so easy. In this case the path will cross a number of trapezoids
and it may have to make turns in some of them. To guide the motion across
trapezoids we construct a road map through the free space. The road map is a
graph Goad, which is embedded in the plane. More precisely, it is embedded in
the free space. Except for an initial and final portion, paths will always follow
the road map. Notice that any two neighboring trapezoids share a vertical edge
that is a vertical extension of a segment endpoint. This leads us to define the
road map as follows. We place one node in the center of each trapezoid, and
we place one node in the middle of each vertical extension. There is an arc

between two nodes if and only if one node is in the center of a trapezoid and
the other node is on the boundary of that same trapezoid. The arcs are em-
bedded in the plane as straight line segments, so following an arc in the road
map corresponds to a straight-line motion of the robot. Figure 13.3 illustrates
this. The road map G can be constructed in O(n) time by traversing the
doubly-connected edge list of T (Giree). Using the arcs in the road map we can
go from gle node in the center of one trapezoid to the node in the center of a
neighboring trapezoid via the node on their common boundary.

e A e e mn e A Ak o e e e .

e A e A A v A A~

o e e e

We can use the road map, together with the trapezoidal map, to plan a motion
from a start to a goal position. To this end we first determine the trapezoids
Astant and Agoql containing these points. If they are the same trapezoid, then we
move from Part t0 Pgoat in a straight line. Otherwise, let Vgt and Vgoa be the
nodes of Greag that have been placed in the center of these trapezoids. The path
from pgtart t0 Pgoal that we will construct now consists of three parts: the first
part is a straight-line motion from pytar to Vtart, the second part is a path from
Vgtart 10 Vgoal along the arcs of the road map, and the final part is a straight-line
motion from Vgoal t0 pgoar. Figure 13.4 illustrates this.

Astart

Vstart

Pstart

The following algorithm summarizes how a path is found.

Algorithm COMPUTEPATH(T (Ciree), Groads Pstart Pgoal)

Input. The trapezoidal map 7 (Giee) of the free space, the road map Gioad, 2
start position Py, and goal position pgeql.

Output. A path from pggan to pgoal if it exists. If a path does not exist, this fact
is reported.

1. Find the trapezoid Astart cONtaining pyiar and the trapezoid Aoy containing
Pgoal:

2. if Agan OF Agoar does not exist

3. then Report that the start or goal position is in the forbidden space.

4. else Let Vg, be the node of Groag in the center of Agar.

5. Let vgoqr be the node of Groad in the center of Agyy.

6. Compute a path in Groad from Var t0 Vgoa using breadth-first

search.
7. if there is no such path
8. then Report that there is no path from pygar 10 Pyl

9. else Report the path consisting of a straight-line motion from
Pstart 10 Vgarr, the path found in Groaq, and a siraight-line
motion from Vg, 10 Pgoal-

Before we analyze the time complexity of algorithm, let’s think about its cor-
rectness. Are the paths we report always co7llision—free, and do we always find
a collision-free path if one exists?

Section 13.2
A POINT ROBOT

Figure 13.4
A path computed from the road map of
Figure 13.3

2n

A

[]

Pstar

Chapter 13

ROBOT MOTION PLANNING

272

The first question is easy to answer: any path we report must be collision-
free, since it consists of segments inside trapezoids and all trapezoids are in the
free space.

To answer the second question, suppose that there is a collision-free path
from pgtart 10 poat- Obviously psiar and pgoa must lie in one of the trapezoids
covering the free space, so it remains to show that there is a path in Grpaq from
Vstart 10 Vgoal. The path from pygar t0 pgoal must cross a sequence of trapezoids.
Denote the sequence of trapezoids by A, Ay, ..., A;. By definition, A = Agan
and Ay = Agoal. Let v; be the node of Gioag that is in the center of A;. If
the path goes from A; to As, then A; and A1 must be neighbors, so they
share a vertical extension. But Groaq 15 constructed such that the nodes of such
trapezoids are connected through the node on their common boundary. Hence,
there is a path (consisting of two arcs) in Gyag from v; to viyy. This means that
there is a path from v to v; as well. It follows that the breadth-first search in
Groad Will find some (possibly different) path from Vgtan 10 Vgoar.

We now analyze the time the algorithm takes.

Finding the trapezoids containing the start and goal can be done in O(logn)
using the point location structure of Chapter 6. Alternatively, we can simply
check all trapezoids in linear time; we shall see that the rest of the algorithm
takes linear time anyway, so this does not increase the time bound asymptoti-
cally.

The breadth-first search takes linear time in the size of the graph Gioaq. This
graph has one node per trapezoid plus one node per vertical extension. Both
the number of vertical extensions and the number of trapezoids are linear in the
total number of vertices of the obstacles. The number of arcs in the graph is
linear as well, because it is planar. Hence, the breadth-first search takes O(n)
time.

The time to report the path is bounded by the maximum number of arcs on
a path in Groaq, Which is O(n).

We get the following theorem.

Theorem 13.2 Let R be a point robot moving among a set S of polygonal
obstacles with n edges in total. We can preprocess S in O(nlogn) expected
time, such that between any start and goal position a collision-free path for &,
can be computed in O(n) time, if it exists.

The path computed by the algorithm of this section is collision-free, but we
can give no guarantee that the path does not make large detours. In Chapter 15
we will develop an algorithm that actually computes the shortest possible path.
That algorithm, however, will be slower by an order of magnitude.

13.3 Minkowski Sums

In the previous section we solved the motion planning problem for a point
robot; we computed a trapezoidal map of its free space and used that map to

S

plan its motions. The same approach can be used if the robot is a polygon.
There is one difference that makes dealing with a polygonal robot more diffi-
cult: the configuration-space obstacles are no longer the same as the obstacles
in work space. Therefore we start by studying the free configuration space of
a translating polygonal robot. In the next section we will then describe how to
compute it, so that we can use it to plan the motion of the robot.

We assume that the robot & is convex, and for the moment we also assume that
the obstacles are convex. Recall that we use & (x,y) to denote the placement
of R with its reference point at (x,y). The configuration-space obstacle, or
C-obstacle, of an obstacle 2 and the robot &_ is defined as the set of points in
configuration space such that the corresponding placement of & intersects P.
So if we denote the C-obstacle of P by CP, then we have

CP:={(xy) : R{xy)NP#0}.

You can visualize the shape of C? by sliding X along the boundary of #2; the
curve traced by the reference point of & is the boundary of CP.

We can describe this in a different way using the notion of Minkowski sums.
The Minkowski sum of two sets §; C R? and S, C R?, denoted by 1 & S5, is
defined as

S1®S:={p+q: peSi,qe S},

where p + ¢ denotes the vector sums of the vectors p and g, that is, if p =
(px,py) and g = (gx,gy) then we have

ptqg:= (Px‘*"]x: Py‘|’qy)-

Because a polygon is a planar set the definition of Minkowski sums also applies
to them.

To be able to express the C-obstacles as Minkowski sums, we need one
more piece of notation. For a point p = (py, py) we define —p := (—px,—py),
and for a set S we define —§ := {—p : p € S}. In other words, we get —S by
reflecting § about the origin. We now have the following theorem.

Theorem 13.3 Let R be a planar, translating robot and let P be an obstacle.
Then the C-obstacle of P is P ® (—K(0,0)).

Proof. We have to prove that & (x,y) intersects 2 if and only if we have that
(x,y) € P& (-R(0,0)).

First, suppose that R (x,y) intersects P, and let g = (gx,q,) be a point in the
intersection. It follows from g € R (x,y) that we have (gx —x,g, —y) € R(0,0)
or, equivalently, that (—gx+x,—gy +y) € =% (0,0). Because we also have
q € P, this implies that (x,y) € P& (—R(0,0)).

Conversely, let (x,y) € P @ (=R (0,0)). Then there are points (ry,ry) €
R(0,0) and (py, py) € P such that (x,y) = (px — rx, py — ry) or, in other words,
such that p; = ry+x and p, = ry+, which implies that & (x,y) intersects ©P.

9

Section 13.3
MINKOWSKI SUMS

$2

273

Chapter 13 So for a planar translating robot & the C-obstacles are the Minkowski sums
RoBOT MOTION PLANNING of the obstacles and — % (0,0). (Sometimes P & (—R(0,0)) is referred to as
the Minkowski difference of P and K (0,0). Since Minkowski differences are
defined differently in the mathematics literature we shall avoid this term.)
In the remainder of this section we will derive some useful properties of
Minkowski sums and develop an algorithm to compute them.

We start with a simple observation about extreme points on Minkowski sums.

Observation 13.4 Let P and K be two objects on the plane, and let CP :=
P& R. An extreme point in direction d on CP is the sum of extreme points in
directiond on P and ..

Figure 13.5 illustrates the observation. Using this observation we now prove
that the Minkowski sum of two convex polygons has linear complexity.

__ptr

Figure 13.5
An extreme point on a Minkowski sum
is the sum of extreme points.

Theorem 13.5 Let P and K be two convex polygons with n and m edges,
respectively. Then the Minkowski sum P & R_ is a convex polygon with at
most n+ m edges.

Proof. The convexity of the Minkowski sum of two convex sets follows di-
rectly from the definition.

To see that the complexity of the Minkowski sum is linear, consider an edge
e of P@® K. This edge is extreme in the direction of its outer normal. Hence, it
must be generated by points on P and R _that are extreme in the same direction.
Moreover, at least one of P and R must have an edge that is extreme in that di-
rection. We charge e to this edge. This way each edge is charged at most once,
so the total number of edges is at most n+m. (If P and X don’t have parallel
edges, then the number of edges of the Minkowski sum is exactly n +m.)

So the Minkowski sum of two convex polygons is convex and has linear com-
plexity. But there is more: the boundaries of two Minkowski sums can only
intersect in a very special manner. To make this precise, we need one more
piece of terminology.

We call a pair o1, 07 of planar objects a pair of pseudodiscs if it satisfies the
274 pseudodiz® property: the sets 01 \ 07 and 02 \ 0; are connected.

Figure 13.6 illustrates this definition. A collection of objects is called a col-
lection of pseudodiscs if every pair of objects is a pair of pseudodiscs. Notice
that any collection of discs forms a collection of pseudodiscs. Also a collection
of axis-parallel squares is a collection of pseudodiscs.

pseudodiscs not pseudodiscs

Define a proper intersection of two curves to be an intersection consisting
of a single point that is not a point where the curves touch. The boundaries of
pseudodiscs have the following important property.

Observation 13.6 For any pair of pseudodiscs there are at most two proper
intersections between the boundaries.

Below we will prove that a collection of Minkowski sums forms a collection
of pseudodiscs. But first we need one more observation about directions and
extreme points on pairs of convex polygons with disjoint interiors. We will say
that one polygon is more extreme in a direction d than another polygon if its
extreme points lie further in that direction than the extreme points of the other
polygon. For instance, a polygon is more extreme in the positive x-direction if
its rightmost points lie to the right of the rightmost points of the other polygon.

We will look at extreme points for various directions. To this end we model
the set of all directions by the unit circle centered at the origin: a point p on
the unit circle represents the direction given by the vector from the origin to p.
The range from a direction dy to a direction dz is defined as the the directions
corresponding to points in the counter-clockwise circle segment from the pomt
representing dy to the point representmg d>. Note that the range from di to
d;z is not the same as the range from d2 to d1 The following observation is
illustrated in Figure 13.7.

P, is more
P, and P, are

extreme
equally extreme /

P, is more
extreme

Observation 13.7 Let P, and P, be convex polygons with disjoint interiors.
Let J] and 072 be directions in which ‘P, is more extreme than £P2 T hen either
P, is more extreme than ‘P> in all directions in the range from d, 1 to dz, oritis
more extreme in all directions in the range froim d2 to d, I

Section 13.3
MINKOWSKI SUMS

Figure 13.6
The pseudodisc property

directions
between
d 1 and d2

Figure 13.7

One convex polygon is more extreme
than another for a connected range of
directions

275

276

Chapter 13
ROBOT MOTION PLANNING

We are now ready to prove that Minkowski sums are pseudodiscs.

Theorem 13.8 Let Py and ‘P, be two convex polygons with disjoint interiors,
and let R_be another convex polygon. Then the two Minkowski sums P & R,
and P, @ R_ are pseudodiscs.

Proof. Define CP, := P, K and CP, := P & K. By symmetry, it suffices to
show that CP; \ CP, is connected.

Since CP; and CP; are both convex, a connected component of CP, \ CP»
must contain a point on the convex hull of CP U CP,. If there is more than
one connected component, that means that there must be two directions di and
d"z such that CP, is more extreme in those directions than C%. From Obser-
vation 13.4 it follows that A, is more extreme than P, in those two directions.
By Observation 13.7 this means that either P} is more extreme than P, for all
directions in the range from Jl to d"z or for all directions in the range from JZ
to dj. Applying Observation 13.4 once more we conclude that the same holds
for CP; with respect to CP,. In other words, the set of directions for which
the extreme points on CP; lie further out than those on C#; is connected, a
contradiction to the assumption that there are two connected components.

This result is useful in combination with the following theorem.

Theorem 13.9 Let S be a collection of polygonal pseudodiscs with n edges in
total. Then the complexity of their union is O(n).

Proof. We prove this by charging every vertex of the union to a pseudodisc
vertex in such a way that any pseudodisc vertex is charged at most two times.
This leads to a bound of 21 on the maximal complexity of the union.

The charging is done as follows. There are two types of vertices in the
union boundary: pseudodisc vertices and intersections of pseudodisc edges.

Vertices of the former type are simply charged to themselves.

The charging for intersection points is a little more difficult. Consider a
vertex v of the union that is the intersection of an edge e of a pseudodisc P € S
and an edge €' of a pseudodisc P’ € S. Imagine that these edges are directed
such that they enter the interior of the other pseudodisc at v. Follow the edge e
into the interior of 2’ If it ends in the interior, then we charge v to the endpoint
of e in the interior of ', Otherwise e leaves the interior. The point where this
happens is an intersection point of the boundaries of 2 and ?'. Together with
v this makes two intersection points, so that ¢’ cannot leave the interior of P
without violating the pseudodisc property. Hence, ¢’ has a vertex inside P, and
we charge v to this vertex.

If we do the charging in this way, then every pseudodisc vertex is charged
at most twice. For vertices that are on the union boundary this is obvious: they
only get charged by themselves. For the other vertices this can be seen as fol-
lows. From such a vertex, follow its incident edges until the union boundary is
reached at an intersection point with some other edge; these two intersection
points, if they exist, are the only ones that get charged to the vertex.

12

R ————— VI G il

The proof of this theorem depends heavily on the pseudodiscs being polygonal,
but the theorem itself generalizes to arbitrary pseudodiscs: the complexity of
the union of any set of pseudodiscs is linear in the total complexity of the
pseudodiscs. This implies for instance that the union of n discs in the plane has
O(n) complexity. This more general theorem is a lot more difficult to prove.

Before we return to our motion planning application, we will give an algorithm
to compute the Minkowski sum of two convex polygons 2 and X. A very
simple algorithm is the following. For each pair v,w of vertices, with v € 2
and w € R, compute v+ w. Next, compute the convex hull of all these sums.
Although the algorithm is very simple, it is inefficient when the polygons have
a lot of vertices, because it looks at every pair of vertices. Below we give an
alternative algorithm, which is as easy to implement. It only looks at pairs
of vertices that are extreme in the same direction—this is allowed because of
Observation 13.4—which makes it run in linear time. In the algorithm we use
the notation angle(pq) to denote the angle that the vector pg makes with the
positive x-axis.

Algorithm MINKOWSKISUM(?, R)

Input. A convex polygon P with vertices vy,... v, and a convex polygon &,
with vertices wy,... ,wn. The lists of vertices are assumed to be in counter-
clockwise order, with v; and w| being the vertices with smallest y-coordinate
(and smallest x-coordinate in case of ties).

Qutput. The Minkowski sum P 3 R.

. i«1;j+1

2. Vng1 VI Wing) & W

3. repeat

4 Addvi+w;j as a vertex to P @ K.

5 if angle(vivi+1) < angle(wjwjy1)

6. theni« (i+1)

7 else if angle(viviy1) > angle(wjwiy)

8 then j « (j+1)

9. else i+ (i+1)

10. j+(+1

11. untili=n+land j=m+1

MINKOWSKISUM runs in linear time, because at each execution of the repeat
loop either i or j is incremented and—as is not difficult to prove—they will
not be incremented after reaching the values n+ 1 and m + 1. The fact that the
correct pairs of vertices are taken is similar to the proof of Theorem 13.5; one
just has to observe that any vertex of the Minkowski sum is the sum of two
original vertices that are extreme in a common direction, and argue that the
angle test ensures that all extreme pairs are found.
We conclude with the following theorem:

Theorem 13.10 The Minkowski sum of two convex polygons with n and m
vertices, respectively, can be computed in O(n+ m) time.

Section 13.3
MINKOWSKI SUMS

angle(pq)
.

271

Chapter 13
ROBOT MOTION PLANNING

Figure 13.8
The Minkowski sum of a non-convex
and a convex polygon

278

What happens if one or both of the polygons are not convex? This question
is not so hard to answer if we realize that the following equality holds for any
sets 81, 57, and S3:

S1®($2U83) = (S1 9 $2)U(S18S3).

Now consider the Minkowski sum of a non-convex polygon 2 and a convex
polygon R with n and m vertices respectively. What is the complexity of P
R_? We know from Chapter 3 that the polygon can be triangulated into n— 2
trianglesty, ... ,fn—2, where n is its number of vertices. From the equality above
we can conclude that

n=2
PR =JuoR.

i=1

Since ¢; is a triangle and R a convex polygon with m vertices, we know that
1;® R is a convex polygon with at most m+ 3 vertices. Moreover, the triangles
have disjoint interiors, so the collection of Minkowski sums is a collection of
pseudodiscs. Hence, the complexity of their union is linear in the sum of their
complexities. This implies that the complexity of P& R_ is O(nm).

‘K

This upper bound on the complexity of a non-convex and a convex poly-
gon is tight in the worst case. To see this, consider a polygon P with [n/2]
spikes pointing upward, and a much smaller polygon X, that is the top half of
a regular (2m — 2)-gon. The Minkowski sum of these polygons will also have
|n/2] spikes, each of which has m vertices at its top. Figure 13.8 illustrates the
construction.

To bound the complexity of the Minkowski sum of two non-convex polygons
P and R, we triangulate both polygons. We get a collection of n — 2 triangles
t;, and a collection of m — 2 triangles u;. The Minkowski sum of P and R
is now the union of the Minkowski sums of the pairs #;,u;. Each sum 1; &
u; has constant complexity. Hence, ? @ R is the union of (n — 2)(m —2)
constant-complexity polygons. This implies that the total complexity of P X,
is 0(n2m151. Again, this bound is tight in the worst case: there are non-convex

polygons whose Minkowski sum really has O(n*m?) complexity. Figure 13.9
illustrates this.

The following theorem summarizes the results on the complexity of Minkowski
sums. For completeness the complexity in the case of two convex polygons is
given as well.

Theorem 13.11 Let P and R_be polygons with n and m vertices, respectively.
The complexity of the Minkowski sum P @ R, is bounded as follows:

(i) itis O(n+m) if both polygons are convex;

(i) it is O(nm) if one of the polygons is convex and one is non-convex;

(iii) it is O(n’m?) if both polygons are non-convex.

These bounds are tight in the worst case.

Computing Minkowski sums of non-convex polygons is not very difficult: tri-
angulate both polygons, compute the Minkowski sum of each pair of triangles,
and take their union. This approach is basically the same as the approach de-
scribed in the next section for computing the forbidden space of a translating
robot, so we omit the details here.

13.4 Translational Motion Planning

It is time to return to the planar motion planning problem. Recall that our
robot & can only translate and that the obstacles are disjoint polygons. Early
in the previous section we have shown that the C-obstacle corresponding to an
obstacle P, is the Minkowski sum ;& (—%&). Moreover, we have seen that
Minkowski sums of convex polygons are pseudodiscs. We use this to prove
our first major result on the motion planning problem, which states that the

complexity of the free space of a translating planar robot is linear.
15

Section 13.4
TRANSLATIONAL MOTION
PLANNING

Figure 13.9
The Minkowski sum of two
non-convex polygons

279

280

Chapter 13
ROBOT MOTION PLANNING

Theorem 13.12 Let % be a convex robot of constant complexity, translating
among a set S of non-intersecting polygonal obstacles with a total of n edges.
Then the complexity of the free configuration space Ciee(R.,S) is O(n).

Proof. First we triangulate each obstacle polygon. We get a set of O(n) tri-
angular, and hence convex, obstacles with disjoint interiors. The free configu-
ration space is the complement of the union of the C-obstacles of these trian-
gles. Because the robot has constant complexity, the C-obstacles have constant
complexity, and according to Theorem 13.8 they form a set of pseudodiscs.
Theorem 13.9 now implies that the union has linear complexity.

It remains to find an algorithm to construct the free space. Rather than com-
puting the free space Cree, We shall compute the forbidden space (yorp; the free
space is simply its complement.

Let P,,...,P, denote the triangles that we get when we triangulate the
obstacles. We want to compute

Cforb = OCTI = Oﬂ@(—R(0,0))

i=1 i=1

In Section 13.3 we saw how to compute the individual Minkowski sums CF;.
To compute their union we use a simple divide-and-conquer approach.

Algorithm FORBIDDENSPACE(CP,,... ,CE,)
Input. A collection of C-obstacles.
Output. The forbidden space Gy = Ui CPi

1. ifn=1

2. then return CP

3. else (), < FORBIDDENSPACE(®, ..., Pu/2))
4 (2, +FORBIDDENSPACE(P(4/5) 415+ » Pn)
5. Compute Giory = Cflorb U Cf%)l‘b'

6. return Ciorp

The heart of this algorithm is the subroutine to compute the union of two planar
regions, which we need to perform the merge step (line 5). If we represent
these regions by doubly-connected edge lists, this can be done by the overlay
algorithm described in Chapter 2.

The following lemma summarizes the result.

Lemma 13.13 The free configuration space Ciee 0f a convex robot of constant
complexity translating among a set of polygons with n edges in total can be
computed in O(nlog? n) time.

Proof. In Chapter 3 we saw that a polygon with m vertices can be triangulated
in O(mlogm) time. (In fact, it can even be done in O(m) time with a very
complicated algorithm, as stated in the notes and comments of Chapter 3.)
Hence, if #; denotes the complexity of obstacle 2, then triangulating all the

obstacles takes time proportional to

t t
Emilogm,- < Zm,-logn = nlogn.
i=1 i=1
Computing the C-obstacles of each of the resulting triangles takes linear time
in total. It remains to bound the time that FORBIDDENSPACE needs to compute
the union of the C-obstacles.

Using the results from Chapter 2, the merge step (line 5) can be done in
O((n1 4+ n2 + k)log(n1 + n2)) where ny, ny, and k denote the complexity of
G Canps @nd G2 U G2, Theorem 13.12 states that the complexity of the
free space—and, hence, of the forbidden space—is linear in the sum of the
complexities of the obstacles. In our case this means that ny, ny, and k are
all O(n), so the time for the merge step is O(nlogn). We get the following
recurrence for T'(n), the time the algorithm needs when applied to a set of n
constant-complexity C-obstacles:

T(n)=T([n/2])+T(|n/2])+ O(nlogn).

The solution of this recurrence is O(nlog®n).

The result of this theorem is not the best possible—see the notes and comments
of this chapter.

Now that we have computed the free space, we can continue in exactly the
same way as in Section 13.2: we compute a trapezoidal map of the free space,
together with a roadmap. Given a start and a goal placement of the robot &,
we find a path as follows. First, we map the start and goal placement to points
in the configuration space. Then we compute a path between these two points
through the free space using the trapezoidal map and the road map, as described
in Section 13.2. Finally, we map the path back to a path for R in the work
space.
The next theorem summarizes the result of our efforts.

Theorem 13.14 Let R, be a convex robot of constant complexity translating
among a set S of disjoint polygonal obstacles with n edges in total. We can
preprocess S in O(nlog? n) expected time, such that between any start and goal
position a collision-free path for R , if it exists, can be computed in O(n) time.

13.5* Motion Planning with Rotations

In the previous sections the robot was only allowed to translate. When the
robot is circular this does not limit its possible motion. On the other hand,
when it is long and skinny, translational motion is often not enough: it may
have to change its orientation to be able to pass through a narrow passage or
to go around a corner. In this section we sketch a method to plan motion for
robots that can rotate as well as translate. 17

Section 13.5%
MOTION PLANNING WITH
ROTATIONS

281

Chapter 13
ROBOT MOTION PLANNING

Figure 13.10
The (-obstacle of a rotating and
translating robot

282

Let R be a convex polygonal robot that can translate and rotate in a planar work
space that contains a set Py,... , % of disjoint polygonal obstacles. The robot
R has three degrees of freedom: two translational and one rotational degree of
freedom. Hence, we can specify a placement for & by three parameters: the
x- and y-coordinate of a reference point of &, and an angle ¢ that specifies its
orientation. As in Section 13.1, we use R (x,,0) to denote the robot placed
with its reference point at (x, y) and rotated over an angle 0.

The configuration space that we get is the 3-dimensional space R* % [0
360), with a topology where points (x,y,0) and (x,y,360) are identified. Recall
that CP,, the C-obstacle of an obstacle %, is defined as follows:

CPr:={(x,,0) R x[0:360) : R(x,y,0)NP #0}.

What do these C-obstacles look like? This question is difficult to answer di-
rectly, but we can get an idea by looking at cross-sections with planes of con-
stant ¢. In such a plane the rotation angle is fixed, so we are dealing with a
purely translational problem. Hence, we know the shape of the cross-section:
it is a Minkowski sum. More precisely, the cross-section of C%; with the plane
h:o=¢is equal to B d R(0,0,80). (More precisely, it is a copy of the

work space configuration space

Ch

Minkowski sum placed at height ¢9.) Now imagine sweeping a horizontal
plane upwards through configuration space, starting at ¢ = 0 and ending at
® = 360. At any time during the sweep the cross-section of the plane with
C'P; is a Minkowski sum. The shape of the Minkowski sum changes contin-
uously: at ¢ = ¢g the cross-section is Z; & R (0,0,¢0), and at ¢ = ¢ + € the
cross-section is B & & (0,0,¢0 + €). This means that C'P; looks like a twisted
pillar, as in Figure 13.10. The edges and facets of this twisted pillar, except for
the top facet and bottom facet, are curved.

So we know more or less what C-obstacles look like. The free space is the
complement of the union of these C-obstacles. Due to the nasty shape of the
C-obstacles, the free space is rather complicated: its boundary is no longer
polygonallBut curved. Moreover, the combinatorial complexity of the free

space can be quadratic for a convex robot, and even cubic for a non-convex
robot. Nevertheless, we can solve the motion planning problem using the same
approach we took before: compute a decomposition of the free space into sim-
ple cells, and construct a road map to guide the motions between neighboring
cells. Given a start and goal placement of the robot we then find a path as fol-
lows. We map these placements to points in configuration space, find the cells
that contain the points, and construct a path consisting of three parts: a path
from the start position to the node of the road map in the center of the start
cell, a path along the road map to the node in the center of the goal cell, and a
path inside the goal cell to the final destination. It remains to map the path in
configuration space back to a motion in the work space.

Because of the complex shape of the C-obstacles, it is difficult to compute
a suitable cell decomposition, especially when it comes to an actual implemen-
tation. Therefore we shall describe a different, simpler approach. As we shall
see, however, this approach has its drawbacks as well. Our approach is based
on the same observation we used to study the shape of the C-obstacles, namely
that the motion planning problem reduces to a purely translational problem if
we restrict the attention to a horizontal cross-section of the configuration space.
We will call such a cross-section a slice. The idea is to compute a finite number
of slices. A path for the robot now consists of two types of motion: motions
within a slice—these are purely translational—and motions from one slice to
the next or previous one—these will be purely rotational.

Let’s formalize this. Let z denote the number of slices we take. For every
integer i with 0 < i<z -1, let o; =i x (360/z). We compute a slice of the
free space for each ¢;. Since within the slice we are dealing with a purely
translational problem for the robot & (0,0,¢;), we can compute the slice using
the methods of the previous section. This will give us the trapezoidal map 7;
of the free space within the slice. For each T; we compute a road map G;.
These road maps are used to plan the motions within a slice, as in Section 13.2.

It remains to connect consecutive slices. More precisely, we connect every
pair of roadmaps G;, Gi41 to obtain a roadmap Gioaq of the entire configuration
space. This is done as follows. We take the trapezoidal maps of each pair of
consecutive slices, and compute their overlay with the algorithm of Chapter 2.
(Strictly speaking, we should say that we compute the overlay of the projec-
tions of T; and 7 ;41 onto the plane 4 : ¢ = 0.) This tells us all the pairs A;,A;
with A; € T; and Ay € T4 such that A intersects Ay. Let (x,y,0) be a point
in Aj NA;. We then add an extra node to Groqq at (x,y,0;) and at (x,y,¢i1),
which we connect by an arc. Moving from one slice to the other along this arc
corresponds to a rotation from ¢; to ¢;1, or back. Furthermore, the node at
(x,¥,0;) is connected to the node at the center of Aj, and the node at (x,y, d;41)
is connected to the node at the center of Ay. These connections stay within a
slice, so they correspond to purely translational motions. We connect G, and
Go in the same way. Note that paths in the graph Gpo,g correspond to paths
of the robot that are composed of purely translational motion (when we move
along an arc connecting nodes in the same slice) and purely rotational motion
(when we move along an arc connecting nodés in different slices).

Section 13.5*
MOTION PLANNING WITH
ROTATIONS

283

284

Chapter 13
ROBOT MOTION PLANNING

Figure 13.11
Enlarging the robot

Once we have constructed this road map, we can use it to plan a motion
for R from any start placement & (Xgart, Vstarts Ostart) t0 any goal placement
R (Xgoal Ygoat, Peoa1). To do this, we first determine the slices closest to the
start and goal placement by rounding the orientations ¢san and Qgoqr to the
nearest orientation ¢; for which we constructed a slice. Within those slices we
determine the trapezoids Agtar and Agoqr containing the start and goal position.
If one of these trapezoids does not exist because the start or goal position lies
in the forbidden space within the slice, then we report that we cannot compute
a path. Otherwise, let Vgt and Vgoa be the nodes of the road map that have
been placed in their center. We try to find a path in Groag from Vieart t0 Vyoal
using breadth-first search. If there is no path in the graph, we report that we
cannot compute a motion. Otherwise we report a motion consisting of five
parts: a purely rotational motion from the start position to the nearest slice, a
purely translational motion within that slice to the node V1, 2 motion that cor-
responds to the path from Var 10 Vgoat in Groad, @ purely translational motion
from V, to the final position within that slice (which is the slice nearest to the
goal position), and finally a purely rotational motion to the real goal position.

This method is a generalization of the method we used for translating motions,
but # has a major problem: it is not always correct. Sometimes it may erro-
neously report that a path does not exist. For instance, the start position can be
in the free space, whereas the start position within the nearest slice is not. In
this case we report that there is no path, which need not be true. Even worse is
that the paths we report need not be collision-free. The translational motions
within a slice are okay, because we solved the problem within a slice exactly,
but the rotational motions from one slice to the next may cause problems: the
placements within the two slices are collision-free, but halfway the robot could
collide with an obstacle. Both problems are less likely to occur when we in-
crease the number of slices, but we can never be certain of the correctness of
the result. This is especially bothersome for the second problem: we definitely
don’t want our possibly very expensive robot to have a collision.

Therefore we use the following trick. We make the robot slightly larger,
and use the method described above on the enlarged robot ®’. This is done
in such a way that although &’ can collide during rotations, the original robot
K cannot. To achieve this, the robot is enlarged as follows. Rotate R clock-
wise and counter-clockwise over an angle of (180/z)°. During this rotation
R_sweeps a part of the plane. We use for the enlarged robot X' a convex
polygon tHat contains the sweep area—see Figure 13.11. We now compute the

trapezoidal maps and the road map for R’ instead of K. It is not difficult to
prove that &, cannot collide with an obstacle during a purely rotational motion
between two adjacent slices, even though R’ can. By enlarging the robot we
have introduced another way to incorrectly decide that there is no path. Again,
this becomes less likely when the number of slices increases. So with a large
number of slices, the method probably performs reasonably well in practical
situations.

13.6 Notes and Comments

The motion planning problem has received a lot of attention over the years,
both from people working in computational geometry and from people work-
ing in robotics, and this chapter only scratches the surface of all the research.
A much more extensive treatment of the problem is given by Latombe [207].
Nevertheless, the concepts we have introduced—configuration space, decom-
position of the free space, road maps that transform the geometric problem into
a graph searching problem—underly the majority of approaches that have been
proposed.

These concepts date back to the work of Lozano-Pérez [221, 222, 223].
An important difference between his method and the method of this chapter is
that he used an approximate decomposition of the free space. The approach of
Section 13.2, which uses an exact decomposition of the free space of a planar
translating robot into trapezoids, is based on more recent work by Kedem et
al. [195, 196]. An improved algorithm, which runs in O(rlogn) time, was
given by Bhattacharya and Zorbas [48].

A very general method that is based on finding an exact cell decomposition
of the free space was given by Schwartz and Sharir [304]. It is based on a
decomposition method of Collins [114]. Unfortunately, this method takes time
doubly exponential in the dimension of the configuration space. This can be
improved using a decomposition method of Chazelle et al. [81].

In this chapter we have seen that the cell decomposition approach leads
to an O(rlog®n) algorithm when applied to a convex robot translating in the
plane. The bottleneck in the algorithm was the computation of the union of
a collection of Minkowski sums. Using a randomized incremental algorithm,
instead of a divide-and-conquer algorithm, this step can be done in O(nlogn)
time [42, 246).

The translational motion planning problem in 3-dimensional space can be
solved in O(n*log n) time [10].

The approach we sketched for robots that can translate and rotate is ap-
proximate: it isn’t guaranteed to find a path if it exists. It is possible to find
an exact solution by computing an exact cell decomposition of the free space
in O(n*) time {21]. For a convex robot, the running time can be reduced to
O(n*log?n) [197].

The free space of a robot may consist of a number of disconnected com-
ponents. Of course, the motions of the robof are confined to the component

Section 13.6
NOTES AND COMMENTS

285

286

Chapter 13
ROBOT MOTION PLANNING

where it starts; to go to another component it would have to pass through the
forbidden space. Hence, it is sufficient to compute only a single cell in the free
space, instead of the entire free space. Usually the worst-case complexity of
a single cell is one order of magnitude lower than the complexity of the entire
free space. This can be used to speed up the asymptotic running time of the
motion planning algorithms. The book by Agarwal and Sharir [313] and the
thesis by Halperin [173] discuss single cells and their connection to motion
planning at length.

The theoretical complexity of the motion planning is exponential in the
number of degrees of freedom of the robot, which makes the problem appear
intractable for high DOF robots. Under some mild restrictions on the shape
of the robot and the obstacles—which are likely to be satisfied in practical
situations—one can show that the complexity of the free space is only lin-
ear [318, 319].

Cell decomposition methods are not the only exact methods for motion plan-
ning. Another approach is the so-called retraction method. Here a road map is
constructed directly, without decomposing the free space. Furthermore, a re-
traction function is defined, which maps any point in the free space to a point on
the road map. Once this has been done, paths can be found be retracting both
start and goal to the road map and next following a path along the road map.
Different types of road maps and retraction functions have been proposed. A
nice road map is the Voronoi diagram, because it stays as far away from the
obstacles as possible. If the robot is a disc, then we can use the normal Voronoi
diagram; otherwise one has to use a different distance function in the defini-
tion of the Voronoi diagram, which depends on the shape of the robot. Still,
such a diagram can often be computed in O(nlogn) time {220, 260], leading
to another O(rlogn) time algorithm for translational motion planning. A very
general road map method has been proposed by Canny [60]. It can solve almost
any motion planning problem in time O(n?logn), where d is the dimension of
the configuration space, that is, the number of degrees of freedom of the robot.
Unfortunately, the method is very complicated, and it has the disadvantage that
most of the time the robot moves in contact with an obstacle. This is often not
the preferred type of motion.

In this chapter we have concentrated mainly on exact motion planning. There
are also a number of heuristic approaches.

For instance, one can use approximate cell decompositions [53, 221, 222,
344] instead of exact ones. These are often based on quad trees.

Another heuristic is the potential field method [27, 199, 327]. Here one
defines a potential field on the configuration space by making the goal position
attract the robot and making the obstacles repel it. The robot then moves in
the direction dictated by the potential field. The problem with this approach
is that the robot can get stuck in local minima of the potential field. Various
techniques have been proposed to escape the minima.

Another heuristic which has recently become popular is the probabilistic
road map%%ethod [274, 194]. It computes a number of random placements for

the robot, which are connected in some way to form a road map of the free
space. The road map can then be used to plan paths between any given start
and goal placement.

Minkowski sums not only play an important role in motion planning, but also
in other problems. An example is the problem of placing one polygon inside
another [97]; this can be useful if one wants to cut out some shape from a piece
of fabric. For some basic results on properties of Minkowski sums and their
computation we refer to [31, 165].

In this chapter we concentrated on finding some path for the robot, but we
didn’t try to find a short path. This is the topic of Chapter 15.

Finally, we note that we allowed paths where the robot touches an obstacle.
Such paths are sometimes called “semi-free” [207, 303]. Paths that do not
touch any obstacle are then called “free”. It is useful to be aware of these terms
when studying the motion planning literature.

13.7 Exercises

13.1 Let & be a robotic arm with a fixed base and seven links. The last joint
of X is a prismatic joint, the other ones are revolute joints. Give a set of
parameters that determines a placement of . What is the dimension of
the configuration space resulting from your choice of parameters?

13.2 In the road map Groaq that was constructed on the trapezoidal decompo-
sition of the free space we added a node in the center of each trapezoid
and on each vertical wall. It is possible to avoid the nodes in the center
of each trapezoid. Show how the graph can be changed such that only
nodes on the vertical walls are required. (Avoid an increase in the num-
ber of edges in the graph.) Explain how to adapt the query algorithm.

13.3 Prove that the shape of C%, is independent of the choice of the reference
point in the robot K.

13.4 What does the Minkowski sum of two circles with radius r; and ry look
like?

13.5 Let P, and P> be two convex polygons. Let S; be the collection of ver-
tices of P, and S; be the collection of vertices of P,. Prove that

P1® Py = ConvexHull(S| 3 S3).

13.6 Prove Observation 13.4.

13.7 In Theorem 13.9 we gave an O(n) bound on the complexity of the union
of a set of polygonal pseudodiscs with # vertices in total. We are inter-
ested in the precise bound.

Section 13.7
EXERCISES

287

Chapter 13 a. Assume that the union boundary contains m original vertices of
ROBOT MOTION PLANNING the polygons. Show that the complexity of the union boundary is
bounded by 2n — m. Use this to prove an upper bound of 22 — 3.
b. Prove a lower bound of 2n — 6 by constructing an example that has
this complexity.

288 24

