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Abstract

We address the problem of building environment

maps from ultrasonic range data obtained from multi-

ple viewpoints. We present a novel environment mod-

elling technique called the `response grid' that allows

us to build occupancy maps in highly specular envi-

ronments. We present two di�erent approaches that

utilise this technique: a Bayesian probabilisitic ap-

proach and a Dempster-Shafer evidential reasoning ap-

proach. Both approaches can be implemented in real-

time with modest computational resources, and as such

are suitable for use in mobile robot navigation tasks.

We present and compare the experimental results ob-

tained by these methods in a highly specular indoor

environment.

1 Introduction

Building environment maps from sensory data is an im-

portant aspect of mobile robot navigation, particularly

for those applications in which robots must function in

unstructured environments. Ultrasonic range sensors

are, super�cially, an attractive sensor modality to use

in building such maps, due mainly to their low cost,

high speed and simple output. Unfortunately, these

sensors have a number of properties that make map

building a non-trivial process. In particular, standard

sensors have very poor angular resolution and can gen-

erate misleading range values in specular environments.

The �rst of these problems can be largely overcome

by combining range measurements from multiple view-

points. Elfes [1] and Moravec [2] describe an approach

in which range measurements from multiple viewpoints

are combined in a two-dimensional `occupancy grid'.

Each cell in the grid is assigned a value indicating the

probability that the cell is occupied. Unfortunately,

the occupancy grid approach does not work well in

specular environments. Specular re
ection may occur

whenever an ultrasonic pulse encounters a smooth ex-

tended surface [3]. In such cases the pulse may not

be re
ected back to the ultrasonic sensor; in e�ect,

the surface may appear to be invisible. In ordinary

o�ce environments which contain smooth walls and

glass doors specular re
ection is common. In this pa-

per, we improve on earlier grid-based approaches by

introducing the concept of a `response grid'. The in-

tent of the response grid framework is to produce an

approach which has the advantages of the occupancy

grid framework, but also performs well in specular en-

vironments.

The response grid framework attempts to model the

behaviour of ultrasonic range sensors in a more physi-

cally realistic fashion. A number of other authors have

considered the physical behaviour of such sensors in

some detail [4, 5, 6]; in this paper, however, we are only

conerned with physical behaviour insofar as it allows us

to generate two dimensional occupancy maps in spec-

ular environments. The basic notion encapsulated by

the response grid is that a cell may generate a response

(i.e. appear to be occupied) when viewed from one di-

rection, but will not generate a response when viewed

from another. In the original occupancy map frame-

work, this would present a contradiction, since this ap-

proach assumes that an occupied cell should generate

responses in every direction.

In this paper, we present two di�erent methods for

generating occupancy maps from ultrasonic range data

within the response grid framework. The di�erence be-

tween the two methods lies in the di�erent techniques

they use to combine data obtained from multiple view-

points. We present and compare a Bayesian probabilis-

tic reasoning approach with a Dempster-Shafer eviden-

tial reasoning approach. The Bayesian approach can be

viewed, to some extent, as a generalisation of the ap-

proaches described by Elfes [1] and by Moravec [2]. In
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Section 3 we compare the experimental results for each

method and consider their relative advantages. Note

that both methods can be implemented in real-time

with modest computational resources, which makes

them well suited to mobile robot navigation tasks.

2 Framework

2.1 The Response Grid

We model the environment as a set of cells arranged in

a regular two-dimensional grid. A given cell in the grid

may either be entirely empty, or else it may contain

one or more surfaces which re
ect ultrasonic pulses. A

pulse entering a cell will do one of three things:

� If the cell is entirely empty, the pulse will pass

through the cell una�ected.

� If the cell contains one or more re
ective surfaces,

the pulse may be re
ected back to the ultrasonic

detector.

� If the cell contains one or more re
ective surfaces,

the pulse may be re
ected away from the ultra-

sonic detector.

The behaviour of a pulse re
ecting o� a surface con-

tained in the cell will depend upon the orientation of

the surface and the direction of the incoming pulse. If

a pulse which is propagating in some given direction is

re
ected back to the detector, the cell is said to have

a response in that direction. In this paper, we deter-

mine the occupancy of each cell by assuming that any

cell that generates a response in one or more directions

must contain at least one surface and is therefore oc-

cupied.

The model described above can be expressed math-

ematically as follows. The occupancy of a cell at loca-

tion (x; y) is measured by the state variable Occ which

can have one of two values:

Occ(x; y) = [occupied; unoccupied]: (1)

The response of a cell in some direction � is measured

by the state variable Res:

Res(x; y; �) = [response;no response]: (2)

The direction � is allowed to take discrete values be-

tween 1 and n. The two state variables are bound

together by a logical implication. In order to express

this clearly, we de�ne a set of propositions:

O : Occ(x; y) = occupied

R� : Res(x; y; �) = response: (3)

That is, the proposition O states that the cell at (x; y)

is occupied and the proposition R� states that the cell

at (x; y) generates a response in direction �. We can

therefore write the implication:

O ( R1 _ R2 � � � _ Rn�1 _Rn: (4)

In this paper we present two methods for using ultra-

sonic range data to determine the response properties

of each cell, and thence to determine occupancy.

2.2 Method 1: Bayesian

The objective of the Bayesian method is to determine,

for each cell, the probability that the cell is occupied.

That is, for a cell at (x; y) we wish to determine the

probability that the proposition O is true. Rather than

attempting to calculate this probability directly from

range data, we compute it indirectly. Since O is re-

lated to the cell responses by the logical implication

expressed in Equation 4, the probability that the cell

is occupied must be given by:

p(O) = p(R1 _ R2 � � � _ Rn�1 _ Rn): (5)

To expand the right hand side of this equation, we

make use of the observation that for two independent

propositions A and B, the probability of either A or B

being true is given by [7]

p(A _ B) = p(A) + p(B)� p(A)p(B): (6)

Applying this to the above equation, one obtains after

a little algebra:

p(O) = 1���(1� p(R�)): (7)

This expression can be used to compute the probabil-

ity that a cell is occupied once we have determined

the cell response probabilities. Note that this involves

the determination of n separate probabilities, since

fR1 � � �Rng is a set of independent propositions.

Consider now just one proposition R� corresponding

to the response in direction �. We can apply Bayes'

rule to determine the probability that R� is true, given

a range measurement r:

p(R� j r) =
p(r j R�)p(R�)

p(r)
: (8)

In this expression p(R�) is the prior probability of ob-

taining a response. In Bayesian approaches it is very

common to set the prior probability to 0:5 to indicate

no opinion. In this case we demand that p(O) = 0:5,

which implies that the prior probabilities for p(R�) are

given by:

p(R�) = 1� (0:5)
1

n : (9)



The other important term in Equation 8 is the sen-

sor model p(r j R�). The sensor model indicates the

probability of obtaining the measurement r, given that

the proposition R� is true. Let s be the distance be-

tween the cell and the sensor; the sensor model we use

is:

p(r j R�) =

8
<
:

0:05 if s < r

0:5 if s > r

�=r if s = r

: (10)

The �rst two parts of this model are self-explanatory,

but the third requires some explanation. When the

sensor records a range r we know that something at

this range has generated a response. Due to the �nite

angular resolution of the detector, however, there may

be a number of cells that could have generated this

response. In general, the number of such cells will be

proportional to the measured range, so the probability

that any individual cell generated the response is in-

versely proportional to the measured range. In e�ect,

we give more weight to short range measurements than

to long range measurements. This rule is both phys-

ically plausible and intuitively appealing. The � that

appears in the above rule is a normalisation constant:

summing over the probabilities assigned to each cell at

range r should yield a total probability of 1. The value

of � is determined by the spatial dimensions of the cells

making up the map and by the angular resolution of

the ultrasonic sensor.

The model we use ignores statistical errors associ-

ated with the range value itself; that is, our model

is ideal. We justify this simpli�cation by noting that

for common types of ultrasonic sensors such errors are

of the order of one or two centimetres. In practi-

cal applications, such as mobile robotics, these errors

are insigni�cant compared to errors arising from other

sources, such as robot (mis)localisation.

2.3 Method 2: Dempster-Shafer

The Dempster-Shafer Theory of Evidence [8] can be ap-

plied to our problem in a straight-forward fashion. The

objective is to determine the support for the proposition

O. From the logical implication expressed in Equation

4, we can write the following:

Sup(O) = Sup(R1 _ R2 � � � _ Rn�1 _ Rn): (11)

To expand the right hand side of this equation, we use

the Dempster-Shafer analogue of Equation 7 . Given

two independent propositions A and B, the support for

the combined proposition A _ B is given by [9]:

Sup(A_B) = Sup(A)+Sup(B)�Sup(A)Sup(B): (12)

Applying this to the expression above, one obtains:

Sup(O) = 1���(1� Sup(R�)); (13)

which allows us to calculate the support for the propo-

sition that a cell is occupied, once we have determined

the support for each of the propositions fR1 � � �Rng.

Consider now just one possible response direction.

In order to determine the support for the proposition

that the cell responds in this direction, the Dempster-

Shafer approach requires that we construct a relevant

frame of discernment, which is a set which contains all

the propositions of interest. In our case, the frame of

discernment contains just two propositions: that the

cell responds, or that it does not:

� = fR�;:R�g: (14)

In general, support for these propositions cannot be de-

termined directly from the available evidence. Instead,

support is computed indirectly via the mass distribu-

tion. The mass distribution allows us to allocate a

`weight' to any element in the frame of discernment,

or to any proper subset of the frame of discernment.

Thus in our application, the mass distribution can as-

sign weight to any element in the set:

2� = fR�;:R�; R� _ :R�g: (15)

The weight assigned to an element in this set indicates

the amount of evidence that supports that element di-

rectly. Support for propositions in the frame of dis-

cernment can be calculated according to the rule:

Sup(A) =
X
A�B

m(B): (16)

Thus the support for the proposition R� is trivially

equal to m(R�). The mass distribution is somewhat

similar to a probability distribution in that it must

be non-negative and must sum to one. Consider the

following mass distribution:

m(R�) = 0

m(:R�) = 0

m(R� _ :R�) = 1: (17)

For brevity we write this as (0; 0; 1). This distribu-

tion corresponds to complete ignorance, since it will

yield no support for either R� or its negation. Con-

trast this with the distribution (1; 0; 0), which indicates

complete support for R� and no support for its nega-

tion; and with (0:5; 0:5; 0), which indicates a contradic-

tion - there is equal support for R� and its negation.

One of the attractive features of the Dempster-Shafer

approach is the way in which the ignorance and con-

tradiction are clearly distinguished; this is not true of

the Bayesian approach.

In our problem, every new measurement arriving

from the ultrasonic sensor is treated as a new piece

of evidence for which we must generate a mass dis-

tribution. These separate distributions must then be



combined to generate a collective opinion. If m(� j r1)

and m(� j r2) represent mass distributions arising from

independent measurements, the combined mass distri-

bution m(� j r1; r2) is given by Dempster's rule [8]:

m(C j r1; r2) =
1

1� �

X
A\B=C

m(A j r1)m(B j r2);

(18)

where � is de�ned as

� =
X

A\B=;

m(A j r1)m(B j r2); (19)

and A, B and C are elements of the set fR�;:R�; R�_

:R�g. Inspecting the above equation, one can see that

when a contradiction exists (for example when there

is support for both a proposition and its negation), �

will be non-zero. As a result � is usually interpreted as

indicating the degree of contradiction between the two

mass distributions. Dempster's rule can be thought of

as Dempster-Shafer equivalent of Bayes' rule.

The rule we use for generating mass distributions

from range measurements is analogous to the sensor

model used in the Bayesian case. Let m(� j r) be the

mass distribution resulting from the measurement r;

let s be the distance between the cell and the sensor;

the sensor model we use is:

m(� j r) =

8
<
:

(0; 0:95; 0:05) if s < r

(0; 0; 1) if s > r

(�=r; 0; 1� �=r) if s = r

: (20)

The reasoning used to arrive at this model is identi-

cal to that used in the Bayesian case. We note only

that the initial, or prior, mass distribution we use cor-

responds to complete ignorance { (0; 0; 1).

3 Implementation and Experi-

mental Results

The implementation of the two methods described in

the preceeding sections is remarkably similar. The map

is represented by a two-dimensional array, with each

cell corresponding to a region of the environment. Each

cell has associated with it a value which represents the

cell's occupancy, and an array of values representing

the cell's responses. The meaning of these values will

depend upon the method being used. When a mea-

surement is taken, the �rst step is to determine which

of the cells in the array should be updated to re
ect

this measurement. If we imagine that the pulse emitted

by the ultrasonic sensor propagates outward through a

conical region of space, then only the cells correspond-

ing to this region of space should be updated. For the

Polaroid sensors used in our experiments, this will be

all cells within about �10� of the center line of the sen-

sor. Furthermore, for each of the candidate cells, only

one of the responses needs to be updated { that corre-

sponding to the direction of the emitted pulse. Once

this determination has been made, the appropriate cell

response can be updated and the overall cell occupancy

recomputed.

The results presented in this section where obtained

using a small mobile robot with a single Texas Instra-

ments/Polaroid ultrasonic range-�nder attached to a

pivoting head. The sensor has an unobstructed view

and can rotate through 360� in 7:5� increments. Con-

sequently, 48 range readings are generated by each

`sweep' of the pivoting sensor head. The experiments

where conducted in a relatively complex environment

containing a number of boxes, a hatstand and a chair.

The robot travels in a more-or-less straight line be-

tween the obstacles, taking range readings as it goes.

The results shown in this section include readings from

about 30 complete sweeps of the sensor head, about

1440 individual readings. The robot's location is de-

termined by simple odometry. The robot has an on-

board 486 processor which is fast enought to generate

maps in real time (i.e. it can incorporate new range

measurements at the rate at which they are acquired).

Figure 1 shows the maps produced for varying val-

ues of n (i.e. varying numbers of response directions).

Each cell represents a region 4 centimetres square. In

these maps, cells which are probably occupied (or for

which we have strong support) appear darker than cells

which are probably unoccupied. The dotted line shows

the path of the robot.

Consider �rst the n = 8 result. The Bayesian

and Dempster-Shafer maps are quite similar (not-

withstanding the fact that in the Bayesian map, `un-

known' cells appear as gray, whereas in the Dempster-

Shafer map they appear white). These maps clearly

show the various boxes, the hatstand and the chair in

the test environment. A surprising feature of these

maps is that multiple re
ections have not manifested

themselves as spurious features. Looking next at the

n = 4 and n = 1 results, it can be seen that there is

a sharp decrease in the quality of the maps as n be-

comes small. Note particularly the n = 1 case, where

we are e�ectively ignoring the response behaviour and

attempting to compute cell occupancy directly (the

Bayesian n = 1 case corresponds to the method de-

scribed by Elfes [1]). The reason for this fall o� is

simple { the evidence obtained from multiple measure-

ments may be contradictory when n is small. In the

extreme case, n = 1, the entire approach collapses.

At the other extreme, increasing the value of n much

beyond 8 leads to a decrease in the quality of the re-

sults. When n becomes large, the chances that two

measurements will fall into the same response `bin' be-



Figure 1: Occupancy maps. Top row: Bayesian ideal, n = 1; 4; 8. Bottom row: Dempster-Shafer ideal,

n = 1; 4; 8.

comes very small. Consequently, there is no combina-

tion of evidence occuring at this level. For our particu-

lar experimental con�guration, the optimal value of n

is about 8.

4 Conclusion

The remarkable thing about the two methods pre-

sented in this paper is the similarity of the results they

produce, with the Bayesian method appearing some-

what faster and slightly more e�cient in its use of

memory. The experimental results clearly demonstrate

the advantage of the response grid framework in highly

specular environments. We are also exploring some dy-

namic extensions which will make the response grid ap-

proach more suitable for use in changing environments.
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