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Abstract

We use an approach to simultaneous localization and
mapping to determine a path between two points for a
mobile robot experiencing localization error in a known
environment. Simply instructing a robot to move to a
point (z,y)T is not sufficient because the mobile robot’s
accrued dead-reckoning error prevents the robot from as-
certaining its current location and thus it cannot posi-
tion itself at any location, including the goal. If we knew
how dead-reckoning error grew, then perhaps we can di-
rect the mobile robot to a goal location, module an “error
margin.” Instead, we do not assume an explicit error
model, and send the robot to the goal via a sequence
of way points, called meet points, whose locations are
known a priori. Meet points are nodes of the general-
ized Voronoi graph and have the property that a robot
can use its range sensors to reliably converge on them
via a stable control law. The challenge is then to navi-
gate from the final meet point to the goal location (not
necessarily on the generalized Voronoi diagram) which
constitutes the contribution of this paper. Experiments
on the Nomad 200 and soon on the Personal Satellite
Assistant Test-bed validate this approach.

1 Introduction

The three major motion planning problems are point-
to-point, mapping, and coverage. Point-to-point deter-
mines a path between two prescribed locations; mapping
determines a geometric structure which a robot can use
to determine a path between two points; and coverage
determines a path that directs the robot to pass over all
points in a target region. This paper addresses the is-
sue of point-to-point path planning in known (and then
unknown) environments for mobile robots that have sig-
nificant dead-reckoning error.

The motivating application for this work is direct-
ing the Personal Satellite Assistant (PSA) which is a
free flying robot that will fly inside of the space sta-
tion. The intended use for PSA will be light material
transport and remote inspection for inside the space sta-
tion. PSA will also be used to help record the actions
of astronauts when they are working on various projects
inside the space station. PSA will not have a GPS-like
positioning system on board and thus will have to use
its obstacle sensors to determine its location. Currently,
NASA Ames is developing a planar version of PSA that
rides on an air-bearing table with obstacles of known lo-

cation. The NASA Ames researchers will demonstrate
PSA driving to designated goal locations using its ob-
stacle sensors to re-localize its position on a known map.

As a start-up problem, we have implemented this ap-
proach on a Nomad 200 mobile robot which has some
positioning capability, but like all mobile robots, it is
fraught with error. This is a commonly studied prob-
lem in the mobile robot literature. The approach in this
paper uses prior work in simultaneous localization and
mapping [3] using generalized Voronoi graphs [4] to di-
rect the robot via a sequence of way points, the meet
points (nodes) of the graph, to the goal location.

First, the generalized Voronoi graph is constructed in
a simulated model that accurately represents the robot’s
environment. Next, the meet points along the path
are extracted from the graph’s path and passed to the
robot. In actuality, the distance and direction of the
closest objects that define each meet point is passed to
the robot. Then, subject to well-defined control laws,
the robot uses its sensors to drive from one meet point
to the next and upon arriving at each meet point, the
robot hones onto the meet point using sensor informa-
tion. After honing, the robot can zero-out its accrued
dead-reckoning error because it knows the location of
the meet points a priori from the simulated model.

The robot then sequences through all of the meet
points until it reaches the final meet point. From here,
the robot traverse an edge of the generalized Voronoi
graph until it reaches the departure point, at which
point it drives to the goal. The robot uses a control
law to hone on the departure point and the goal loca-
tion. Following the graph’s edge merely ensures that
the robot will start in a neighborhood of the departure
point and goal before honing.

2 Generalized Voronoi Graph: Explor-
ing a CAD Model

Our approach uses the generalized Voronoi graph
(GVG), a one-dimensional set of curves that captures
the salient geometry of the robot’s environment. Just
as people use roadway systems, the robot uses the GVG
to plan a path from a start to a goal, by first planning
a path from the start to the GVG, then along the GVG
to the vicinity of the goal, and then from the GVG to
the goal.

The GVG lends itself nicely to sensor based imple-
mentation because it is defined in terms of a distance



Fig. 1. Distance betweenx and C; is the distance to the closest
point on C;. The gradientis a unit vector pointing away from
the nearest point.

Fig. 2. The solid curve segments are the edges of GVG.

function, d;(z) = min.ec, || — ¢||, which measures the
distance to closest point on object C;. Simple sonar
sensors and laser range finders can provide distance in-
formation. In the planar case, GVG edges are simply
the set of points equidistant to two obstacles, i.e. the
set of points & where d;(z) = d;(x). See Figure 2 for an
example of planar GVG.

Effectively, if the robot knows the GVG, then it
knows the environment. Likewise, if the robot can con-
struct the GVG using sensor data as it moves through
the environment, then it has in essence explored the
space. The robot uses an adaptation of well-proven nu-
merical curve tracing techniques to generate the GVG.
Practically speaking, these techniques trace the roots of
the expression

dy — do
dy —ds

G(z) = ) x) =0.
dy —dm,

where d; is distance to an object C;, and thus if (dy —
d2)(x) = (dy — ds)(x) = -+ = (di — dm)(z) = 0, the
robot is equidistant to m obstacles in an m-dimensional
space. In the planar case G(x) = (di — dz2)(x), which
is zero when the robot is equidistant to two obstacles.
Since G is a function of distance, it can be computed

from sensors.

In the plane, the robot generates a GVG edge until
it encounters a meet point or a boundary point. A meet
point, as its name suggests, is a node of the GVG where
multiple GVG edges terminate (and hence meet). The
boundary points are nodes where the GVG edge termi-
nates on the boundary of the environment. When the
robot encounters a meet point, it branches its search
and generates a new edge until it encounters another
node. If this node is a meet point, the robot branches its
search again and constructs another edge. If the node is
a boundary point, then the robot backtracks to the pre-
viously visited meet point that has no unexplored edges
associated with it and continues edge tracing from there.
When all meet points have no unexplored edges, then
exploration is complete. The underlying structure of the
GVG guarantees that the GVG construction procedure
will exhaustively explore the entire region.

3 Point-to-Point in Known Static Envi-
ronment

3.1 Simulator Generates a Path

Initially, the robot uses gradient ascent of distance to
the closest obstacles to access the GVG. In other words,
the robot moves away from the closest obstacle until it
is equidistant to two obstacles. This point is termed the
access point. At this point the robot has a choice of
two directions to move along the GVG: it chooses the
direction that locally decreases its distance to the goal.
The robot then searches for the next meet point, where
it then chooses among the out-going edges of the meet
point that locally decreases the robot’s distance to the
goal. This procedure is repeated until the distance to
the goal is less than the distance to any of the obsta-
cles. This point is termed the departure point. From
the departure point, the robot moves in a straight line
towards the goal.

The access point, the intermediate meet points, and
the departure point serve as the way points through
which the mobile robot will pass to achieve a goal lo-
cation. In addition to outputting way point locations,
the simulator also outputs the distance and direction
to the three closest obstacles. This information will be
used for robot honing on the departure and goal nodes
later on. Finally, the simulator outputs a sequence of
heading vectors for each meet point. This list of infor-
mation is then passed onto the robot. See Figure 3

3.2 Accessing the GVG

Incremental accessibility is simply gradient ascent ap-
plied to the distance to the nearest obstacle. Since the
nearest obstacle is associated with the sensor reading
with the smallest value, simply moving in a direction
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Fig. 3. Simulator model of lab.

opposite to which this sensor is facing results in gradi-
ent ascent.

Since the PSA and Nomad robot have a predominant
forward direction, the robot must first rotate such that
forward direction is pointing away from the nearest ob-
stacle. For robots that have a “small” number of sensors
surrounding its perimeter, a simple lookup table can be
used to determine the amount of rotating that is nec-
essary. Each entry in the lookup table is indexed by a
sensor id. The value of each entry is the amount of ro-
tation necessary to aim the forward direction away from
the nearest obstacle.

The robot then drives until the robot is two-way
equidistant to two different obstacles. It is not sufficient
to sample the two smallest sensor readings to determine
the distance to the two closest obstacles because multi-
ple sensors may detect the same obstacle. The minimum
distance to each of the obstacles can be approximated
by the local minima in the circular array sensor read-
ings. An example is depicted in Fig. 4 where a robot
with eight sensors and their measurements are drawn.
Sensor H has the smallest value, 10, and is thus pointing
at the nearest obstacle. Sensor C is associated with the
second closest obstacle because its value is the second
smallest local minimum in the sensor array. Note, Sen-
sor A should not be associated with the second closest
obstacle because it detects the same object as Sensor H.
Nevertheless, the value of Sensor A is not a local minima
and thus should not be considered.

In effect, the robot moves until its two smallest local
minima are equal, at which point the robot has accessed
the GVG. The above claim that the distance to obstacles
is the local minima of the sensor array is proven in [1].

3.3 Tracing a GVG Edge

Instead of using numerical step-correct techniques,
the robot uses a control law to incrementally con-
struct the GVG. The control law produces smooth paths
whereas the numerical methods’ result is jagged. In

C ___..---—"Robot

[N

(0.99)

h Sensor Reading

(F.99)
Fig. 4. Sensor Readings

essence, the control law merges the prediction and cor-
rection phases. At a point z in the neighborhood of the
interior of a GVG edge, the robot steps in the direction

i = aNull(VG(z)) + 8(VG(2))G(x), (1)

where
e « and [ are scalar gains,
o Null(VG(x)) is the null space of VG(z),
e (VG(z))! is the Penrose pseudo inverse of VG(z),

i.e.,
(VG(2))' = (VG(2))" (VG (2)(VG(x)T) "
Note that when z is on the GVG, G(z) = 0 and thus
& = aNull(VG(z)). This control law was shown to
be stable [2] in some neighborhood of the GVG when
2>
For the mobile robot, the control law to follow the
planar GVG (i.e, maintain double equidistance) reduces
to
a(Vdi(z) — Vda(2))*,
a(Vdy(x) — Vdy(x))*
+A(Vdi(z) — Vda(x))T
(di(z) — da(x)),

otherwise.

In implementation, the a(Vd; (z) — Vda(z))* corre-
sponds to passing a line through the two closest points
on the two closest obstacles, and then taking the line
orthogonal to it. Let this direction be v. When
the robot is not on the GVG, or not even “close,”
then |di(x) — da(x)| exceeds a threshold in which case
B(Vdy(z) — Vda(z))T(d1(x) — do(x)) participates in de-
termining the heading of the robot. This vector is or-
thogonal to v and is denoted v*. The robot then steps
av + vt where o and 3 are the control gains that can
be determined empirically. See Figure 5.

3.4 Locating Meet Points

The robot must accurately locate the meet points to
capture an accurate topological model of the environ-
ment. The robot does not find the exact location of the
meet point during the edge tracing process because it is
taking finite steps and thus passes by the meet point.

@)



Fig. 5. Control Law for GVG

Also, sensor noise prevents the robot from detecting an
exact m + 1 equidistance location.

Therefore, we have introduced a new meet point hon-
ing strategy to bring the robot closer to the exact loca-
tion of the meet point. This procedure only works when
the robot is in the neighborhood of a meet point, which
is the case in our implementation. The control law for
honing on a meet point is similar to the one for gen-
erating new GVG edges, except the G matrix and its
Jacobian are

_ |di(x) — da(2)
G(z) = [di () — di(m)] and
_ [(Vdi(x) — Vda(x))"
VG(z) = [wcﬁ(w) - w§<x>>4 - @

Therefore, G(z) = 0 at a meet point, i.e., di(x) =
da(z) = ds(x). Note that Null(VG(z)) = 0 because,
whereas before with the GVG the null space was a one-
dimensional line, now the null space is a point. This
point corresponds to the origin of the tangent space at
x. Therefore, the robot makes the following correction
step to hone in on the meet point

i [ Vi) = Via(a) " Tdi(2) - da(2)
le (.13) — Vdg(l‘) dl (3:) — Clg(x)

which can be shown to be stable using the previous anal-
ysis [2].

Geometrically, what is going on is that when the
robot is in the vicinity of the meet point, it draws a cir-
cle through the three closest points on the three closest
obstacles. It then determines the center of that circle
and move a differential step towards it. After taking
this small step, it repeats this procedure. The stability
of the resulting system allows us to conclude that the
robot will converge to the location of the actual meet
point. See Figure 6

3.5 Locating the Departure Point

The last point the robot must accurately locate before
moving towards the goal, is the departure point. This
point is the first point on the GVG the robot encoun-
ters such that the distance from the goal is less than the
distance from any other object in the workspace. The
procedure to correctly move the robot onto the depar-
ture node has two steps: after we leave the last meet
point we continue to trace the GVG edge and at the
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Fig. 7. Departing Point Honing

same time we read the encoders’ data to calculate the
distance of the robot from the last meet point visited;
the robot stops when this distance is equal to the known
distance between the last meet point and the departure
node.

At this point we follow a honing strategy to bring the
robot to the departing node. The control law for honing
on the departure node is similar to the one for honing
on the meet point, except the G matrix and its Jacobian
are

_ | di(x) —da(x)
G(z) = [dl(a:) 1 C— dy(z) and
(Vi (o) = Vo(@)T] (o)
(Vdi(2) = Vds(2))" ]
Therefore, the robot makes the following correction
step to hone in on the departure node

VG(z) = [

o TS st

It can be shown that geometrically, what is going
on is that the robot, following this control law, moves
differential steps toward the center of an ellipse passing
for the three closest points, with the direction of the
minor axis given by the two closest points and with the
major axis passing for the mid point of the segment that
connect the two closest points. See Figure 7.

Unfortunately, compared with the meet point control
law, there is no simple geometrical way to determine



[

-

Fig. 8. Mobile robot path for environment depicted in Figure 3.

the center of this ellipse; we need to solve a system of
three equations in three unknowns that, alas, is not lin-
ear. Due to reasons of speed (all the calculations are
performed on line by the robot), we introduce another
algorithm to hone in on the departing node. Relying on
the fact that at the departing node we know the dis-
tances from the three closest objects di(x), d2(x), ds(x),
and the angles between their respective gradient vectors,
we can subtract ds(z) —dy (x) from the next closest sen-
sor reading, d3(z), to give the robot the illusion that it
is in the vicinity of a meet point.

Once we do that we can use the same meet point hon-
ing strategy, to accurately locate the departure node.

3.6 Departing the GVG

Once we have successfully located the departure
node, we can zero the error of the encoders and move the
robot toward the location of the goal point following a
straight line. If the distance of the goal from the depar-
ture node is such that we can experience dead-reckoning
errors, we can use a honing strategy that is similar to the
strategy to hone in on the departure node. The only dif-
ference is that this time we have to fake the readings of
two sensors: the sensors pointing toward the third and
the second closest object. Doing this we are creating
two virtual obstacles for the robot that are indiscernible
from the real ones. This procedure transforms the goal
point to a fake meet point.

See Figure 8 for the resulting mobile robot path.

4 Future Work
4.1 Honing Issues

We have experienced some problems in the proce-
dures to hone in on the departure node and the goal
point. These problems are related to the need of mea-
suring the distance to the third closest object in the
workspace.

Recall that the distances from objects are calculated
looking at the local minima of the sensors ring on the

robot. Now this method fails if we are for example in
a narrow long corridor where the departing node is in
the middle of this corridor. In this case the third object
can be so far away from the robot, that there can be
false detections of the third local minimum. Suppose
that the sensor number n is pointing at the third closest
object that is a far wall in our long corridor; to have
a local minimum reading at this sensor we should have
greater values measured at sensors n—1 and n+1. But,
due to our distance from the third object, the sensors
n—1 and n+1 can actually measure the distances from
points on the the lateral walls of the corridor and not the
distances from other points on the third object. If this
is the case, since the lateral walls are the first and the
second closest object, there will be no local minimum
in the reading of sensor n, and we fail in identifying the
third closest object.

The same problem can appear when we need to hone
in on the goal point and the third closest object is lo-
cated too far from the goal point.

To solve this problem we adopt a simple strategy:
since we know the environment, i.e. we know the po-
sitions of each object both at the departure node and
the goal point, we decided not to use the local minima
method to measure the distance from the third object
when we are honing on the previous points. What we
do is to read the information provided only by the sen-
sor pointing at the third closest object (in the preceding
example sensor n).

This procedure worked in the demo run in our lab,
but again has some kind of limitations. In particular if
we are traversing a long corridor (longer than the one
that gives us problem with the local minima method)
we can not have correct measure distances even from
the sensor pointing directly at the third closest object.
This is due to the fact that a sonar sensor measures
distances from objects that are in a well defined cone
coming out from the sensor itself. In the case of Polaroid
sonar sensors that are mounted on the Nomad 200 the
magnitude of the cone’s angle is 22.5 degrees. So it
may be that this cone intersects the lateral walls before
intersecting the third closest object, giving as a result a
wrong distance measure.

4.2 Weak Meet Points

To its advantage, the algorithm uses the environment
to define its landmarks. Unfortunately, this dynamically
discovered landmark approach has a weakness: for some
environments, a slight change to the environment can re-
sult in a radically different graph representation of the
environment. This problem manifests itself when errors
in sonar sensors cause the robot to oscillate between dif-
ferent environment representations. In other words, the
environment remains fixed, but a slight change in sen-



sor readings give the robot the illusion that the environ-
ment slightly changed. For the GVG, the problematic
landmarks are called weak meet points, those that are
sometimes sensed and sometimes ignored.

An “unscheduled” meet point may correspond to an
unmodeled object moving around a known location.
The existence of weak meet points can confuse the robot
into thinking a dynamic obstacle is present. In static en-
vironments, we conjecture that weak meet points are not
a problem because we can identify them (within some
error box) and then move onto the next meet point, at
which time we can eliminate error. We assume this in
our current implementation.

5 Conclusion

The generalized Voronoi graph (GVG) is a roadmap
of a robot’s environment that the robot can use to plan
a path between two points in three steps: (1) determin-
ing a path onto the GVG, (2) finding a path along the
GVG, and then (3) charting a path from the GVG to
the goal. Originally, the GVG was used for sensor based
exploration of unknown spaces because if the robot can
generate the GVG using sensor data, it can then use the
GVG to plan paths in a previously unexplored environ-
ment.

A feature of the GVG is that it has geometries en-
coded in it that help the robot localize itself while ex-
ploring unknown regions. These features are called meet
points which are nodes of the GVG. While exploring
an unknown space, each time the robot encounters a
meet point, the robot stores a sensor signature of the
meet point that the robot can use when the robot re-
encounters the meet point. In many scenarios, many
meet points “look the same,” so the robot has to use
the adjacency relationships among the meet points to
determine its location in the partially explored GVG.
In other words, if the robot is at meet point 11, which
looks like meet point 1, and meet point 12, which looks
like meet point 2, are adjacent to each other, and meet
points 1 and 2 are adjacent, then the likelihood that 11
is 1, and 12 is 2 increases. Essentially, we are doing
graph matching to achieve localization.

This paper used the GVG simultaneous mapping and
localization to address the problem of path planning be-
tween two points for a mobile robot experiencing lo-
calization error. Instead of using the meet points to
do graph matching, the meet points serve as landmarks
for the robot to eliminate its accrued localization error.
First, a path is generated using the GVG in a known
environment. A linked list of meet points, each with a
sensor signature and pointer to the next meet point, is
passed to the robot. The robot uses a control law to fol-
low the edge connecting adjacent meet points and then

a control law to hone in on each meet point. Once the
honing process is complete, the robot can look up the
true location of the meet point and zero-out the local-
ization error that has accrued since visiting the previous
meet point.

The control laws all use distance information to
nearby obstacles. Sometimes, limitations in range and
azimuth resolution prevent the robot for measuring this
distance, so more complicated sensor processing is in-
voked. Already, we have developed a method to improve
the resolution of sonar sensors, but using a laser ranger
would immediately solve this problem.

Another problem with this method deals with “weak”
meet points; these are nodes that can appear or disap-
pear seemingly at random because of slight fluctuations
in sensor readings. Although these meet points are rare,
they can pose a serious problem when they occur be-
cause the robot navigates using meet points. This is a
current area of research as well, and we feel that this
is not a property of the GVG method, but that of all
graph-based localization techniques.

Future work will include implementing this algorithm
on the actual Personal Satellite Assistant planar proto-
type at NASA Ames. After that, we will extend the
result in this paper to three-dimensional path planning
for a mobile robot experiencing localization error.
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