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Extended Kalman Filter Lecture Notes

1 Introduction

2 Discrete/Discrete EKF
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In this lecture note, we extend the Kalman Filter to non-linear system models to obtain an
approximate filter–the Extended Kalman Filter. We will do this by finding an approximate
error system that is linear, and applying the Kalman filter to this error system. Because
the EKF is obtained using a linear approximation of a non-linear system, it offers no guar-
antees of optimality in a mean squared error sense (or in any other sense). However, for
many systems, the EKF has proven to be a useful method of obtaining good estimates of
the system state.

The system model that we use is the following discrete/discrete model:

(1)

(2)

In this model, is a discrete-time white noise process with mean zero and covariance
matrix , is a discrete-time white noise process with mean zero and covariance matrix

, and , , and are uncorrelated for all and .
We develop the Extended Kalman filter by starting with a

denoted ; is obtained as the solution to the difference equation (1) without the pro-
cess noise :

(3)

This difference equation has an initial condition . We define the error between and
as

(4)

We now find an approximate linear model that describes the dynamics of :
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A Taylor series expansion of a vector function about the point is the following:
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To obtain a linear approximation of this equation, we make a Taylor series expansion of
about the value and drop all but the constant and linear terms:

We make the definition

and note that is an matrix of the following form:

...
...

With this definition,

(5)

Note that (5) is a linear difference equation.
We follow a similar approach to obtain an (approximate) linear relationship from (2).

We expand in a Taylor series about the nominal trajectory :

We define as

Then we can write (2) as

Define as

(6)
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So we have an (approximate) linear relationship between the quantity (which can be
computed from ) and .

Assuming that obeys the difference equation (5) and the observation equation (6),
we can use a discrete/discrete Kalman filter to compute , , , and .
Note that the actual error between and does not obey the linear equations (5) and
(6). Thus, and are not optimal MMSE estimates of the actual error; we hope,
however, that they are still good estimates of this error. How do we obtain an estimate
of from or ? Since and are estimates of the error between
and , reasonable estimates of are

How do we choose the reference trajectory? A reasonable value for would be ,
the mean of the initial state. Using this value gives

Thus,

The error covariance for the estimate is

The estimate for is

Note that is also approximately the error covariance of the estimate :

(7)

At time , we process the observation to obtain
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This assumption would be true if the system model were linear; since the system model is not linear,
we hope that the assumption is approximately true and that the mean of is approximately zero.

where we have used the fact that .

The estimate is obtained as

Note that is approximately the error covariance of ; this can be shown using a
derivation similar to (7).

Now, to compute the estimate for , we could continue to use the reference tra-
jectory that we used for ; however, we now have a (hopefully) better estimate of
the state at time , namely . Thus, to get the reference trajectory for , we set

. With this new reference trajectory, we have , where represents
the error with the new reference trajectory. Assuming that has a mean of zero , the
estimate of is and

Thus,

The approximate error covariance for this estimate is

At , we process the observation in the same way as we processed the observation
. Further prediction and filter updates follow this same pattern.
To summarize, the Extended Kalman Filter equations are the following:
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Note that in the filter update equation for , the residual
plays the same role as the innovations in the standard Kalman filter. This residual se-
quence can be monitored to verify correct filter operation, much in the same way that the
innovation sequence can be monitored in the standard Kalman filter.

The development of the continuous/discrete EKF is very similar to the development
of the discrete/discrete EKF. The system model that we use is the following continu-
ous/discrete model:

(8)

(9)

In this model, is a continuous-time white noise process with mean zero and intensity
, is a discrete-time white noise process with covariance , and , , and

are uncorrelated for all and .
As in the derivation of the discrete/discrete Kalman filter, we develop the continu-

ous/discrete Extended Kalman filter by starting with a nominal reference trajectory de-
noted ; is obtained as the solution to the differential equation (8) without the
process noise :

(10)

This differential equation has some initial condition . We denote the error between
and as

(11)

We now find an approximate linear model that describes the dynamics of by
taking the derivative of (11):

5



1

1

1

1

�

�

�

�

�

�

�

R

R

n

n n

n
R

R

k

R

k

� �

�

� � �

� �

� �

�

� � �

�

= ( )

= ( )

( ) ( )

( ) ( )

= ( )

= ( )

= ( )

� � �����
� �

�����

2
6664

3
7775

� � � � � �

�����
� �

�����

� �

� �
� �

f X x

f X f x
f x

x x x
X x

f x
x x x

x x

x x
x x

f x X x W f x

W

h X x

h X h x
h x

x x x
X x

h x
x x x

Z h x X x V

Z h x

h x X x V h x

X x V

V

Z

R

R

t

R

t

@f ;t

@x

@f ;t

@x

@f ;t

@x

@f ;t

@x t

R R R

k k
R

k

k k
R

k k
k

t

k
R

k

k

k
k

t

k
R

k k k k
R

k k

k

k k
R

k k

R
k k k k

R
k k

R
k k

k k
R

k k

k k k

k

k k

t ; t t

t ; t t ; t
@ ; t

@
t t

A t
@ ; t

@
;

A t n n

A t

: : :

: : :

t t ; t A t t t G t t ; t

A t t G t

t ; t t

t ; t t ; t
@ ; t

@
t t

H

H
@ ; t

@

t t ; t H t t :

t

t t t ; t

t ; t H t t t ; t

H t t

H t

t

t

( ( ) ) ( )

( ( ) ) ( ) +
( )

( ) ( )

( ) =
( )

( )

( ) =

_ ( ) ( ) + ( ) ( ) ( ) + ( ) ( )

= ( ) ( ) + ( )

( ( ) ) ( )

( ( ) ) ( ( ) ) +
( )

( ) ( )

=
( )

( ) ( ( ) ) + ( ) ( ) +

( )

( ) = ( ) ( ( ) )

( ( ) ) + ( ) ( ) + ( ( ) )

= ( ) ( ) +

= ( ) +

( )
( )

To obtain a linear approximation of this equation, we make a Taylor series expansion of
about the value and drop all but the constant and linear terms:

Denote

and note that is an matrix of the following form:

...
...

With this definition,

(12)

Note that (12) is now a linear differential equation.
We follow a similar approach to obtain an (approximate) linear relationship from (9).

We expand in a Taylor series about the nominal trajectory :

We define as

Then we can write (9) as

Define as

(13)

So we have an (approximate) linear relationship between the quantity (which can
be computed from ) and .
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We can now use a continuous/discrete Kalman filter to compute and
using the linear dynamics equation (12) and the linear observation equation (13). An
estimate of from is obtained as

How do we choose the reference trajectory? Let us first consider the interval
; a reasonable value for would be . Using this value gives

Thus, for , . The estimate for is

where is the solution to the differential equation (10) with an initial condition of
. The error covariance is

where is the state transition matrix of the linear system model (12).
At time , we process the observation to obtain

where we have used the fact that .

The estimate is obtained as

Now, to obtain for , we could continue to use the reference tra-
jectory that we used for the interval ; however, we now have a (hopefully) better
estimate of the state at time , namely . Thus, to get the reference trajectory for

, we find the solution of (10) with initial condition . If our
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dynamics and observation models for the linearized error system were exact, we would
expect ; making the assumption that the mean of the error is small, we get

where is the solution of the differential equation (10) with an initial condition of
. The error covariance for this estimate is

At , we process the observation in the same way as we processed the observation
.

To summarize, the Extended Kalman Filter equations are the following:

For , is the solution of (10) with as the initial
condition. The corresponding error covariance update is

where is the state transition matrix obtained from

At , the filter step is the following:
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