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Abstract

Parallel and multinode computing systems are be-
coming widespread and grow in sophistication. Be-
sides simulation, rapid prototyping becomes impor-
tant in designing and evaluating their architecture.
We present an FPGA-based system that we developed
and use for prototyping and measuring high speed
processor-network interfaces and interconnects; it is
an experimental tool for research projects in architec-
ture. We configure FPGA boards as network interfaces
(NI) and as switches. NI’s plug into the PCI-X bus of
commercial PC’s, and use 4 links of 2.5 Gb/s/link as
network connections; we can bundle these links to-
gether, at the byte or packet level, offering 10 Gb/s
of network throughput. NI's implement DMA on the
PCI-X side, and remote DMA and remote notification
(interrupt or flag-setting) on the network side. We con-
figured the switch boards as buffered crossbars oper-
ating directly on variable-size packets and featuring
credit-based flow control for lossless communication.
Multiple, parallel switches can serve the NI links using
multipath routing;, NI’s resequence the out-of-order
packet arrivals. All boards provide extensive support
for monitoring, debugging, and measurement. Col-
leagues adapted the Linux OS for this platform, and
used it for remote disk I/O experiments [1]. We report
here on the platform architecture, its design cost and
complexity, latency and throughput parameters, and
buffered crossbar performance. We now work on re-
mote queues and synchronization mechanisms.

1 Introduction

Chip and cluster multiprocessor systems are be-
coming widespread, while also growing in sophistica-
tion. To achieve efficiency, they strive, among others,
for a tight coupling of computation and communica-
tion, and even propose customization of Network In-
terface features to meet particular application domain
demands. Advanced features in the Network Interface
influence the design of, or require support from the
underlying interconnection network. Thus, a goal is
the integrated design of network interface and inter-
connect features.

Evaluating an entire system architecture before it
is built is very complex and requires approximations.
Simulation and rapid prototyping are the available
tools, each with its own pros and cons. Rapid proto-
typing is becoming increasingly important, owing to
the availability of large field-programmable gate ar-
rays (FPGA), which enable the design and operation
of systems that approximate the actual ASIC designs
with very high accuracy compared to simulators.

We present an FPGA-based system that we devel-
oped and are currently using for prototyping and mea-
suring high speed processor-network interfaces and in-
terconnects; it constitutes a research tool for Euro-
pean architecture projects. We report on the system
architecture and performance, and on our design cost
and experience. The prototyping platform, in its cur-
rent form, is shown in figure 1. It consists of (cur-
rently 8) commercial personal computers (PC’s) linked
through our custom interconnect. An FPGA develop-



Figure 1. Photograph of the current system

ment board plugs into the PCI-X bus of each PC, and
is configured as its network interface (NI). A number
of additional FPGA boards (4 in the current system,
arranged vertically in the middle) are configured as
network switches. We currently use Xilinx Virtex II-
Pro FPGA'’s, which offer a number of high-speed serial
(“RocketlO”) links each. The key features of this plat-
form are:

e High throughput network: each (bidirectional)
link operates at 3.125 GBaud, offering 2.5 Gbits/s
of net throughput per direction [2]. Each NI
connects to the network via 4 links. Bundling
these physical links together enables the creation
of 10 Gb/s connections. Two types of bundling
are supported: byte-by-byte, where the bytes of
each packet are evenly distributed to all links,
and packet-by-packet, where each packet is trans-
ferred via a single link, but successive packets are
distributed to all links.

e PCI-X interface: the NI communicates with the
host processor via a 64 bit wide PCI-X bus,
currently running at 100 MHz; higher speed
grade FPGA’s would allow 133 MHz operation.

The corresponding peak throughput is 6.4 or 8.5
Gbits/s [3].

e Remote Direct Memory Access (RDMA) based

operation for efficient communication; flexible
arrival and departure notification mechanisms
(selective, collective interrupts or flag setting);
lossless communication via credit-based flow
control; per-destination virtual output queues
(VOQ) for flow isolation and quality of service
(QoS) guarantees even under congestion.

Extensive performance, debugging, and event
logging counters for effective prototyping and
evaluation.

Large valency switch: the switch board features
20 bidirectional links; depending on the complex-
ity of the internal logic, switches up to 20x20
can be configured. In our “XC2VP70K” FPGA,
we have been able to fit up to 12 switch ports so
far (12x12 switch). The 4 switches in parallel
can offer up to 200 Gbits/s of network throughput
(120 Gb/s in the current maximal FPGA configu-
ration).



We are using this platform to experiment with
system-level aspects of network interface and switch
design. Colleagues in our Institute have used it for re-
search in storage area networks [1]. The contributions
of this paper are: (i) variable-size packet operation of
a buffered crossbar switch demonstrated in actual op-
erating hardware for the first time; (ii) correct event
notifications in the presence of out-of-order packet de-
liveries caused by multipath routing (RDMA + header
resequencing); (iii) reporting on 5 person-year hard-
ware project, and its design, implementation, and test
process and cost; (iv) describing a platform that is use-
ful for European architecture projects.

In the rest of the paper, section 2 presents the NI ar-
chitecture, section 3 describes the switch, and section
4 talks about supporting cache coherent NI's. Imple-
mentation details and metrics are given in section 5,
with performance evaluations presented in section 2?.
Section 6 discusses related work.

2 Network Interface (NI) Card

The Network Interface Card (NIC) is designed as
a 64-bit, 100MHz PCI-X peripheral. It is based on a
Xilinx Virtex II Pro FPGA, and it features 4 physical
multigigabit transceivers that run at 2.5 Gbps (3.125
Gbaud). Its main components are shown in Figure 2.

2.1 PCI-X interface

The PCI-X interface implements the full PCI-X ini-
tiator and target functionality and interfaces to the
rest of the NI by means of the DMA request queues.
The PCI-X target interface provides the host proces-
sor with a memory mapped interface to: the configu-
ration space of the card; the control, debugging, and
performance counters of the NI; and to the DMA re-
quest queues. It supports 32 and 64-bit accesses in
burst or non-burst mode and also implements the in-
terrupt functionality of the card.

The PCI-X initiator interface provides the function-
ality of a DMA engine from/to the host’s memory. It
supports 32 or 64-bit wide bursts using physical PCI
addresses, and its operation is controlled by the DMA
engine described next.
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Figure 2. NIC block diagram

2.2 DMA Engine and DMA Request Queue

The DMA engine is the heart of both the outgoing
and incoming portion of the NIC. Outgoing (remote
write) transfer commands are queued in the memory-
mapped DMA Request Queue by means of writing a
two 64-bit word transfer descriptor via the PCI-X tar-
get interface. The first word specifies the local data
PCI source address. The second word contains (i) a 32-
bit remote host destination address (physical address)
where the data will be transfered to; (ii) the size of the
transfer, in 64-bit words (the maximum supported size
is 512 words or 4096 bytes); (iii) the flow ID of the
destination host (current support for 128 flows); and
(iv) an “opcode” field that controls the completion no-
tification options for the transfer, as described shortly.

We currently have 8 DMA request queues, one
per destination host in the network. When conges-
tion exists, multilane (per-flow) backpressure (credit-
based flow control) stops the flow of packets (hence
RDMA’s) to some destinations, while those targeted
to other hosts proceed unobstructed; separate per-
destination request queues allow the latter to proceed
while the former are blocked, thus preventing head-



of-line blocking. Our current request queue size is
128 transfer descriptors per destination, implemented
as a circular buffer in a statically partitioned 1024-
descriptor memory. Besides decoupling the operation
of the DMA engine from the processor, the request
queue supports clustering of requests to the NIC: the
host processor can write multiple transfer requests to
the queue (and even write them in non-sequential or-
der), while holding their processing back until a spe-
cial “Start Flag” bit is set in the last one of the clus-
tered requests; at that time, all clustered requests are
released to the DMA engine for processing. One ex-
ample for such use would be to prepare a scatter oper-
ation before the actual data are computed, then release
the entire scatter when the data are available.

For packet transmission, the DMA engine reads
the packet data from the specified address of the host
memory, prepends the appropriate header and hands
them to the VOQs block via a synchronization FIFO;
for DMA operations larger than the maximum packet
size, segmentation is handled by the VOQ block (sec-
tion 2.5). The reverse path is symmetrical, except for
using a single “lane”; upon reception, packet data are
passed from the link interface to the DMA Engine via a
reception queue and are then written to the host mem-
ory. Each outgoing VOQ (8 in our case) is 8 Kbytes
of on-chip memory; there is a single incoming queue,
of size 8 KBytes. The DMA engine also arbitrates be-
tween the incoming and outgoing paths, as to which
one will be served next, on a per-packet basis.

2.3 Notification Mechanisms

The NI provides three notification options: (i) local
notification; (ii) remote interrupt; (iii) remote notifica-
tion. Local notification is used to inform the sending
node that the packet was sent to the network: when so
requested by a DMA descriptor, upon departure of this
DMA transfer, the NI copies the tail pointer of the re-
quest queue to a prespecified location in host memory,
using a single-word DMA write access. The processor
can poll that location to determine how many transfers
have departed (transfers from a single queue depart in-
order), hence recycle their descriptor slots; for the pro-
cessor, this is lighter than polling the tail pointer itself
—a NIC control register— in I/O space.

Remote interrupts and remote notifications can be

used to inform the receiving node that a packet has ar-
rived. The former are traditional PCI interrupts, while
the latter are similar to their local counterparts: they
write (via single-word write DMA) into a prespecified
address in the receiver’s host memory. Local and re-
mote notification options, in combination with the op-
eration clustering option, allow for a drastic reduction
of number and overhead of interrupts. For example, if
the network provides in-order delivery, a large multi-
packet transfer can use interrupt or notification only
for the last packet. In a network storage application,
this allowed a 3 to 4 times improvement in bandwidth

[1].
2.4 Link Interface

On the link wires, packets are delimited by a start-
of-packet (sop) control symbol (byte); this can be fol-
lowed by zero or more credits, which are followed
by the 64-bit packet header, a CRC-16 covering the
header, the packet payload, and a CRC-32 covering
the payload; one or more comma control symbols
(clock synchronization idle characters) appears before
the next packet’s sop. The header consists of a 7-
bit packet flow-ID, 5-bit operation bits, 10-bit are re-
served for resequencing (see 2.6), 10 bit size and the
32-bit destination address at the target.

Up to four links can be bundled together to pro-
vide an aggregate bandwidth of 4x2.5 = 10 Gb/s. We
support byte-by-byte and packet-by-packet bundling
modes. The byte-by-byte mode distributes the bytes of
a single packet evenly across all links, approximating
a single 10 Gbps link very closely, but it can only be
used in direct NIC-to-NIC connections. The packet-
by-packet bundling mode sends each packet to a sin-
gle link, balances the load across all links, and is suit-
able for multipath routing. This is a very flexible ap-
proach, however, depending on the network topology
and guarantees, it may lead to the out-of-order arrival
of packets sent via different paths (section 2.6).

Our credits are 16-bit wide, and consist of: (i) 1 bit
to differentiate a credit from a packet header; (ii) 7 bits
of flow identifier; (iii) 7 bits of credit value; and (iv) 1
bit of parity. The credit value is the LS part of a “cu-
mulative number of words” count (QFC-like protocol).
This QFC-like credit protocol relies on two counters
on each communicating NIC: one counts the cumula-



tive number of words transmitted to the network since
power up and the other counts the cumulative number
of words that have been forwarded from the network,
again since power up. This second counter is transmit-
ted and a simple comparison allows the link interfaces
to determine the free space downstream. In order to
shorten the credit encoding, we do not send the entire
counters - 12 bits in our system - but only the 7 most
significant bits. This approximation coarsens the gran-
ularity of credits to 32 words. The Round-Trip Time
(RTT) in our system is calculated and measured to be:

RTT = (85cc + Cut_Through_Latency)

45 to 50 out of the 85 clock cycles (cc) are due to the
RocketlO serializer-deserializer and transceiver; the
rest account for link-to-DMA latency (about 5 cc), and
credit granularity (32 cc). The cut-through latency
depends on whether the receiving link resides on the
switch or on the NIC. The cut-through latency of the
switch is at most 8 clock cycles, while for the NIC it
is PacketSize/4 cycles, due to the relative frequency of
the communicating blocks.

2.5 Multiple VOQ support

The use of a single output queue for all outgoing
traffic regardless of destination leads to head-of-line
blocking resulting in significant performance loss. In
order to avoid the head-of-line blocking effect multiple
virtual output queues (VOQs) - at least one per poten-
tial destination - are implemented. The use of VOQs
instead of a single queue greatly improves the NICs
performance and localizes the effects of congestion.

The architecture of the VOQ handling system
is based on previous research [4, 5]. However
implementation-specific requirements led to a slightly
differentiated design, which includes a novel packet
processing mechanism. Figure 3 depicts the systems
architecture. The thick arrows show the packet flow
through the various modules.

Traffic is segmented in variable-size multi-packet
segments and only the first segments of each VOQ re-
side on on-chip memory. When a VOQ becomes ex-
cessively large its body migrates to external memory
(SRAM and/or DRAM) which is partitioned in blocks
of configurable size and dynamically shared among
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Figure 3. VOQs block diagram and flow

the available VOQs through the use of linked-list struc-
tures implemented in hardware.

In order to avoid the delay/buffer cost of packet re-
assembly on the receiving end, a novel packet process-
ing mechanism was introduced. Upon departure to-
wards the link interface each segment - that may con-
tain a part of a stream of packets chopped at arbitrary
points - is handled by a packet processing module.
Each segment is transformed into separate indepen-
dent packets which can be immediately handled upon
reception at the receiving end, instead of waiting in a
buffer for reassembly purposes.

The system is fully configurable and can easily be
adapted to specific implementation requirements. The
number and width of VOQs, maximum segment size,
size of on-chip memory, as well as other parameters
can be manually set at synthesis time.

2.6 Multipath support

Inverse multiplexing [6] is a standard technique that
allows k links of capacity C' each to be combined to-
gether in order to implement a high speed link of ca-
pacity k - C. In the general case, the load on each
link can be switched (routed) to the destination inde-
pendently. This implies that the granularity in which
the original traffic is partitioned is at least per packet
(or maybe per “flow”), since routing can be applied to
whole packets only.

Inverse multiplexing is needed for the lowest-cost
(O(N -logN)) internally-non-blocking switching fab-
rics (Benes, Clos) to operate. For internally-non-
blocking operation, the load must be evenly balanced
among the parallel links, on a per-destination basis.

Such multipath routing may deliver packets out-of-
order, at the destination. Owing to the use of DMA
semantics (each packet carries its own destination ad-
dress), packet payload can be delivered in-place in the



host memory, avoiding the need for reorder buffers, the
associated storage cost, and the cost of data copying.
This solves the problem of delivering the correct data
to the correct place, even if they arrived in scrambled
order, but it does not solve the problem of completion
notification. If data were delivered in-order, comple-
tion can be signaled by the last word being written into
its place (e.g. the last word of the block is a 1-flag writ-
ten into an originally-0 word). However, when packets
can arrive out-of-order, the last address in the destina-
tion block can be written into before intermediate data
have arrived.

Our current method to provide completion notifi-
cation is to resequence packet headers. Notice that
we economize on resequence buffer space by writing
packet data into its destination address, and only keep-
ing packet headers in the resequence buffer. After re-
sequencing, we discard headers in-order until seeing
a header that contains a notification flag; when this
header is seen after resequencing, we are sure that
all packet before it have been received and processed,
hence the notification can be safely delivered. We use
the resequencing protocol proposed by Khotimsky et
al. [7]; it allows for detection of and recovery from
single-packet losses. The sender side implementation
(insertion of resequencing information in packet head-
ers) conforms to per-destination queuing and per-path
traffic partitioning used for inverse multiplexing. On
the receiver side, per-sender and per-path queues are
needed. Per-path queues can share space, and, because
only headers are stored, their total size can be kept
small. Scaling this scheme to thousands of commu-
nicating nodes may be difficult, because of the need
to keep per-sender and per-path head and tail point-
ers at the receive side. We are examining alternative
methods, based on packet counting, for scalability; one
must allow for interleaved transmissions of groups of
packets, while separately counting each group. The
challenge is to come up with a proper programming
interface that eases the assignment of each transfer to
one of the (few) existing groups, and to later recycle
group identifiers.

3 Switch

We implemented the switch on a Xilinx ML325
board [8], which provides twenty RocketlO SMA in-

terfaces. The current FPGA configuration implements
a Buffered Crossbar (Combined Input-Crosspoint
Queuing - CICQ) switch, in order to demonstrate, on
actual working hardware, the architecture that we have
been working on in recent years [9]. Buffered cross-
bars use small buffers at each crosspoint, and feature
(i) simple and efficient scheduling, (ii) variable-size
packet operation, and (iii) peak performance without
needing any internal speedup.

Figure 4 depicts the internal structure of a 4x4
buffered crossbar switch. Incoming packets are de-
livered to the appropriate crosspoint buffers according
to their headers and the output scheduler (OS) is no-
tified. If sufficient credits exist and the outgoing link
is available, the output scheduler for that link selects
a crosspoint buffer for transmission. As packet bytes
are being transmitted to the output, the credit sched-
uler (CS) generates the corresponding credits that will
be transmitted back to the source of the packet. These
credits are multiplexed with the other packets destined
to the initial source (section 2.4). Next, we describe
these in detail.

Crosspoint Buffers: each of them consists of a 2
Kbyte dual ported show-ahead FIFO implemented in
one BRAM. The crosspoint control logic is very sim-
ple: a head and tail pointer, a small FSM triggered
by start-of-packet and end-of-packet indicators, and a
synchronizer to notify the output scheduler of packet
arrivals (the FPGA places the top half and the bottom
half RocketlO’s in two separate clock domains, hence
many crosspoints have different input and output clock
domains). Datapaths are 32 bit wide; clock fre-
quency is 78.125 MHz; enqueue and dequeue through-
put are one word per cycle, each. The minimum-size
packet payload is 24 Bytes (6 clock cycles), and the
maximum-size packet payload is 512 Bytes (128 cy-
cles). The packet header, CRC, and framing overhead
on links wires is 16 Bytes, as discussed in section 2.4.

Output Schedulers (OS): they keep track of the
number of packets enqueued in each crosspoint of their
column, and they select in a round-robin fashion the
next crosspoint to be served among the crosspoints
with non-zero occupancy counts. The round robin pol-
icy is implemented using a priority enforcer, which op-
erates in a single clock cycle. The latency from cross-
point logic to OS decision is 5 clock cycles, most of
which (about 3 clock cycles) is the synchronization de-
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Buffered Crossbar

lay. Since this latency is less than the minimum-packet
time (40 Bytes on the wire = 10 clock cycles), cut-
through operation is supported even for minimum-size
packets. The OS hides scheduling latency and sup-
ports back-to-back packet transmissions by initiating
scheduling 3 clock cycles before the end of a previ-
ous packet transmission. The first word of the selected
packet appears on the column multiplexor and the OS
reads the packet size in it. For the selected packet to be
dequeued and transmitted, the OS must have sufficient
credits for the outgoing path (credits are single-lane
at this stage —switch outputs do not currently have per-
flow queuing or backpressure). When the transmission
starts, the OS sends the packet size to the credit sched-
uler (CS) of the input where the packet came from.

Credit Schedulers (CS): they are associated with a
specific input port each; each of them maintains per-
output counts of the number of bytes that originated
from this input and have departed through that out-
put. We use a QFC-like protocol [10]: counter wrap-

around and infrequent credit losses do not affect cor-
rect protocol operation. The CS is informed about de-
parting bytes from the output schedulers, which, how-
ever, may reside in a different clock domain; synchro-
nization costs about 3 clock cycles in latency. The
CS also interacts with the link interface, and, when
requested (on packet boundaries), provides the credit
data to be transmitted, one credit at a time. Multi-
ple credits, corresponding to multiple flows, share the
same link: the CS transmits them in round robin or-
der. Round robin transmissions are applied first to
the active flows (those whose credits have changed
since their last transmission); on a much longer time
scale, all credit counter values are transmitted, to guard
against potential credit losses on the wire (corrupted
bit transmissions).

4 In preparation for future Coherent NI

Future network interfaces (NI), especially in Chip
Multiprocessors (CMP), will be tightly coupled to the
processor in order to provide low latency communi-
cation, as opposed to the currently predominant long-
latency coupling through the I/O bus. When the net-
work interfaces to the processor at the same level as
caches do, we need a cache-coherent NI [11]: incom-
ing data may have to be delivered to the cache, rather
than to main memory, to avoid long fetch latencies;
alternatively, when data are delivered to memory but
stale versions of the same words reside in the cache,
the latter must be invalidated. In other words, the NI
must participate to the cache coherence protocol.

We plan to prototype systems with coherent NI'’s in
the future, using the PowerPC processors that are em-
bedded in the Xilinx Virtex-1I Pro FPGA’s as the host
processors, i.e. not using Pentium’s as the host pro-
cessors and talking to them through a PCI interface.
In preparation for such prototyping, we need proces-
sors with data caches that can run a coherence proto-
col. Unfortunately, the data caches of the PowerPC’s
inside Virtex-1I Pro FPGA’s do not run a coherence
protocol.

For this reason, we have implemented data caches
equipped with a MESI-like coherency protocol, inside
Virtex-1I Pro FPGA’s but outside their embedded Pow-
erPC’s. Our two caches inside an FPGA connect di-
rectly to the Data Side PLB interface of each of the



two PowerPC processors, and not to the PLB as pe-
ripherals, in order to save some cycles. We also imple-
mented a switch-based snooping-bus-like interconnect
between the two caches. Each cache uses this con-
nection in order to broadcast coherence requests and
receive data. It also snoops the interconnect activity,
in order to respond to coherence requests whenever is
needed. Accesses that miss in both coherent caches are
forwarded to the DDR controller that manages the 256
MB external DDR memory. Finally, each processor
has its own PLB bus, in order to have access to in-
structions and private data. Connection to PowerPCs
DSPLB interface is shared between the PLB bus and
the coherent memory system. A request is served by
either the coherent memory system or the PLB bus de-
pending on the address being accessed. Our coherent
caches support update requests, too; coherent NI's will
use them to directly deliver data in the cache.

5 Implementation

The prototypes of the system have been imple-
mented in the Verilog and VHDL hardware description
languages using Xilinx tools Xilinx for FPGA devel-
opment. Our designs have been synthesized, mapped,
placed and routed in the Xilinx ISE environment. Be-
fore mapping each design in the FPGA we have made
numerous exhaustive functional simulations using the
Cadence’s LDV Suite and Mentor’s ModelSim.

5.1 Design and Hardware Cost

The functional simulations helped us eliminate the
most obvious errors of our designs, although debug-
ging in the system platform was inevitable. The tests
in the system platform revealed several hidden bugs
that could not be found during simulations, since we
cannot have accurate models of the real system com-
ponents. For instance the PCI-X bridge behavior and
the host processor intervention are events that cannot
be modeled. Therefore, we have long debugging cy-
cles in the system and spent several months on this.

Table 1 shows the person-months spent in the
blocks of the design along with their complexity. The
most complex block of the system is the PCI-X inter-
face & DMA engine, that required in depth study of
the PCI-X protocol and conformance with the stan-

dards. The PCI-X and DMA blocks were the most
difficult and time consuming to debug since we had
to deal with the interfaces with the host computer, in a
system with high volatility and uncertainties. Further-
more, we have spent several months for the RocketIO
link interface to reach a stable version, since we had
to deal with problems ranging from the physical inter-
faces (connectors and cables) to high level block inter-
faces. It is important to note that the numbers that we
present for the buffer crossbar switch concern only the
porting of the design that was provided by [10] to the
specific FPGA environment and the specific RocketlO
link interfaces.

Table 2 presents the hardware cost of the system
blocks. The numbers refer to the implementation of
the designs in the Xilinx Virtex II PRO FPGA with
the back-end tools provided by Xilinx. The Monitor-
ing and Debugging block is one of the biggest blocks
in terms of area because it contains a suite of bench-
mark, performance and monitoring sub-blocks that oc-
cupy many LUTs and BRAMs and represent approxi-
mately 33% of the complete design. The VOQs block
is also area demanding block because it involves many
BRAMs to be used as packet buffers and considerable
logic for their associated state. Notice that the Equiv-
alent Gates count includes the memory (BRAM) bits
counted in terms of gates.

5.2 PCI-X microbechmarks

We use hardware cycle counters at the NIC level to
examine the behavior of the Host-NIC DMA engine,
namely the PCI-X Target Interface. For single word
PCI-X write transactions, on the order of 10 PCI-X cy-
cles are required. Therefore, initiating a single RDMA
write operation (writing a transfer descriptor) requires
about 40 PCI-X cycles, or about 400 ns. Leveraging
the write combining processor feature, we can write
a burst of 64 bytes of data in 24 PCI-X cycles which
translates into 4 transfer descriptors. This feature gives
a 6x improvement over the simple case which would
need 160 PCI-X cycles. Naturally, the cost of the write
combining feature is the latency of the data in the write
combining buffer but it saves significant cycles in the
PCI-X bus.

For a DMA write transfer of 4 KBytes (PCI-X
maximum size) to the host memory with 64-bit data



Block Lines of code | Development | Debugging | Person-Months
Previous PCI Version 8000 5 months 8 months 20
PCI-X Interface - DMA Engine 6000 3 months 6 months 12
RocketlO Network Interface 1200 2 months 5 months 10
Multiple VOQs 1500 2 months 3 months 6
Multipath Support 1000 3 months 3 months 6
Buffered Crossbar switch 3300 3 months 3 months 6
Totals | 8000 + 13000 | ~ 1 year ~lyear | 20+40=60 |
Table 1. Development and Debugging time of the basic blocks
Block LUTs | Flip Flops | BRAMs | Equivalent Gates (K)
PCI-X Interface - DMA Engine 2500 1400 22 1200
RocketlO Network Interface 1800 400 0 20
Multiple VOQs 4100 2100 37 2500
Multipath Support 2800 1200 20 600
Monitoring - Debugging Support | 2900 2100 32 2200
| Totals NI [ 14100 | 7200 [ 111 | 6520 \
| Buffered Crossbar Switch 8x8 | 15800 | 13300 [ 64 | 4400 |

Table 2. The FPGA Hardware cost of the basic blocks

phases, we measured a delay of 570 cycles out of
which only 512 actually transfer data (90% utiliza-
tion of PCI-X cycles). The remaining 58 cycles are
attributed to arbitration, PCI-X protocol phases and
the occasional disconnects. For 4 KByte DMA read
transfers from the host memory, we measured a de-
lay of 592 cycles yielding a utilization of 87% PCI-X
cycles. In every DMA read transfer, 50 cycles are con-
sumed until we receive the first data word from the
corresponding split completion and we found that a
split completion sequence completes on average in 3
transactions. For each of these 3 transactions we have
an average latency of 6 cycles between them and we
also need 4 cycles for the PCI-X protocol phases in
every transaction. Finally, the PCI-X bridge issues a
split response to all host memory read requests. The
above measurements have been recorded in a PCI-X
bus where the NIC is the only peripheral and we ex-
pect the above latencies to increase with the addition
of other PCI-X cards on the same PCI-X bus.

The theoretical maximum throughput of a 64-bit
100MHz PCI-X bus assuming zero arbitration cy-
cles is 762,9 MBytes/sec. We manage to achieve

662 MBytes/sec in PCI-X read transfers and 685
MBytes/sec in PCI-X write transfers.

5.3 Network Performance Evaluation

For the evaluation of the system we implemented
some extra hardware functions in the NIC and the
Switch so as to use them for benchmarks. In order to
measure the latency and the throughput of the com-
ponents in the system, we can set the NIC and the
Switch in a Benchmark Mode, where they record cycle
accurate timestamps inside every packet, as it passes
through the stages of the system. The timestamps are
kept in the payload of the packet and are processed by
software at the receiver side, where each packet has
passed through all the stages.

In Benchmark Mode the timestamps are put at the
following points: (i) upon the packet creation in the re-
quest queue when the host processor writes a transfer
descriptor, (ii) upon the packet departure from the NIC
to the network, (iii) upon packet arrival at the switch
port and (iv) upon departure of the packet from the
switch. Timestamps (i) and (ii) measure the queuing



delay and the pipeline latency in the NIC where times-
tamps (iii) and (iv) measure the delay and latency in
the Switch. The latency in the cable and the SERDES
circuits of the RocketlOs are constant and therefore
we don’t have to measure them but we can simply add
them to the final latency. Moreover, we can bypass the
process of reading the payload of the packet from the
host memory (through a PCI-X DMA read) and sim-
ply generate a packet payload with zero values. Note
that the flow ID , the size and the destination address
still come from the transfer descriptor that is written
by the host processor. This setup gives us the flexibil-
ity to measure the net NIC latency without the PCI-X
overhead.

All packets are written in the destination host mem-
ory through DMAs in the appropriate addresses and
are then collected by a linux kernel module which is
developed inside the device drivers of the NIC. The
software after the execution of an experiment reports
a graph with the distribution of the packet latencies
and reports the observed throughput per source. The
throughput is measured by using processor cycle ac-
curate timestamps that start upon the arrival of the first
packet and finish upon the arrival of the last packet per
source.

We have tested the system under many different
traffic patterns with random packet sizes and we mea-
sured throughput and latency in the receiver side for
every source.

The light-load (baseline) latencies of the system are
as follows: For the transmission of a minimum size
packet from the NIC, namely 40 bytes, we spend 16
PCI-X clock cycles. These cycles are attributed as
follows: (i) the DMA engine block requires 2 mem-
ory accesses to read the transfer descriptor plus 1 cy-
cle to start the transmission, so we spend 3 cycles in
the DMA Engine. (ii) we spend 3 cycles in the syn-
chronization FIFO between the DMA engine and the
VOQs block plus 5 clock cycles (minimum packet size
is 40bytes = 5 * 8 bytes words) for the packet to en-
ter the VOQs and then handed to the link interface.
(iii) we spend 3 cycles in the synchronization FIFO
between the VOQ block and the Link interface plus 2
cycles for the link to start transmitting to the network.

As far as the throughput is concerned we have mea-
sured the maximum of 2.4 Gbps out of 2.5 Gbps in a
setup where 1 node sends to 1 destination. In the case
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where 3 nodes send to 1 destination we have measured
0.79 Gbps for every flow which gives a sum of 2.37
Gbps.

We are currently measuring the NIC and Switch
under more sophisticated traffic patterns that include
packet size and destination distributions similar to
those in [9] in order to practically verify the perfor-
mance metrics of the proposed architecture. These fig-
ures will appear in the final version of the paper!

6 Related Work

Commodity system area networks such as Infini-
band [12], Myrinet [13], Quadrics QsNet2 [14], and
PCI-Express Advanced Switching [15, 16, 17] have
been proposed to offer scalability and high perfor-
mance switching. Many of these systems may also of-
fer Network Interface Cards that are programmable at
the (usually system-) software level but do not provide
any hardware customization capability. Being FPGA-
based our platform offers this capability and opens the
opportunity for the inclusion and experimentation with
new custom functionalities that a user might want to
add to the NIC.

In terms of the NIC software interface, the Re-
mote DMA primitives have been proposed to pro-
vide low-latency and high throughput communication
[18, 19, 12]. These primitives are already available in
high-performance networks [13, 14] and show up even
in relatively low-cost Gigabit Ethernet controllers that
support RDMA functionality over TCP, e.g. Broad-
com BCM5706 [20]. We also believe that the RDMA
primitives are attractive and we have added the flex-
ible notification mechanisms that has been shown to
be very effective in improving the interrupt process-
ing cost [1]. Furthermore, our platform features two
PowerPC processors in the FPGA; while we have not
utilized these processors, they can be used to off-load
processing from the system CPU or to implement pro-
tocol extensions.

On the switch side, buffer crossbar or CICQ
switches have become realistic with the recent tech-
nology advances that allow the integration of enough
memory for the crosspoint buffers. We have exten-
sively evaluated these advantages and proved the fea-
sibility of that support variable-size packets [10, 9] and
multipacket segments [5]. To our knowledge, there is



only one FPGA-based buffered crossbar implementa-
tion done by Yoshigoe et al. [21]. That work used
older, low-end FPGA devices. Another important dif-
ference is that our switch can operate directly with
variable-sized packets, and that we offer a complete
reconfigurable system that includes the network inter-
face card and the necessary (linux-based) system soft-
ware.

7 Conclusions

We presented an FPGA platform for prototyping
high-speed processor-network interfaces and intercon-
nects. This platform includes both the network inter-
face card and the switch card and offers built-in effi-
cient primitives and can be adapted to new paradigms
and protocols.

We believe that an experimental evaluation of new
ideas is important and yields better accuracy and confi-
dence as compared to simulation. Our platform, being
FPGA-based, is open to accommodate new features
and evaluate them in an actual experimental environ-
ment.
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