15-319 / 15-619 Cloud Computing

Recitation 5 September 29th & October 1st 2015

Overview

- Administrative Stuff
- Last Week's Reflection
 - Project 2.1, OLI Modules 5 & 6, Quiz 3
 - New concepts
- This week's schedule
 - Project 2.2, OLI Modules 7, 8 & 9, Quiz 4
- Demo

Administrative Stuff

- Cloud TA's "We are here to help you learn"
 - Office Hours: <u>Piazza</u>, <u>Calendar</u>
- Budget, Budget, Budget
 - Plan your approach, **Calculate** before you deploy
 - Use **Spot** Instances
 - Tag your instance (a spot instance is an instance)
 - Remember to **Terminate** your instances
 - Penalties add up and are real
 - Monitor AWS expenditures

Administrative Stuff (Contd.)

Popular Piazza questions

- Q. Why is my RPS so low?
 - Inbound and Outbound rules (enable all traffic on all ports)
 - Same subnet for LG and DCs
- Q. Why is my Load Generator hanging?
 - Check http://<DNS of data center>/lookup/random before feeding it to the load generator. (Both the instance and the application are running)
- Q. Why did my ELB not perform well on the first attempt but did well on the second?

Develop experience (and read) about ELB warm-up

Announcements

- 15-619 Students:
 - Form your 15619 Project teams @5
 - Up to 3 students per team
 - Frontend, databases, scripting, ...
- Monitor AWS expenses

Last Week's Reflection

Project 2.1 AWS APIs, Scalability & Elasticity

- Vertical scaling
 - Differences in RPS between t2.small, t2.medium and t2.large
- Horizontal scaling
 - Difference in RPS, going from 1x to 4xm3.mediums
- Provision and monitor AWS resource programmatically
- Initial experience with load balancing
- Quiz 3
 - Cloud Management (OLI Module 5)
 - Cloud Software Deployment Consideration (OLI Module 6)

New Concepts

- Horizontal and Vertical Scaling
 - What are vertical and horizontal scaling?
 - How does one differentiate between the two?
 - How does the scaling methodology affect throughput?
- Basic Load Balancing
 - Was there anything predictable about the load that the load generator was sending?

This Week

Project 2.1 AWS APIs, Scalability & Elasticity

- Vertically Scaling, Horizontally Scaling and Load Balancing.
- Project 2.2 Elasticity, Failure and Cost

 Able to horizontally scale out and scale in
 to maximize throughput, minimize cost and
 mitigate failure.

This Week's Schedule

- OLI Modules 7, 8 & 9
 - Virtualization
- Quiz 4

– Due on Friday, Oct 2nd, 2015, 11:59PM ET

• Project 2.2

– Due on Sunday, Oct 4th, 2015, 11:59 PM ET

OLI Module 7 - Virtualization Introduction and Motivation

- Why Virtualization
 - Enabling the cloud computing system model
 - Elasticity
 - Resource sandboxing
 - Improved system utilization and reduce costs
 - Mixed OS environment
- Limitation of General Purpose OS
- **Resource Sharing**
 - Time
 - Space

OLI Module 8 Virtualization

- What is Virtualization
 - Involves the construction of an isomorphism that maps a virtual guest system to a real (or physical) host system
 - Sequence of operations e modify guest state
 - Mapping function V(Si)
- Virtual Machine Types
 - Process Virtual Machines
 - System Virtual Machines

OLI Module 9 Resource Virtualization - CPU

- Steps of CPU Virtualization
 - Multiplexing a physical CPU among virtual CPU's
 - Virtualizing the ISA (Instruction Set Architecture) of a CPU
- Code Patch, Full Virtualization and Para virtualization
- Emulation (Interpretation & Binary Translation)
- Virtual CPU

Quick Recap

 When would you go for Vertical / Horizontal Scaling?

• How would you factor in cost, performance and failure into your decision?

Vertical Scaling vs. Horizontal Scaling

- Vertical Scaling Limitations
 - Can only increase the capacity to a limit
 - When scaling, need to transfer data, have to reboot

Load Balancing in Horizontal Scaling

Uneven distribution of load!

CPU utilization, memory utilization...

Available capacity

Health Check in Horizontal Scaling

If Server2 goes down, no fall back is configured

CPU utilization, memory utilization...

Available capacity

Utilization in Horizontal Scaling

If load goes down, we need to change the number of servers

CPU utilization, memory utilization...

Available capacity

What You Need

- Make sure that workload is even on each server
- Do not assign load to servers that are down
- Increase/Remove servers according to changing load

How does AWS help solve these problems?

Load Balancer

- LB is a gateway that acts as a router interface and sends incoming requests to multiple Instances sitting behind it
- Distribute requests from clients to all servers equally

modified from: http://brianpeddle.com/wp-content/uploads/2011/02/EC2ELB.png

AWS ELB Features

- Distribute incoming to multiple Availability Zones
- Amazon EC2 instances' health
- Integration with an Auto Scaling Group (ASG)
- Handle varying load! (Well... Theoretically)

ELB Warmup

- ELB has a starting point for its initial capacity, and it will scale up or down based on traffic
- It struggles with high traffic spikes in shorter periods
- It is recommended that the load is increased at a rate of no more than 50 percent every five minutes (AWS Recommendation)

ELB Best Practices

https://aws.amazon.com/articles/1636185810492479

What is Auto Scaling?

- sapient.com
- Burst during the holiday season
- Losing customers with poor service
- Should the size vary with traffic?

Why Auto Scaling?

- Traditional Scaling:
 - Manually control the size
 - Under utilization or over provisioning of resources
 - Lose customers
- Auto Scaling:
 - Automatically adjust the size based on demand
 - Flexible capacities and scaling sizes
 - Save cost

Amazon Auto Scaling Group

Amazon's CloudWatch Alarm

- Monitor CloudWatch metrics for some specified alarm conditions
- Take automated action when the condition is met

Case Study

- Netflix is one of the most popular provider of ondemand Internet streaming media
- Netflix has been using Amazon Auto Scaling Group for about 5 years.
- Data shows that use of ASG greatly improves the availability of Netflix services and provides an excellent means of optimizing cloud costs. <u>http://techblog.netflix.com/2012/01/auto-scalingin-amazon-cloud.html</u>

P2.2 - Your Task

- Programmatically create an Elastic Load Balancer (ELB) and an Auto-Scaling Group (ASG) linked to ELB
- Test by submitting a URL request and observe changes
- Decide on Scale-Out and Scale-In policy
- Mitigate failure

Project 2.2 Suggestions

- Read project description more than once
- Think about the workflow before starting
- Look up API references
 - Read the overview first, then the details
 - Practice API calls
 - Search the Internet to debug
- Check every step carefully, debug with AWS console
- Don't forget to terminate your Auto Scaling Group and your Elastic Load Balancer after everything is done.

Resources

- Amazon's Auto Scaling Service
 - <u>http://aws.amazon.com/autoscaling/</u>
- Amazon's CloudWatch Alarm
 - <u>http://aws.amazon.com/cloudwatch/</u>
- Amazon's Scaling Developer
 - <u>http://aws.amazon.com/autoscaling/developer</u>
 <u>-resources/</u>

Upcoming Deadlines

- Project 2.2: Elasticity, Failure and Cost
 Due: 10/04/15 11:59PM ET (Pittsburgh)
- Unit 3: Virtualization Resource for the Cloud
 - Module 7: Introduction and Motivation
 - Module 8: Virtualization
 - Module 9: Resource Utilization CPU
- Quiz 4
 - Due: 10/02/15 11:59PM ET (Pittsburgh)

Project 2.2 Demo

Key Points to Remember

- Working with AWS APIs
 - Everything takes time to set up.
 - Request Resource -> Check Resource -> Use Resource
- Terminate EVERYTHING when DONE. (Unless otherwise specified)
- Budget Tip: Reuse existing ASG for subsequent tests.
 - The final test is 1 hour long.
 - Write code to reuse resources as much as you can.
- ELB needs warmup.
 - Keep a target in mind and warm-up ELB till you meet it before starting a test.
- Enable detail monitoring for < 5 min intervals.

Why is the RPS 0?

Questions?