
15-319 / 15-619
Cloud Computing

Recitation 6

October 6th & 8th, 2015

1

Overview

• Administrative issues
Office Hours, Piazza guidelines

• Last week’s reflection
Project 2.2, OLI Unit 3 module 7, 8 and 9

• This week’s schedule
– Project 2.3 - October 11, 2015
– Quiz 5 - October 9, 2015 (Modules 10, 11, 12)
– Make 3 person teams for the 15619 Project

• Demo

Announcements

• Monitor AWS expenses regularly
- Check your bill frequently (use Cost Explorer and

filter by tags).

• Terminate your resources when not in use
- Stop still costs EBS money ($0.1/GB/Month)
- Amazon EC2 and Amazon Cloudwatch fees for

monitoring, ELB
- Autoscaling group - no additional fees

• Use spot instances

3

Last Week’s Reflection

• Content
- Unit 3 - Modules 8, 9 and 10:

 Virtualizing Resources on the Cloud
- Quiz 4 completed

• EC2 APIs
- Amazon CLI, Java, Python

• Load Balancing and AutoScaling
- Experience ASG (Horizontal Scaling) on AWS
- Manage cloud resources and deal with

failures using programs.

4

Types of Failures

5

Transient Failure Permanent Failure

Project 2.2

• Manual Grading: 20 Points are for the code
– Always make sure that your code is readable

– Follow style presented in Recitation 2

– Use the Google Code Style guidelines

6

https://github.com/google/styleguide

This Week: Content

• UNIT 3: Virtualizing Resources for the Cloud

– Module 7: Introduction and Motivation
– Module 8: Virtualization
– Module 9: Resource Virtualization - CPU
– Module 10: Resource Virtualization - Memory
– Module 11: Resource Virtualization – I/O
– Module 12: Case Study
– Module 13: Network and Storage Virtualization

7

Unit 3 : Module 10, 11, 12

● Memory Virtualization
○ Two-level mapping
○ Overcommitment and reclamation
■ Ballooning

● I/O Virtualization
○ Device Sharing (cross-OS)
■ Privileged Instruction vs Memory-mapped

○ Intercepting I/O requests

● Case Studies and Comparison

8

http://dl.acm.org/citation.cfm?id=844146
http://dl.acm.org/citation.cfm?id=844146

Virtualization Black-belt?
● Goldberg, Robert P. "Survey of virtual machine research." Computer 7.6 (1974)
● Bressoud, Thomas C., and Fred B. Schneider. "Hypervisor-based fault tolerance." ACM Transactions

on Computer Systems (TOCS) 14.1 (1996): 80-107.4-45.
● Chen, Peter M., and Brian D. Noble. "When virtual is better than real [operating system relocation to

virtual machines]." Hot Topics in Operating Systems, 2001
● Sugerman, Jeremy, Ganesh Venkitachalam, and Beng-Hong Lim. "Virtualizing I/O Devices on

VMware Workstation's Hosted Virtual Machine Monitor." USENIX Annual Technical Conference,
2001.

● Barham, Paul, et al. "Xen and the art of virtualization." ACM SIGOPS Operating Systems Review
(2003)

● Bellard, Fabrice. "QEMU, a Fast and Portable Dynamic Translator." USENIX Annual Technical
Conference, FREENIX Track. 2005.

● Clark, Christopher, et al. "Live migration of virtual machines." Proceedings of the 2nd conference on
Symposium on Networked Systems Design & Implementation-Volume 2. USENIX Association, 2005.

● Rosenblum, Mendel, and Tal Garfinkel. "Virtual machine monitors: Current technology and future
trends." Computer 38.5 (2005): 39-47.

● Kivity, Avi, et al. "kvm: the Linux virtual machine monitor." Proceedings of the Linux Symposium.
2007.

● Soltesz, Stephen, et al. "Container-based operating system virtualization: a scalable, high-
performance alternative to hypervisors." ACM SIGOPS Operating Systems Review. Vol. 41. No. 3.
ACM, 2007.

● Bailey, Michelle. "The economics of virtualization: Moving toward an application-based cost model."
International Data Corporation (IDC), Whitepaper (2009).

● Research Areas: Trust, Security, Patching, Scheduling, Live Migration, Monitoring, Nesting,
Networks, Energy Efficiency SECRET

9

http://www.vmware.com/files/pdf/VMware_paravirtualization.pdf

Diversion: Containers
● Radically changing software deployment

● Encapsulate application and all dependencies

● Why Containers (not VMs)?
○ Improved utilization
○ Faster provisioning
○ Easier management
○ Microservices

● Why not Containers?
○ Reduced Isolation

10

This Week: Project

• P2.1: Introduction and APIs
• MSB Recruitment Exam

• P2.2: Autoscaling and Elastic Load Balancing
• Junior System Architect at the MSB

• P2.3: Advanced Scaling Concepts: Load
Balancer

• Senior System Architect at the MSB

11

P2.3 - This Week

12

YOU

MSB Load Balancer
(You need to
optimize the
forwarding policy)

Back-end Server 1
(DCI1)

Back-end Server 2
(DCI2)

Find Target ID:
1234

Get
1234

Project 2.3: Load Generator UI

13

Project 2.3: Data Center UI

14

P2.3 - what you have to do

15

● Write a load balancer that:
○ Uses a simple round-robin algorithm to route traffic

○ Scales-out or scales-in instances based on any detected failures

○ Implements a health-check to detect connected web servers

○ If requests are not heterogeneous-- intelligent routing

○ Combine all the features above and get promoted to be a
Senior System Architect at the Mass Surveillance Bureau

16

Skeleton Code Provided

Skeleton code in Java (/loadbalancer/)
● Implements “the plumbing” of a load balancer

○ Setting up of sockets to the client and server
○ API for forwarding requests and receiving responses

● Pending tasks:
○ Implement a simple round-robin request router
○ Implement a health-check that detects and recovers

from failure
○ Understand the different types of requests and learn to

monitor web servers in real-time
○ Forward requests based on observed load on each web

server [in start() method]

Project 2.3 Penalties

17

Upcoming Deadlines

18

• Project 2.3: Load Balancer Internals

Due: 10/11/2015 11:59PM Pittsburgh

• Quiz 5: Modules 10 to 12:

Due: Friday 10/09/2015 11:59PM Pittsburgh

• 15619Project Team Formation Deadline

Due: Sat 10/10/2015 11:59PM Pittsburgh

15619Project Architecture

● Writeup and Queries will be released on Wednesday, October 14th, 2015

● We can have more discussions in subsequent recitations

● For now, ensure 3-person teams you decide have experience with web
frameworks and database, storage principles and infra setup/hacking

Motivations and End-Goals

● The C10k/C1M Challenge

● Scalable System Design

● Building 1-click clouds

● Resource Allocation

● Distributed and NoSQL DBs [Tradeoff Eval]

● Data Wrangling / Schema design

● Security

20

15619 Project Time Table

21

Phase (and query
due)

Start Deadline Code and Report Due

Phase 1 Part 1
● Q1 (due), Q2 (not

yet due)

Thursday 10/15/2015
00:00:01 EDT

Wednesday 10/21/2015
23:59:59 EDT

Phase 1 Part 2
● Q1, Q2 (due)

Thursday 10/22/2015
00:00:01 EDT

Wednesday 10/28/2015
23:59:59 EDT

Thursday 10/29/2015
23:59:59 EDT

Phase 2
● Q1, Q2, Q3, Q4

Thursday 10/29/2015
00:00:01 EDT

Wednesday 11/11/2015
16:59:59 EST

Phase 2 Live Test
● Q1, Q2, Q3, Q4

Wednesday 11/11/2015
18:00:01 EST

Wednesday 11/11/2015
23:59:59 EST

Thursday 11/12/2015
23:59:59 EST

Phase 3
● Q1, Q2, Q3, Q4,

Q5, Q6

Thursday 11/12/2015
00:00:01 EST

Wednesday 12/2/2015
18:59:59 EST

Phase 3 Live Test
● Q1, Q2, Q3, Q4,

Q5, Q6

Wednesday 12/2/2015
20:00:01 EST

Wednesday 12/2/2015
23:59:59 EST

Thursday 12/3/2015
23:59:59 EST

Demo

• Load Balancers
• Motivation
• P2.3 Load Balancer

22

P2.3 Load Balancer

23

Load Balancer - Motivation

• Improved Quality of Service (QOS)
• Increased throughput
• Decreased latency

• High Availability (HA)
• Service Level Agreements
• Available for close to 100% of the time
• Load distribution across multiple data

centers
24

Load Balancer - Evaluation

Load Distribution

• Round Robin
• Homogeneous load performance
• Heterogeneous load performance

• Something more intelligent?
• Random? (probably not)
• Based on request execution time?
• Based on resource utilization?

25

P2.3 - Load Balancer

• Health check
• Measure health of instances

• Faulty instances will bring down
performance.

• Handle failure of instances efficiently
• Stop sending requests to failed instance
• Launch a new instance and add to LB

26

P2.3 - Load Balancer

• P2.3 Tasks
• Write code for round-robin scheduling
• Implement an effective load distribution

strategy
• Implement health check

• All code to be written in the load balancer
• Skeleton code given (Including an API for CPU

utilization)

27

The End

28

