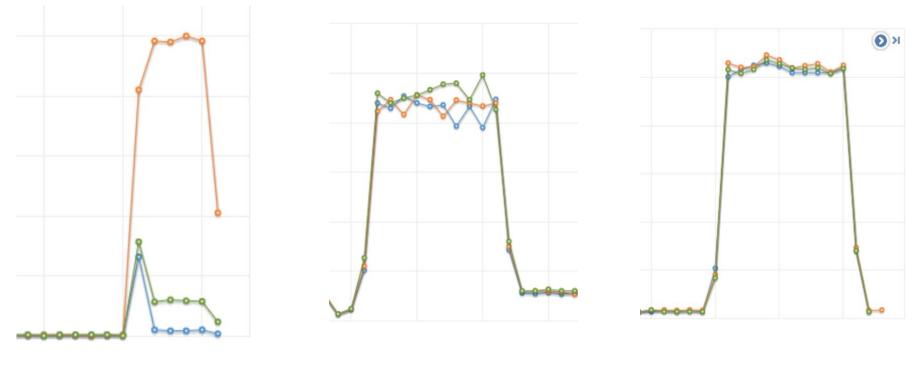
15-319 / 15-619 Cloud Computing

Recitation 7 October 13th & 15th, 2015

1

Overview

- Administrative issues
 Office Hours, Piazza guidelines
- Last week's reflection Project 2.3, OLI unit 3 module 10, 11, 12, Quiz 5
- This week's schedule
 - Quiz 6 October 16th (Module 13)
 - Project 3.1 October 18th
- Demo
- Twitter Analytics: The 15619 Project


Announcements

- Monitor AWS expenses regularly
 - Check your bill (Cost Explorer > filter by tags).
- Terminate your resources when not in use
 - Stop still costs EBS money (\$0.1/GB/Month)
- Use spot instances
 - And tag them at launch time
- Use the team AWS account and tag the 15619Project resources carefully. Otherwise, you might risk having them charged to your weekly projects.

Last Week : A Reflection

- Content
 - Unit 3 Modules 10, 11 and 12:
 - Virtualizing Resources on the Cloud
 - Quiz 5 completed
- You wrote your own load balancer!
 - Round Robin
 - Custom Scheduling
 - Health check
 - Got promoted to Senior Systems Architect

Last Week : Load Balancing

Score = 36

Score = 41

Score = 53

CPU Utilization for DCI1, DCI2 and DCI3

Project 2.3 Grading

Reminder!

- Manual Grading:
 - 20 Points are for the code, we will evaluate
 - Solution
 - Style
 - Formatting
 - Comments

Project 2 Reflection

- AWS APIs
- AutoScaling
- Trade-off between cost and performance
- Mitigating failure
- Load balancing strategies
- Multi-tiered applications

This Week: Content

UNIT 3: Virtualizing Resources for the Cloud

- Module 10: Resource virtualization (memory)
- Module 11: Resource virtualization (I/O)
- Module 12: Case Study
- Module 13: Storage and network virtualization
 - Software Defined Data Center (SDDC)
 - Software Defined Networking (SDN)
 - Device virtualization (Router and NIC virtualization)
 - Link virtualization (Bandwidth/datapath virtualization)
 - Software Defined Storage (SDS)
 - IOFlow
- Quiz 6, October 16th

Project 3 - Storage

• Storage in the cloud (It's Hot!!!)

Project 3 Weekly Modules

- P3.1: Files, SQL and NoSQL
- P3.2: Replication and sharding
- P3.3: Consistency
- P3.4: Social network and heterogeneous back end storage
- P3.5: Data warehousing and OLAP

This Week: Project 3.1

- P3.1: Files vs Databases
- Data Analysis (Files, MySQL)
 - using bash scripts
 - using MySQL
 - Indexing
 - Joins
- Vertical Scaling
 - Instance size
 - Disk type / IOPS
- Data Analysis (HBase)

Project 3.1 Overview

- Run basic Unix commands like grep, awk etc to extract certain data from given datasets
- Use relational databases (MySQL)
- Vertical scaling in storage technologies
 - Magnetic vs SSD
 - Instance types
- Use a NoSQL database (HBase)

Flat Files

- Computer-based flat files.
 - Ex: A comma-separated 'csv' file.
 Mrigesh, 15619, A
 Rohit, 15319, A
- Lightweight
- Flexible
- Accessing specific data is inconvenient
- Lacking knowledge of file-layout
- ...

Databases

- Organized collection of data supporting data structures
- Database management system (DBMS)
- Interface between user and databases
- Capture and analyze data
- Relational databases
- Organized as fixed-length fields in tables: MySQL
- NoSQL Databases
- Organized as Key-Value pairs:
 - DynamoDB, Cassandra, HBase

Databases

- Advantages
- Logical and physical data independence
- Concurrent access and transaction support
- Disadvantages
- Cost
- Additional expertise
- Complex, difficult and time consuming to design

Files vs. Databases

- Compare flat files vs. MySQL
- Answer:
 - What are the advantages and disadvantages of using flat files or databases?
 - In what situation would you use a flat file or a database?
 - How to build your own databases? How to manipulate it?

MySQL Introduction

- Most popular open-source relational database
- Structured data format
- SQL Data Manipulation Language
 - select, from, where, set operation, ordering, join

NoSQL (HBase) Introduction

- A popular NoSQL database on HDFS
- No SQL interface: Get, Scan, Put and Delete
- MySQL or HBase?

MySQL Demo

- Create a table
 - e.g. CREATE TABLE students (ID int, Name varchar(255), email varchar(255));
 - create table script is already provided for you
- Find a way to load the data properly into MySQL
- Use MySQL query to answer questions in runner.sh
 - Aggregate functions, inner join

Storage Vertical Scaling

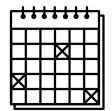
Use the sysbench to benchmark for the following 4 scenarios:

Scenario	Instance Type	Storage Type	
1	t1.micro	EBS Magnetic Storage	
2	t1.micro	EBS General Purpose SSD	
3	m3.large	EBS Magnetic Storage	
4	m3.large	EBS General Purpose SSD	

Performance Benchmarks

- Run sysbench prepare data
 - change to mounted directory
 - use prepare option to generate the data
- Experiments
 - run sysbench with different storage systems and instance types
 - run sysbench multiple times

HBase


- Launch an EMR cluster with HBase installed.
- Follow the write-up to download and load the data into HBase.
- Use HBase querying commands in the HBase shell.

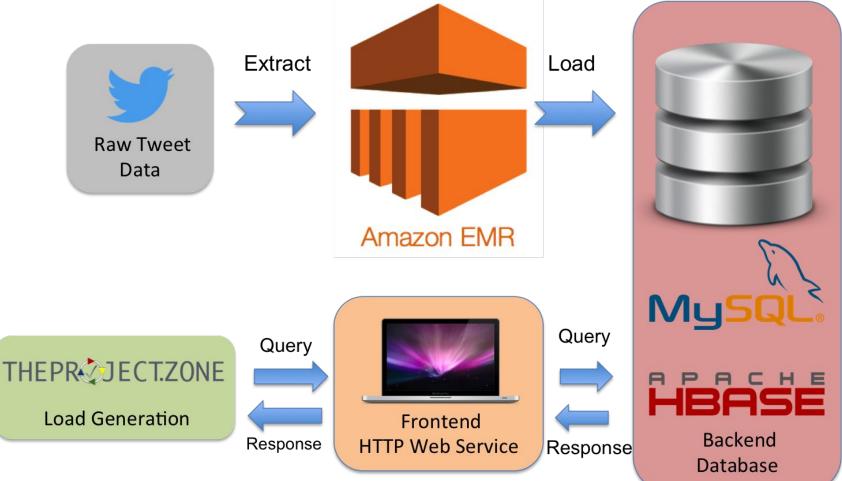
P3.1 Reminders

- Tag your resources with: Key: Project, Value: 3.1
 - manually tag your spot instances
- Be sure not to terminate the instance before answering all questions in runner.sh. Make sure to terminate the instance after answering questions in the runner.sh and submitting your answers.
- You can also save a copy of your runner.sh if you want to work on it later.

TWITTER DATA ANALYTICS: 15619 PROJECT

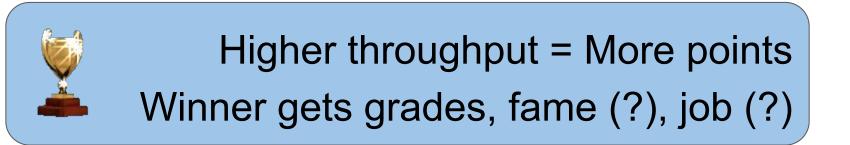
15619 Project Time Table

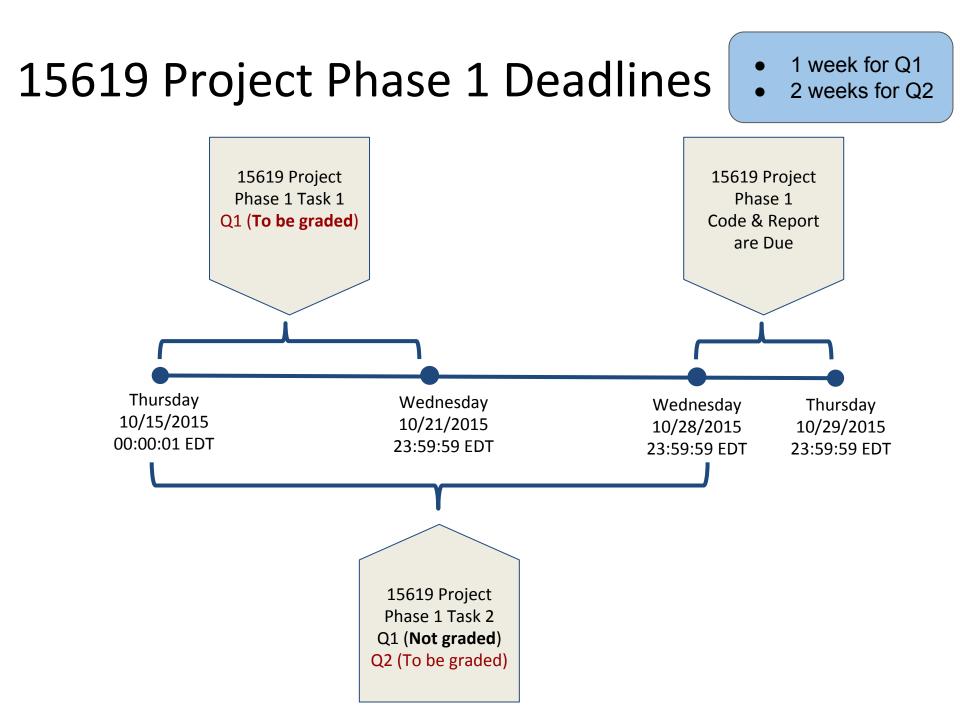
Phase (and query due)	Start	Deadline	Code and Report Due
Phase 1 Task 1 • Q1 (due), Q2 (not yet due)	Thursday 10/15/2015 00:00:01 EDT	Wednesday 10/21/2015 23:59:59 EDT	
Phase 1 Task 2	Thursday 10/22/2015	Wednesday 10/28/2015	Thursday 10/29/2015
• Q1, Q2 (due)	00:00:01 EDT	23:59:59 EDT	23:59:59 EDT
Phase 2	Thursday 10/29/2015	Wednesday 11/11/2015	
	00:00:01 EDT	16:59:59 E S T	
Phase 2 Live Test	Wednesday 11/11/2015	Wednesday 11/11/2015	Thursday 11/12/2015
	18:00:01 E <u>S</u>T	23:59:59 E S T	23:59:59 E § T
Phase 3	Thursday 11/12/2015	Wednesday 12/2/2015	
	00:00:01 E <u>S</u> T	18:59:59 E <u>S</u> T	
Phase 3 Live Test • Q1, Q2, Q3, Q4, Q5, Q6	Wednesday 12/2/2015 20:00:01 E <u>S</u> T	Wednesday 12/2/2015 23:59:59 E S T	Thursday 12/3/2015 23:59:59 E S T


There will also be a report due at the end of each phase, where you are expected to discuss optimizations you used to improve your performance

Wednesday	Thursday	Friday	Sunday
Wednesday 10/21/2015 23:59:59 EDT • Phase 1 Task 1 (Q1 due)	Thursday 10/22/2015 23:59:59 EDT • Quiz 7		Sunday 10/25/2015 23:59:59 EDT • P3.2 Due
Wednesday 10/28/2015 23:59:59 EDT • Phase 1 Task 2 (Q2 due)	Thursday 10/29/2015 23:59:59 EDT • Phase 1 Code & Report Due	Friday 10/30/2015 23:59:59 EDT • Quiz 8	Sunday 11/01/2015 23:59:59 E <u>S</u> T • P3.3 Due
Wednesday 11/11/2015 18:00:01 E <u>S</u> T • Phase 2 Live Test	Thursday 11/12/2015 23:59:59 E S T • Phase 2 Code & Report Due	Friday 11/13/2015 23:59:59 E S T • Quiz 10	Sunday 11/15/2015 23:59:59 E <u>S</u> T • P3.5 Due
Wednesday 12/2/2015 20:00:01 E S T • Phase 3 Live Test	Thursday 12/3/2015 23:59:59 E S T • Phase 3 Code & Report Due	Friday 12/4/2015 23:59:59 E <u>S</u> T • Quiz 12	Sunday 12/6/2015 23:59:59 E <u>S</u> T • P4.2 Due

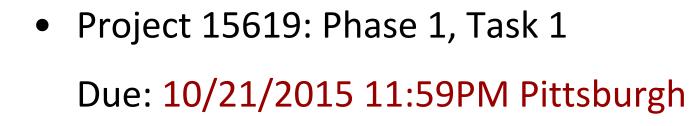
15619 Project System Architecture




- Web server architectures
- Dealing with Tweet Replications
- HBase and MySQL optimization

15619 Project Phase 1?

- **Step 1:** Extract tabular data from raw tweets
 - Input file: JSON Tweets (approx. 1 TB)
 - Consider using a MapReduce Job for ETL
 - ETL is expensive and there's the potential for errors, so plan carefully, test on smaller data sets
- Step 2: Load the data into HBase and MySQL (both!)
- Step 3: Design and deploy
 - a web service for handling HTTP requests responds with data from the backend
 - an optimized backend (MySQL and HBase)



Upcoming Deadlines

Quiz 6: Unit 3 - Storage and network virtualization
 Due: 10/16/2015 11:59PM Pittsburgh

Project 3.1: Files vs Databases
 Due: 10/18/2015 11:59PM Pittsburgh

