
15-319 / 15-619
Cloud Computing

Recitation 9

October 27th and 29th, 2015

Overview

• Administrative issues
Office Hours, Piazza guidelines

• Last week’s reflection
Project 3.2, OLI Unit 4, Module 14, Quiz 7

• This week’s schedule
- 15619 Project - Query 1 & 2 - October 28th

- Quiz 8 - October 30th (Unit 4, Module 15)
- Project 3.3 - November 1st

2

Announcements
• Monitor AWS expenses regularly and tag all resource

– Check your bill (Cost Explorer > filter by tags).

• Piazza Guidelines
– Please tag your questions appropriately
– Search for an existing answer first

• Provide clean, modular and well documented code
– Large penalties for not doing so.

• Utilize Office Hours
– We are here to help (but not to give solutions)

• Use the team AWS account and tag the 15619Project
resources carefully. Otherwise, you might risk having them
charged to your weekly projects.

3

Last Week : A Reflection

• Content, Unit 4 - Module 14:
- Cloud Storage - Big Picture
- Quiz 7 completed

• P3.2: You explored distributed databases:
- Implemented a coordinator

- Sharding
- Replication

4

Project 3 Weekly Modules

• P3.1: Files, SQL and NoSQL
• P3.2: Sharding and Replication
• P3.3: Consistency
• P3.4: Social network and heterogeneous back

end storage
• P3.5: Data warehousing and OLAP

P3.3: Motivation - Consistency

6

Account Balance

xxxxx-4437 $100

Withdrawal Routine

if(amt< balance):
 bal = bal - amt
 return amt
else:
 return 0

P3.3: Motivation - Consistency

7

Account Balance

xxxxx-4437 $100

Withdraw $100

Withdraw $100
Withdrawal Routine

if(amt< balance):
 bal = bal - amt
 return amt
else:
 return 0

P3.3: Motivation - Consistency

8

Account Balance

xxxxx-4437 $0

$100

$100
Withdrawal Routine

if(amt< balance):
 bal = bal - amt
 return amt
else:
 return 0

Bank lost $100

P3.3: Motivation - Consistency

9

Account Balance

xxxxx-4437 $100

Withdraw $100

Withdraw 100
Withdrawal Routine

lock(balance)
if(amt< balance):
 bal = bal - amt
 return amt
else:
 return 0
unlock(balance)

P3.3: Motivation - Consistency

10

Account Balance

xxxxx-4437 $100

Withdraw $100

Withdraw 100
Withdrawal Routine

lock(balance)
if(amt< balance):
 bal = bal - amt
 return amt
else:
 return 0
unlock(balance)

P3.3: Motivation - Consistency

11

Account Balance

xxxxx-4437 $0

$100

$0
Withdrawal Routine

lock(balance)
if(amt< balance):
 bal = bal - amt
 return amt
else:
 return 0
unlock(balance)

P3.3: Consistency Models

12

Tradeoff:
• Strict
• Strong
• Sequential
• Causal
• Eventual

vs.

P3.3: Strong Consistency

13

• Every operation receives a global timestamp
order
– Typically the order in which they arrive at the coordinator

• Operations must be ordered according to
timestamps

• At any given point of time, all clients should
read the same data from any datacenter
replica.

P3.3: Causal Consistency

14

• Causally-related operations must be ordered
correctly
• All other operations can be performed in

any order
• Provides better performance than strong

consistency

P3.3: Eventual Consistency

15

• Writes are performed in the order they are
received at each replica
• Operations may not be blocked for replica

consensus
• Clients that request data may receive multiple

versions of the data, or stale data
• Left to the application to resolve

P3.3: Architecture

16

us-west
us-east

ap-southeast

DCI

coordinator datacenter

P3.3: Your Task

17

• Launch Coordinators and DCIs
• All in us-east, we simulate global latencies

• Implement the Coordinators
• Strong Consistency
• Causal Consistency
• Eventual Consistency

P3.3: Hints

18

US-EAST
DATACENTER
(KeyValueStore.java)

US-WEST
DATACENTER
(KeyValueStore.java)

SINGAPORE
DATACENTER
(KeyValueStore.java)

US-EAST
COORDINATOR

(Coordinator.java)

US-WEST
COORDINATOR

(Coordinator.java)

SINGAPORE
COORDINATOR

(Coordinator.java)

Client

• Launch a total of 7 machines (3 data centers, 3 coordinators and 1 client)

• All machines should be launched in US East region.

 The “US East” here has nothing to do with the simulated location
 of datacenters and coordinators in the project.

US-EAST
DATACENTER

(KeyValueStore.java)

US-WEST
DATACENTER

(KeyValueStore.java)

SINGAPORE
DATACENTER

(KeyValueStore.java)

US-EAST
COORDINATOR
(Coordinator.java)

US-WEST
COORDINATOR
(Coordinator.java)

SINGAPORE
COORDINATOR
(Coordinator.java)

Client

P3.3 TODO:

• Complete the KeyValueStore.java (on the datacenter instance) and Coordinator.java (on the coordinator instance).

• Support 3 consistencies for PUT/GET request: Strong, Causal and Eventual.

US-EAST
DATACENTER
(KeyValueStore.java)

US-WEST
DATACENTER
(KeyValueStore.java)

SINGAPORE
DATACENTER
(KeyValueStore.java)

US-EAST
COORDINATOR

(Coordinator.java)

US-WEST
COORDINATOR

(Coordinator.java)

SINGAPORE
COORDINATOR

(Coordinator.java)

Client

Example workflow for PUT request in strong consistency

US-EAST-DNS:8080/put?key=X&value=1×tamp=1

US-EAST
DATACENTER
(KeyValueStore.java)

US-WEST
DATACENTER
(KeyValueStore.java)

SINGAPORE
DATACENTER
(KeyValueStore.java)

US-EAST
COORDINATOR
(Coordinator.java)

US-WEST
COORDINATOR

(Coordinator.java)

SINGAPORE
COORDINATOR

(Coordinator.java)

Client

Example workflow for PUT request in strong consistency

hash(“X”) to determine if this coordinator is
responsible for “X”. (you can use the
hashing algorithm from P3.2)

US-EAST
DATACENTER
(KeyValueStore.java)

US-WEST
DATACENTER
(KeyValueStore.java)

SINGAPORE
DATACENTER
(KeyValueStore.java)

US-EAST
COORDINATOR
(Coordinator.java)

US-WEST
COORDINATOR

(Coordinator.java)

SINGAPORE
COORDINATOR

(Coordinator.java)

Client

Example workflow for a PUT request in strong consistency

• If US-EAST is responsible for key “X”

You should call KeyValueLib.AHEAD(“X”,1) to
notify all 3 datacenters of this PUT request, and
you should also do the following things:
• Lock PUT request involving “x” before the

current PUT request completes.
• Lock GET request involving “x” before the

current PUT request completes, you could
choose to lock in either coordinator or

 data center.

US-EAST
DATACENTER
(KeyValueStore.java)

US-WEST
DATACENTER
(KeyValueStore.java)

SINGAPORE
DATACENTER
(KeyValueStore.java)

US-EAST
COORDINATOR
(Coordinator.java)

US-WEST
COORDINATOR

(Coordinator.java)

SINGAPORE
COORDINATOR

(Coordinator.java)

Client

ahead?key=X×tamp=1

ahead?key=X×tamp=1ahead?key=X×tamp=1

Example workflow for PUT request in strong consistency

• If US-EAST is responsible for key “X”

US-EAST
DATACENTER

(KeyValueStore.java)

US-WEST
DATACENTER

(KeyValueStore.java)

SINGAPORE
DATACENTER

(KeyValueStore.java)

US-EAST
COORDINATOR
(Coordinator.java)

US-WEST
COORDINATOR

(Coordinator.java)

SINGAPORE
COORDINATOR

(Coordinator.java)

Client

KeyValueLib.PUT(US-EAST-DNS, "X", "1", 1, "strong")

KeyValueLib.PUT(US-WEST-DNS, "X", "1", 1, "strong")

KeyValueLib.PUT(SINGAPORE-DNS, "X", "1", 1, "strong")

Example workflow for PUT request in strong consistency

• If US-EAST is responsible for key “X”

On receiving the request, your code in KeyValueStore.
java should do following things:
• Store the data (you could use the StoreValue.java we

provided)
• Remember to adjust the timestamp if the request is

from a coordinator in a different region (you could
use the Skews.java we provided)

• For strong consistency, ordering the request by
timestamp is important. Maybe you need an
additional data structure to keep track of this.

US-EAST
DATACENTER

(KeyValueStore.java)

US-WEST
DATACENTER

(KeyValueStore.java)

SINGAPORE
DATACENTER

(KeyValueStore.java)

US-EAST
COORDINATOR
(Coordinator.java)

US-WEST
COORDINATOR

(Coordinator.java)

SINGAPORE
COORDINATOR

(Coordinator.java)

Client

Response back (could be empty)
Call KeyValueLib.COMPLETE
(“X”,1) to notify all 3 data centers,
and you should do the following:
• Release the lock for PUT

request involving “x”.
• Release the lock for GET

request involving “x”.
• If you choose to lock the

request in datacenter, you
should release the lock in
datacenter before sending

 the response back to
 coordinator.

Example workflow for PUT request in strong consistency

• If US-EAST is responsible for key “X”

US-EAST
DATACENTER
(KeyValueStore.java)

US-WEST
DATACENTER
(KeyValueStore.java)

SINGAPORE
DATACENTER
(KeyValueStore.java)

US-EAST
COORDINATOR

(Coordinator.java)

US-WEST
COORDINATOR

(Coordinator.java)

SINGAPORE
COORDINATOR

(Coordinator.java)

Client

Response back
(could be empty)

Example workflow for PUT request in strong consistency

• If US-EAST is responsible for key “X”

US-EAST
DATACENTER
(KeyValueStore.java)

US-WEST
DATACENTER
(KeyValueStore.java)

SINGAPORE
DATACENTER
(KeyValueStore.java)

US-EAST
COORDINATOR
(Coordinator.java)

US-WEST
COORDINATOR

(Coordinator.java)

SINGAPORE
COORDINATOR

(Coordinator.java)

Client

KeyValueLib.FORWARD(US-WEST-DNS, "X", "1", 1)

Example workflow for PUT request in strong consistency

• If US-WEST is responsible for key “X”

More Hints:
● Remember to adjust the timestamp in datacenter when the request is from a

different region.
● In strong consistency, “AHEAD” and “COMPLETE” would help you to lock the

GET request. You should think carefully of how they would work.
● Lock all datacenters in strong consistency and lock individual datacenters in

causal consistency.
● In causal consistency, do NOT block a GET request.
● Eventual consistency could be trivial to implement.

Suggestions:
● You should first know the difference between the 3 policies before writing your

code.
● Think about possible race conditions.
● Read the hints on the TPZ handout carefully.
● Don’t modify any class except Coordinator.java and KeyValueStore.java.
● You could optimize your hashing algorithm to reduce the number of forward

operations.

How To Test:
● Run “./vertx run Coordinator.java” and “./vertx run KeyValueStore.java” to start the

vertx server on each of the data centers and coordinators. (You could use nohup
to run it in background)

● Use “./consistency_checker strong”,“./consistency_checker causal” or “.
/consistency_checker eventual” to test your implementation of each consistency.
(Our grader uses the same checker)

● If you want to test one simple PUT/GET request, you could directly enter the
request in your browser.

tWITTER DATA ANALYTICS:
15619 PROJECT

15619 Project Phase 1 Deadlines

Thursday
10/15/2015

00:00:01 EDT

Wednesday
10/21/2015

23:59:59 EDT

15619 Project
Phase 1 Task 1

Q1 (To be graded)

Wednesday
10/28/2015

23:59:59 EDT

Thursday
10/29/2015

23:59:59 EDT

15619 Project
Phase 1

Code & Report
are Due

15619 Project
Phase 1 Task 2

Q1 (Not graded)
Q2 (To be graded)

● 1 week for Q1
● 2 weeks for Q2

15619 Project System Architecture

Q1 : Heartbeat and Authentication
● Task

○ Big integer division

○ Decryption

● Things to consider

○ Is framework selection important? Explore!

○ How important is it to minimize Latency?

○ What can I do if I want to use multiple front-end

instances?

Q2 : Text Cleaning And Analysis
● ETL Task

○ Time filtering

○ Sentiment score calculation

○ Text censoring

● Request

○ Userid

○ Timestamp

● Return

○ TweetID, Sentiment score, Censored text

Q2: Sentiment score

Amazingly, despite the nice,cloudy weather, the BEST
Hope for us to enjoy is to study CLOUD COMPUTING.
Cloud is supper-interesting.

Sentiment score: ??
Word Score Word Score

amazing 4 interesting 3

best 3 enjoy 1

nice 2 super 7

hope 2 study -100

Q2: Sentiment score

Word Score Word Score

amazing 4 interesting 3

best 3 enjoy 1

nice 2 super 7

hope 2 study -100

Amazingly, despite the nice,cloudy weather, the BEST
Hope for us to enjoy is to study CLOUD COMPUTING.
Cloud is supper-interesting.

Sentiment score: -89

Rot13ed Banned words

pybhq

vagrerfgvat

Amazingly, despite the nice,cloudy weather, the BEST
Hope for us to enjoy is to study CLOUD COMPUTING.
Cloud is supper-interesting.

Banned words

cloud

interesting

Q2: Text Censorship

ROT13

Amazingly, despite the nice,cloudy weather, the BEST
Hope for us to enjoy is to study C***D COMPUTING.
Cloud is supper-i*********g.

الحوسبة السحابیة
बादल कंÜयूǑटगं
云计算

クラウドコ

ンピューティング

�ೌşŏ ಕಂಪ�Ŝġಂ

Ņוואָלקן קאַמפּיוטינ
облачныхвычисленийג

Q2: Other issues

● Unicode

● Multiple tweets at the same time for a single user

What’s due soon?

● Phase 1 Report & Code Deadline

○ [11.59 PM Pitt Thursday 10/29]

○ Upload to TheProject.Zone

○ No code ⇒ ZERO POINTS FOR ENTIRE PHASE 1

○ Missing files ⇒ ZERO POINTS FOR ENTIRE PHASE 1

● Very High Standard Expected in Report (25%)
○ Make sure you highlight failures and learning

○ If you didn’t do well, explain why

○ If you did, explain how

○ A really good report showing effort can compensate for

poor performance

• Quiz 8: Unit 4 - Module 15 - Case Studies: DFSs

Open: 10/30/2015 12:01AM Pittsburgh

Due: 10/30/2015 11:59PM Pittsburgh

• Project 3.3: Consistency in Distributed K-V Stores

Due: 11/01/2015 11:59PM Pittsburgh

• 15619Project: Phase 1, Task 2

Due: 10/28/2015 11:59PM Pittsburgh

• 15619Project: Phase 1, Report

Due: 10/29/2015 11:59PM Pittsburgh

Upcoming Deadlines

