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Overview

Administrative issues

— Tagging, 15619Project, project code
Last week’s reflection

— Project 3.5

— Quiz 10

This week’s schedule

— Project 4.1, Batch Processing with MapReduce
— Unit 5 - Module 19

— 15619Project Phase 3

— Quiz 11

Demo

Twitter Analytics: The 15619Project



Reminders

Monitor AWS expenses regularly and tag all resources
o Check your bill (Cost Explorer > filter by tags).

Piazza Guidelines
o Please tag your questions appropriately
o Search for an existing answer first

Provide clean, modular and well documented code
o Large penalties for not doing so.

o Double check that your code is submitted!! (verify by
downloading it from TPZ from the submissions page)

Utilize Office Hours
o We are here to help (but not to give solutions)

Use the team AWS account and tag the 15619Project
resources carefully




Project 3.5 : FAQs

Problem 1: Out-of-memory issue during partitioning

e Should make sure the partition is really necessary
® Partitioning on a big table may drain the datanode’s memory

Problem 2: Invalid File Footer

e Happens when specified compression encoding is different

from the actual compression encoding
e Should find some way to convert uncompressed data into
compressed format, e.g. INSERT INTO tb_opt SELECT * from

tb



Module to Read

 UNIT 5: Distributed Programming and Analytics
Engines for the Cloud

— Module 19: Distributed Analytics Engines for the

Cloud: MapReduce ‘
*Hadoop 1.0

*Hadoop 2.0 - YARN



Project 4

* Project 4.1, Batch Processing with MapReduce
— MapReduce Programming Using YARN




Introduction to MapReduce

* Definition: Programming model for processing large data sets
with a parallel, distributed algorithm on a cluster

* Map: Extract something you care about
* Group by key: Sort and Shuffle
* Reduce: Aggregate, summarize, filter or transform

* Output the result

-o
Heduce[}

Input data

Cutput data




MapReduce - Introduced in Project 1

How many times does
‘ the word “apple”
appear in all books in

Hunt Library?

| heard 6 “Apple”s !



MapReduce Example

What if we want to count the number of
times all fruits appeared in these books?
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You can have multiple aggregators, each one working on a distinct set of “fruits”.



MapReduce Example
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MapReduce Example

Input (K,V)

Map Output / Reduce Input Output
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Steps of MapReduce

* Map

* Shuffle

* Reduce

* Produce final output



Steps of MapReduce

* Map
* Prepare input for mappers
* Splitinput into parts and assign them to mappers

* Map Tasks
e Each mapper will work on its portion of the data
e Output: key-value pairs
» Keys are used in Shuffling and Merge to find the Reducer that
handles it

* Values are messages sent from mapper to reducer
* e.g. (Apple, 1)



Steps of MapReduce

e Shuffle
e Sort and group by key:
* Split keys and assign them to reducers (based on hashing)
* Each key will be assigned to exactly one reducer

 Reduce
* Input: mapper’s output (key-value pairs)
* Each reducer will work on one or more keys
e QOutput: the result needed

* Produce final output
* Collect all output from reducers
e Sort them by key



MapReduce - Data Types

v

* Mapper (default) o /4%_

— Input: key-value pairs @‘% .
° . 1 @
Key: byte offset of the line ,ﬁ’\» =
* Value: the text content of the line
— QOutput: key-value pairs
* Key: specified by your program

,S

» Value: specified by your program based on what content you
expect the reducer to receive as a list

(k1,v1) -> Mapper -> (k2,v2)




MapReduce - Data Types

ﬁ
e Reducer v
— Input: key-value pairs \%}/ﬁl\

TE AP
* A list of values for each key output from ——
the mapper
— QOutput: key-value pairs
* The desired result from your aggregation

(k2,list(v2)) -> Reducer -> (k3,v3)
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Hadoop

 MapReduce
— A programming model for processing large data sets
using a parallel distributed algorithm

e Apache Hadoop

— A framework for running MapReduce applications on
a large cluster of commodity hardware

— Implements the MapReduce computational paradigm
— Uses HDFS for data storage

— Engineers with little knowledge of distributed
computing can write the code in a short period



MapReduce and HDFS

e Detailed workflow
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HDEFES - Distributed File System

* Paper
— The Hadoop Distributed File System, Konstantin
Shvachko, Hairong Kuang, Sanjay Radia, Robert

Chansler, Yahoo!, 2010 IEEE 26th Symposium on
Mass Storage Systems and Technologies (MSST)

* Purpose

— Serve as the distributed storage to run Hadoop’s
MapReduce applications

— An open-source framework which can be used by
different clients with different needs




HDEFES - Distributed File System

* Hadoop Distributed File System
* Open source version of Google File System
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Using a Custom Jar in P4.1

 What is a custom JAR
— Customize your java MapReduce program

— Run the MapReduce JAR in EMR
* Why custom JAR
— More resources: HDFS/HBASE/S3
— More job configuration flexibility
— More control of how the resources are utilized



Typical MapReduce Job

e Simplistic view of a MapReduce job

Input

(o )

Mapper

* You simply write code for the

— Mapper
— Reducer

Reducer

Output

=




Cool things with MapReduce

e Chain of two MapReduce jobs

Input
HDFS Mapperl

~| Reducerl

HDFS Mapper2

*| Reducer2

Output
HDFS

* Load external data into your program

Input

Mapperl

Output

Distributed Cache

* Modify the behavior of FilelnputSplit
* Load output of MapReduce job to HBase

~| Reducerl | HDFS



Project 4.1 - Input Text Predictor

e Suggest words based on phrases already typed

Google | wikipedia ] o
wikipedia
wikipedia game
wikipedia espafiol
wikipedia api

I'm Feeling Lucky »
About 1.010.000.000 results (0.29 seconds)

> bing | 15319

Had & chanca. | 15319 got me a job at google
Had been 15219 search engine is better than bing
119 prize for winning project

Hadn't J TAs hoodie

Had a chance to
Haddock

219 how many more projects are there?

9 grace days
L5319 extensions

9 cheat checking team hired by NSA

0 sqft - 3 bed
Pin

d- 1770 sa ft 13 ba sq ft lot 00 ~ 15319 Maple Lane Markham [C
point 15319 SW 9th Way, Miami, FL 33194 property records on realtor.com(R). 15319 Dittmar Dr Whittier CA



Project 4.1

e Input Text Predictor

— Input Data

— N-Gram Model

— Statistical Language Model

— Predict the next word given a phrase
e Have to use EMR Custom JAR

— CANNOT use EMR Streaming



Construct an Input Text Predictor

1. Given a language corpus
— Wikipedia dataset (~4.5 GB)

2. Construct an n-gram model of the corpus
— An n-gram is a phrase with n contiguous words
— For example a set of 1,2,3,4,5-grams with counts:

* this 1000
e thisis 500
* thisisa 125
* thisisacloud 60

e thisis a cloud computing 20



Construct an Input Text Predictor - 2

3. Build a statistical language model to calculate
the probability of a word appearing after a phrase

Count(ph d
Pr (word | phrase) = CHnHplicass + i)

Count(phrase)

Count(this is) 500
Pr(is | this) = = = 0.5
.l Count(this) 1000 7
C t(this is 125
Bl . SO ) =2 = 0.25
Count(this is) 500

4. Load data to HBase and predict the next word
based on the probabilities



Generate n-gram

e An n-gram is a phrase with n contiguous words

Example Phrase: This is interesting because this is a cloud computin

#

1 |this 2 this is 2 this is interesting 1
2 |is 2 is interesting 1 is interesting hecause 1
3 linteresting 1 interesting because 1 interesting because this 1
4 |because 1 because this 1 because thisis 1
5 |a 1 isa 1 thisis a 1
6 |cloud 1 a cloud 1 isacloud 1
7 |computing 1 cloud computing 1 a cloud computing 1
& |course 1 computing course 1 cloud computing course 1

4-gram Count | 5-gram Count | 6-gram Count

this is interesting because 1 this is interesting because this 1 this is interesting because this is 1
is interesting because this

F*

is interesting because this is is interesting because thisis a

interesting because this is interesting because this is a interesting because this is a cloud

because thisis a

thisis a cloud this is a cloud computing

is a cloud computing course

this is a cloud computing course

1 1
1 1

because this is a cloud 1 berause thisis a cloud computing [ 1
1 1
1

is a cloud computing
a cloud computing course

S R g P R

Co |~ | (U1 | ||



Statistical Language Model

Provide a mechanism to solve common natural
language processing problems

Examples: speech recognition, machine
translation and intelligent input method

SLM estimates the probability of a word given
the previous phrase

N-gram model is one of the most popular
mechanisms to generate an SLM today



Statistical Language Model

e Build a statistical language model that
calculates the probability of a word appearing
after a phrase

Options  Count Probability Options  Count Probability

this was 150 0.15 thisis 500 0.50
thisis 500 0.50 this day 250 0.25
this day 250 0.25 - this was 150 0.15
this kiss 25 0.03 this boy 75 0.08
this boy 75 0.08 this kiss 25 0.03




Load and Predict

e |Load data into HBase
e Connect HBase with the PHP-based front end
server to provide a functional web service.

>

HBase — Front-End et Client
Server

e

N-Gram & Probability Configure & Link



Recommendations

e Test for correctness with small datasets first

* Don’t start a new cluster for every job

— EMR will charge you one hour of usage for instances
even though your EMR job failed to start

e Optimize your code to accelerate MapReduce
before seeking other optimization methods

— Pay attention to your code efficiency

* Version of Hadoop
— should match the version shown in EMR AMI

e Start early



Module to Read

e UNIT 5: Distributed Programming and Analytics Engines for
the Cloud

— Module 18: Intro to distributed programming for the Cloud
— Module 19: Distributed analytics engines: MapReduce «



Upcoming Deadlines

e Quiz 11: Unit5 - Module 19 -
O Open: 11/20/2015 12:01 AM Pittsburgh
O Due: 11/20/2015 11:59 PM Pittsburgh

® Project 4.1 : Batch Processing with MapReduce«
O Due: 11/22/2015 11:59 PM Pittsburgh

e 15619Project : Phase 3
O Live-test due: 12/02/2015 4:59 PM Pittsburgh

O Code and report due: 12/03/2015 11:59 PM Pittsburgh



Busy Week Coming Up!

Wednesday

Thursday

Friday

Sunday

Wednesday 12/2/2015
20:00:01 EST
® Phase 3 Live Test

Thursday 12/3/2015
23:59:59 EST
® Phase3
Code & Report Due

Friday 12/4/2015
23:59:59 EST
e Quizl2

Sunday 12/6/2015
23:59:59 EST
e P42 Due




Project 4.1

e Steps and Demo



Overview

e Run 2 MapReduce jobs to generate a
anguage model

e First step: generate n-grams

e Second step: generate language model

e Third step: connect user interface to HBase




Grading, Step 1

e Use submitter file to autograde your answers

e Ngrams

e Run the command ./ngram_submitter with
the top 100 ngrams in a file called “ngrams”.

e Important Note: Make sure you create a
submission folder. Do not run the submitter
from the home folder.




Grading, Steps 2 & 3

e Model

e Run the command ./submitter to autograde
you language model and your interface

e Code files for ngram and model will be
manually graded



Bonus

e Extending the ideas to build a character-
gram model for word auto-completion

e Simple word-count will suffice

e Use the bonus submitter

e 20% of P4.1 grade



Hive Shell for ad-hoc queries

e Run SQL like queries over distributed
storage(HDFS/S3)

e SELECT, WHERE, ORDER BY,...

e https://cwiki.apache.
org/confluence/display/Hive/LanguageManu
al+Select



https://cwiki.apache.org/confluence/display/Hive/LanguageManual+Select
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+Select
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+Select
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+Select

Questions?



TWITTER DATA ANALYTICS:
15619 PROJECT




15619Project Agenda

Phase 2 Scores
Query 5 Discussion
Query 6 Discussion

Upcoming Deadlines



Phase 2 Live Test

Congratulations to the Teams on the Leaderboard!

MySQL
RPComputing 100
Omegaga's_Black Railgun 100
AmazonCEO 100

Clove | 99.54

purrito 98.5

hakunamatata | 97.39

Funny | 96.16

CCCoder | 94.34

Night Run | 93.66

Yamete | 93.25

HBase:
QingfenSpicyPot 99.78
CloudBurstl 99.61
CCCoder 98.44
i2.8xlarge 64.55
carpeDiem 60.6
thelmp 52.91
Yolo 52.78
purrito 52.21
RPComputing 51.24
Omegaga's_Black_Railgun 50.55




Combined Top 10 (includes bonuses)

Team HBase MysQL Phase 2 Final

CCCoder 98.44 94.34 109.69
CloudBurst1 99.61 93.1 109.56
QingfenSpicyPot 99.78 91.7 108.84
i2.8xlarge 64.55 89.47 85.31
RPComputing 51.24 100 82.92
purrito 52.21 98.5 82.66
Omegaga's_Black_Railgun 50.55 100 82.48
carpeDiem 60.6 81.17 77.89
ace619 45.44 92.5 70.97
gitiandasheng 45.43 89.78 69.61




Query 5: Tweet Counter

Description: The query asks for the total number of
tweets sent by all users given a range of userids.

Request: We send you two user ids

GET /g5?userid min=u_id&userid max=u_id

Response: Your web service needs to return the
number of tweets sent within the range of user ids
where user ids are inclusive

Warning: Ignore duplicate tweet IDs (Count once)



User ID

10

Query 5: Tweet Counter

GET /g5?userid min=2&userid max=10

Tweet ID
101
102
103
104
105
105
106
107

108

Response Format:
TEAMID, TEAM _AWS_ACCOUNT _IDs\n

Count\n

Guess the Response:
TEAMID, TEAM _AWS_ACCOUNT _IDs\n

6\n



Query 6: Tweet Tagger

Finally, we're dealing with writes!!!

e Append a random string to the end of an existing tweet
e Each tweet can have only a single appended tag
at a time (last writer wins)
e ETL similar to /g2 (with no date limits)
e \When we read in Q6, we expect to see the censored
tweet text, with appended tag (if any)

e Correctness test strictest for reads



Query 6: Tweet Tagger

e Problem: Request Reordering
o The old LG scheme cannot guarantee that you will
receive and apply operations in the order that we
expect
o Example: Network delay causes a read to happen
before a write, which was not expected by the grader

e Solution: Sequence Numbers
o All reads (opt =r) and appends (opt = a) have a
sequence number (seq = 1 to 5)
o ALL Traffic divided into transactions of length = 5



Query 6: Tweet Tagger

e Designing a replicated backend

O

|deally, ensure that a write updates all replicas
before reading from any replica

Faster: Only read from the most “recently updated
replica”

Or: Update all replicas asynchronously (for ideas,
see chain replication, other schemes in Ceph)
Tradeoffs: Accuracy v/s Performance



Query 6: Tweet Tagger

e Designing a sharded backend
o Split data between nodes based on keys
o Benefit: More space/memory efficient

o If using ELB:
m Your front-end may need to be node-aware
m Extra hop?

o If not using ELB:
m Consider nginx or HAProxy or other LBs

e How well you distribute data is crucial



Query 6: Tweet Tagger

Consider Tweet ID: 448988310417850370

@Maria_LeonPL chulada de mujeres....sensacional paisana...
estaremos atento de su intervencion... besos tu caballero de 1la

nochej j



Query 6: Tweet Tagger

e Step 1: Start transaction (Opt=S)

/q620pt=S &tid=3000001

TEAMID, TEAM_AWS_ACCOUNT ID\n
O\n

e Hint:
o All transactions operate on an independent set of
tweet IDs



Query 6: Tweet Tagger

e Step 2 : Exactly 5 Appends (opt=a) or Reads (opt=r)

/Qg6°?
tid=30000018&seq=1&opt=a&tweetid=4489883104178503
70&tag=ILOVE15619!12

TEAMID, TEAM AWS ACCOUNT_ID\n

ILOVE15619!12\n

e Hint:
o When opt=a, return the tag to the user
o Scope for optimization? Yes, but be careful!!!



Query 6: Tweet Tagger

e Step 2 : Exactly 5 Appends (opt=a) or Reads (opt=r)

/Qg6°?
t1id=30000018&seq=2&opt=r&tweetid=4489883104178503
70

TEAMID, TEAM AWS ACCOUNT_ID\n

@Maria_ LeonPL chulada de mujeres....sensacional
paisana...estaremos atento de su intervencion...

besos tu caballero de la nochejjILOVE15619!12\n



Query 6: Tweet Tagger
e Step 2 : Exactly 5 Appends (opt=a) or Reads (opt=r)

/Qg6°?
t1id=30000018&seq=48&0pt=a&tweetid=4489883104178503
71&tag=ILOVE15619!13

TEAMID, TEAM_AWS_ACCOUNT_ID\n
ILOVE15619!13\n

e Note:
o If you receive an operation out of order, you need to
ensure that the previous operation is performed first
o Multiple tweet IDs may be operated on in a single
transaction



Query 6: Tweet Tagger
e Step 2 : Exactly 5 Appends (opt=a) or Reads (opt=r)

/Qg6°?
t1d=3000001&seq=3&opt=a&tweetid=4489883104178503
71&tag=ILOVE15619!14

TEAMID, TEAM_AWS_ACCOUNT_ID\n
ILOVE15619!14\n

e Note:
o If you receive an operation out of order, you need to
ensure that the previous operation is performed first
o Multiple tweet IDs may be operated on in a single
transaction



Query 6: Tweet Tagger

e Step 2 : Exactly 5 Appends (opt=a) or Reads (opt=r)

/Qg6°?
tid=30000018&seq=5&opt=r&tweetid=4489883104178503
70

TEAMID, TEAM AWS ACCOUNT_ID\n

@Maria_ LeonPL chulada de mujeres....sensacional
paisana...estaremos atento de su intervencion...

besos tu caballero de la nochejjILOVE15619!12\n



Query 6: Tweet Tagger

e Step 3 : End Transaction (opt=e) or Reads (opt=r)

/q6°?tid=3000001&opt=e

TEAMID, TEAM AWS ACCOUNT ID\n
O\n

e Note:
o Multiple simultaneous, overlapping transactions

o Ensure that all 5 sequence numbers are handled



15619 Project Phase 3 Deadlines

15619 Project
Phase 3
Live Test

~__
——

@ @
Thursday Thursday
10/15/2015 11/12/2015
00:00:01 ET 23:59:59 ET

Wednesday Wednesday
12/02/2015 12/02/2015 12/03/2015
19:59:59 ET 23:59:59 ET 23:59:59 ET

15619 Project
Phase 3
Q5 & Q6

Development

o—O

-
/\

15619 Project
Phase 3
Code & Report
Due

Thursday



What’'s due next?

® Phase 3 Deadline

O

O O O O

O

Submission of one URL by 18:59 ET

(Pittsburgh) Wed 12/2

m Live Test from 8 PM to midnight ET

Choose any one (or both) databases

Can only use m1l.large or cheaper t1, t2, m1, m3 instances
Fix Q1, Q2, Q3, Q4 if your Phase 2 did not go well

New queries Q5 and Q6.

Phase 3 counts for 60% of the 15619Project grade



15619Project Phase 3 Live Test

30 minutes warm-up (Q1 only)

3 hours Q1 - Q6

30 minutes mix-Q1+Q2+Q3+Q4+Q5
Preparing for the live test

o Choose a database based on your observations
from previous phases and all six queries

o Caching known requests will not work(unless you
are smart)

o Need to have all Qs running at the same time

o Avoid bottlenecks in mixed queries



