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Overview
● Administrative issues

– Tagging, 15619Project, project code
● Last week’s reflection

– Project 3.5
– Quiz 10

● This week’s schedule
– Project 4.1, Batch Processing with MapReduce
– Unit 5 - Module 19
– 15619Project Phase 3
– Quiz 11

● Demo
● Twitter Analytics: The 15619Project



Reminders

● Monitor AWS expenses regularly and tag all resources
○ Check your bill (Cost Explorer > filter by tags).

● Piazza Guidelines
○ Please tag your questions appropriately
○ Search for an existing answer first

● Provide clean, modular and well documented code
○ Large penalties for not doing so.

○ Double check that your code is submitted!! (verify by 
downloading it from TPZ from the submissions page)

● Utilize Office Hours
○ We are here to help (but not to give solutions)

● Use the team AWS account and tag the 15619Project 

resources carefully



Project 3.5 : FAQs

Problem 1: Out-of-memory issue during partitioning

● Should make sure the partition is really necessary
● Partitioning on a big table may drain the datanode’s memory

Problem 2: Invalid File Footer

● Happens when specified compression encoding is different 
from the actual compression encoding

● Should find some way to convert uncompressed data into 
compressed format, e.g. INSERT INTO tb_opt SELECT * from 
tb



Module to Read
• UNIT 5: Distributed Programming and Analytics 

Engines for the Cloud
– Module 18: Introduction to Distributed Programming 

for the Cloud
– Module 19: Distributed Analytics Engines for the 

Cloud: MapReduce
•Hadoop 1.0

•Hadoop 2.0 - YARN

– Module 20: Distributed Analytics Engines for the 
Cloud: Spark

– Module 21: Distributed Analytics Engines for the 
Cloud: GraphLab



Project 4

• Project 4.1, Batch Processing with MapReduce
– MapReduce Programming Using YARN

• Project 4.2

– Iterative Programming Using Apache Spark

• Project 4.3

– Stream Processing using Kafka/Samza



Introduction to MapReduce
• Definition: Programming model for processing large data sets 

with a parallel, distributed algorithm on a cluster

• Map: Extract something you care about

• Group by key: Sort and Shuffle

• Reduce: Aggregate, summarize, filter or transform

• Output the result
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MapReduce - Introduced in Project 1

How many times does 
the word “apple” 
appear in all books in 
Hunt Library?

I heard 6 “Apple”s !

Apple,1

Apple,1
Apple,1
Apple,1

Apple,1
Apple,1

8



MapReduce Example

Orange,1
Blueberry,1
Blueberry,1
Apple,1

Apple,1
Apple,1
Apple,1
Orange,1

Apple,1
Apple,1
Orange,1
Blueberry,1

Apple ?

Blueberry ?

Orange ?

What if we want to count the number of 
times all fruits appeared in these books?

You can have multiple aggregators, each one working on a distinct set of “fruits”. 9



MapReduce Example

Orange,1
Blueberry,1
Blueberry,1
Apple,1

Apple,1
Apple,1
Apple,1
Orange,1

Apple,1
Apple,1
Orange,1
Blueberry,1

Apple 6

Blueberry 3

Orange 3

Map Shuffle

Orange,1
Orange,1
Orange,1

Apple,1
Apple,1
Apple,1
Apple,1
Apple,1
Apple,1

Blueberry,1
Blueberry,1
Blueberry,1

Reduce
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MapReduce Example

Orange,1
Blueberry,1
Blueberry,1
Apple,1

Apple,1
Apple,1
Apple,1
Orange,1

Apple,1
Apple,1
Orange,1
Blueberry,1

Apple 6

Blueberry 3

Orange 3

Map Shuffle

Orange,1
Orange,1
Orange,1

Apple,1
Apple,1
Apple,1
Apple,1
Apple,1
Apple,1

Blueberry,1
Blueberry,1
Blueberry,1

Reduce

11

Input (K,V)

Map Output / Reduce Input
(K’,V’)

Output 
(K’’,V’’)



Steps of MapReduce

• Map

• Shuffle

• Reduce

• Produce final output
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Steps of MapReduce

• Map
• Prepare input for mappers

• Split input into parts and assign them to mappers

• Map Tasks
• Each mapper will work on its portion of the data

• Output: key-value pairs
• Keys are used in Shuffling and Merge to find the Reducer that 

handles it 

• Values are messages sent from mapper to reducer

• e.g. (Apple, 1)
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Steps of MapReduce

• Shuffle
• Sort and group by key:

• Split keys and assign them to reducers (based on hashing)

• Each key will be assigned to exactly one reducer

• Reduce
• Input: mapper’s output (key-value pairs)
• Each reducer will work on one or more keys
• Output: the result needed

• Produce final output
• Collect all output from reducers
• Sort them by key

14



MapReduce - Data Types

• Mapper (default)
– Input: key-value pairs 

• Key: byte offset of the line

• Value: the text content of the line

– Output: key-value pairs
• Key: specified by your program

• Value: specified by your program based on what content you 
expect the reducer to receive as a list

(k1,v1) -> Mapper -> (k2,v2)



MapReduce - Data Types

• Reducer
– Input: key-value pairs

• A list of values for each key output from

the mapper

– Output: key-value pairs
• The desired result from your aggregation

(k2,list(v2)) -> Reducer -> (k3,v3)



GFS

MapReduce

BigTable

HDFS

MapReduce

HBase

Proprietary Open Source



Hadoop

• MapReduce
– A programming model for processing large data sets 

using a parallel distributed algorithm
• Apache Hadoop

– A framework for running MapReduce applications on 
a large cluster of commodity hardware

– Implements the MapReduce computational paradigm
– Uses HDFS for data storage
– Engineers with little knowledge of distributed 

computing can write the code in a short period



MapReduce and HDFS 

• Detailed workflow



HDFS - Distributed File System

• Paper
– The Hadoop Distributed File System, Konstantin 

Shvachko, Hairong Kuang, Sanjay Radia, Robert 
Chansler, Yahoo!, 2010 IEEE 26th Symposium on 
Mass Storage Systems and Technologies (MSST)

• Purpose
– Serve as the distributed storage to run Hadoop’s 

MapReduce applications
– An open-source framework which can be used by 

different clients with different needs



HDFS - Distributed File System

• Hadoop Distributed File System

• Open source version of Google File System



Using a Custom Jar in P4.1

• What is a custom JAR
– Customize your java MapReduce program

– Run the MapReduce JAR in EMR

• Why custom JAR

– More resources: HDFS/HBASE/S3

– More job configuration flexibility

– More control of how the resources are utilized



Typical MapReduce Job

• Simplistic view of a MapReduce job

• You simply write code for the
– Mapper

– Reducer

Input

HDFSMapper ReducerHDFS

Output



Cool things with MapReduce

• Chain of two MapReduce jobs

• Load external data into your program

• Modify the behavior of FileInputSplit
• Load output of MapReduce job to HBase

Mapper1 Reducer1 Reducer2Mapper2HDFS

HDFS

Input

Output

Mapper1 Reducer1HDFS

Input

Output

Distributed Cache

HDFSHDFS



Project 4.1 - Input Text Predictor

• Suggest words based on phrases already typed



Project 4.1

• Input Text Predictor
– Input Data
– N-Gram Model
– Statistical Language Model
– Predict the next word given a phrase

• Have to use EMR Custom JAR

– CANNOT use EMR Streaming



Construct an Input Text Predictor

1. Given a language corpus 
– Wikipedia dataset (~4.5 GB)

2. Construct an n-gram model of the corpus
– An n-gram is a phrase with n contiguous words
– For example a set of 1,2,3,4,5-grams with counts:

• this                         1000
• this is                           500
• this is a           125
• this is a cloud             60
• this is a cloud computing  20



Construct an Input Text Predictor - 2

3. Build a statistical language model to calculate 
the probability of a word appearing after a phrase

4. Load data to HBase and predict the next word 
based on the probabilities



Generate n-gram

• An n-gram is a phrase with n contiguous words



Statistical Language Model

• Provide a mechanism to solve common natural 
language processing problems

• Examples: speech recognition, machine 
translation and intelligent input method

• SLM estimates the probability of a word given 
the previous phrase

• N-gram model is one of the most popular 
mechanisms to generate an SLM today



Statistical Language Model

• Build a statistical language model that 
calculates the probability of a word appearing 
after a phrase



Load and Predict

• Load data into HBase
• Connect HBase with the PHP-based front end 

server to provide a functional web service.



Recommendations

• Test for correctness with small datasets first

• Don’t start a new cluster for every job
– EMR will charge you one hour of usage for instances 

even though your EMR job failed to start

• Optimize your code to accelerate MapReduce 
before seeking other optimization methods

– Pay attention to your code efficiency

• Version of Hadoop 
– should match the version shown in EMR AMI

• Start early



Module to Read

• UNIT 5: Distributed Programming and Analytics Engines for 
the Cloud

– Module 18: Intro to distributed programming for the Cloud

– Module 19: Distributed analytics engines: MapReduce

– Module 20: Distributed analytics engines: Spark

– Module 21: Distributed analytics engines: GraphLab



Upcoming Deadlines

● Quiz 11 : Unit 5 - Module 19

○ Open: 11/20/2015 12:01 AM Pittsburgh

○ Due:    11/20/2015 11:59 PM Pittsburgh

● Project 4.1 : Batch Processing with MapReduce

○ Due: 11/22/2015 11:59 PM Pittsburgh

● 15619Project : Phase 3

○ Live-test due: 12/02/2015 4:59 PM Pittsburgh

○ Code and report due: 12/03/2015 11:59 PM Pittsburgh



Busy Week Coming Up!

Wednesday Thursday Friday Sunday

Wednesday 12/2/2015
20:00:01 EST
● Phase 3 Live Test

Thursday 12/3/2015
23:59:59 EST
● Phase 3 

Code & Report Due

Friday 12/4/2015
23:59:59 EST
● Quiz 12 

Sunday 12/6/2015
23:59:59 EST
● P4.2 Due



Project 4.1 

• Steps and Demo



Overview

● Run 2 MapReduce jobs to generate a 
language model

● First step: generate n-grams
● Second step: generate language model
● Third step: connect user interface to HBase



Grading, Step 1

● Use submitter file to autograde your answers
● Ngrams
● Run the command ./ngram_submitter with 

the top 100 ngrams in a file called “ngrams”. 
● Important Note: Make sure you create a 

submission folder. Do not run the submitter 
from the home folder.



Grading, Steps 2 & 3 

● Model
● Run the command ./submitter to autograde 

you language model and your interface
● Code files for ngram and model will be 

manually graded



Bonus

● Extending the ideas to build a character-
gram model for word auto-completion

● Simple word-count will suffice
● Use the bonus_submitter
● 20% of P4.1 grade



Hive Shell for ad-hoc queries

● Run SQL like queries over distributed 
storage(HDFS/S3)

● SELECT, WHERE, ORDER BY,...
● https://cwiki.apache.

org/confluence/display/Hive/LanguageManu
al+Select 

https://cwiki.apache.org/confluence/display/Hive/LanguageManual+Select
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+Select
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+Select
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+Select


Questions?



tWITTER DATA ANALYTICS:
15619 PROJECT



15619Project Agenda

● Phase 2 Scores

● Query 5 Discussion

● Query 6 Discussion

● Upcoming Deadlines



Phase 2 Live Test
Congratulations to the Teams on the Leaderboard!

                 MySQL                                   HBase:

 
RPComputing 100

Omegaga's_Black_Railgun 100

AmazonCEO 100

Clove 99.54

purrito 98.5

hakunamatata 97.39

Funny 96.16

CCCoder 94.34

Night Run 93.66

Yamete 93.25

QingfenSpicyPot 99.78

CloudBurst1 99.61

CCCoder 98.44

i2.8xlarge 64.55

carpeDiem 60.6

theImp 52.91

Yolo 52.78

purrito 52.21

RPComputing 51.24

Omegaga's_Black_Railgun 50.55



Combined Top 10 (includes bonuses)
Team HBase MySQL Phase 2 Final

CCCoder 98.44 94.34 109.69

CloudBurst1 99.61 93.1 109.56

QingfenSpicyPot 99.78 91.7 108.84

i2.8xlarge 64.55 89.47 85.31

RPComputing 51.24 100 82.92

purrito 52.21 98.5 82.66

Omegaga's_Black_Railgun 50.55 100 82.48

carpeDiem 60.6 81.17 77.89

ace619 45.44 92.5 70.97

qitiandasheng 45.43 89.78 69.61



Query 5: Tweet Counter
● Description: The query asks for the total number of 

tweets sent by all users given a range of userids.

● Request: We send you two user ids
GET /q5?userid_min=u_id&userid_max=u_id

● Response: Your web service needs to return the 
number of tweets sent within the range of user ids 
where user ids are inclusive

● Warning: Ignore duplicate tweet IDs (Count once)



Query 5: Tweet Counter
GET /q5?userid_min=2&userid_max=10

User ID Tweet ID

1 101

1 102

2 103

2 104

3 105

3 105

4 106

7 107

10 108

Response Format:
TEAMID,TEAM_AWS_ACCOUNT_IDs\n

Count\n

Guess the Response:
TEAMID,TEAM_AWS_ACCOUNT_IDs\n

6\n



Query 6: Tweet Tagger
Finally, we’re dealing with writes!!!

● Append a random string to the end of an existing tweet

● Each tweet can have only a single appended tag 
at a time (last writer wins)

● ETL similar to /q2 (with no date limits)

● When we read in Q6, we expect to see the censored 

tweet text, with appended tag (if any)

● Correctness test strictest for reads



Query 6: Tweet Tagger

● Problem: Request Reordering
○ The old LG scheme cannot guarantee that you will 

receive and apply operations in the order that we 
expect

○ Example: Network delay causes a read to happen 
before a write, which was not expected by the grader

● Solution: Sequence Numbers
○ All reads (opt = r) and appends (opt = a) have a 

sequence number (seq = 1 to 5)
○ ALL Traffic divided into transactions of length = 5



Query 6: Tweet Tagger

● Designing a replicated backend
○ Ideally, ensure that a write updates all replicas 

before reading from any replica
○ Faster: Only read from the most “recently updated 

replica”
○ Or: Update all replicas asynchronously (for ideas, 

see chain replication, other schemes in Ceph)
○ Tradeoffs: Accuracy v/s Performance



Query 6: Tweet Tagger

● Designing a sharded backend
○ Split data between nodes based on keys
○ Benefit: More space/memory efficient

○ If using ELB:
■ Your front-end may need to be node-aware
■ Extra hop?

○ If not using ELB:
■ Consider nginx or HAProxy or other LBs

● How well you distribute data is crucial



Query 6: Tweet Tagger

Consider Tweet ID: 448988310417850370

@Maria_LeonPL chulada de mujeres....sensacional  paisana...

estaremos atento de su intervención... besos tu caballero de la 

noche¡¡



Query 6: Tweet Tagger
● Step 1 : Start transaction (opt=s)

/q6?opt=s&tid=3000001

TEAMID,TEAM_AWS_ACCOUNT_ID\n

0\n

● Hint:
○ All transactions operate on an independent set of 

tweet IDs



Query 6: Tweet Tagger
● Step 2 : Exactly 5 Appends (opt=a) or Reads (opt=r)

/q6?

tid=3000001&seq=1&opt=a&tweetid=4489883104178503

70&tag=ILOVE15619!12

TEAMID,TEAM_AWS_ACCOUNT_ID\n

ILOVE15619!12\n

● Hint:
○ When opt=a, return the tag to the user
○ Scope for optimization? Yes, but be careful!!!



Query 6: Tweet Tagger
● Step 2 : Exactly 5 Appends (opt=a) or Reads (opt=r)

/q6?

tid=3000001&seq=2&opt=r&tweetid=4489883104178503

70

TEAMID,TEAM_AWS_ACCOUNT_ID\n

@Maria_LeonPL chulada de mujeres....sensacional  

paisana...estaremos atento de su intervención... 

besos tu caballero de la noche¡¡ILOVE15619!12\n



Query 6: Tweet Tagger

● Step 2 : Exactly 5 Appends (opt=a) or Reads (opt=r)

/q6?
tid=3000001&seq=4&opt=a&tweetid=4489883104178503
71&tag=ILOVE15619!13

TEAMID,TEAM_AWS_ACCOUNT_ID\n

ILOVE15619!13\n

● Note:
○ If you receive an operation out of order, you need to 

ensure that the previous operation is performed first
○ Multiple tweet IDs may be operated on in a single 

transaction



Query 6: Tweet Tagger

● Step 2 : Exactly 5 Appends (opt=a) or Reads (opt=r)

/q6?
tid=3000001&seq=3&opt=a&tweetid=4489883104178503
71&tag=ILOVE15619!14

TEAMID,TEAM_AWS_ACCOUNT_ID\n

ILOVE15619!14\n

● Note:
○ If you receive an operation out of order, you need to 

ensure that the previous operation is performed first
○ Multiple tweet IDs may be operated on in a single 

transaction



Query 6: Tweet Tagger
● Step 2 : Exactly 5 Appends (opt=a) or Reads (opt=r)

/q6?

tid=3000001&seq=5&opt=r&tweetid=4489883104178503

70

TEAMID,TEAM_AWS_ACCOUNT_ID\n

@Maria_LeonPL chulada de mujeres....sensacional  

paisana...estaremos atento de su intervención... 

besos tu caballero de la noche¡¡ILOVE15619!12\n



Query 6: Tweet Tagger
● Step 3 : End Transaction (opt=e) or Reads (opt=r)

/q6?tid=3000001&opt=e

TEAMID,TEAM_AWS_ACCOUNT_ID\n

0\n

● Note:

○ Multiple simultaneous, overlapping transactions

○ Ensure that all 5 sequence numbers are handled



15619 Project Phase 3 Deadlines

Thursday 
10/15/2015
00:00:01 ET

Thursday 
11/12/2015
23:59:59 ET

15619 Project
Phase 1 & 2 (Live 
Test 1 and Code + 

Report 
Submissions)

Wednesday 
12/02/2015
23:59:59 ET

Thursday 
12/03/2015
23:59:59 ET

15619 Project 
Phase 3 
Q5 & Q6

Development

15619 Project 
Phase 3 

Code & Report 
Due

15619 Project 
Phase 3 

Live Test

Wednesday 
12/02/2015
19:59:59 ET

WE ARE HERE



What’s due next?

● Phase 3 Deadline 

○ Submission of one URL by 18:59 ET 

(Pittsburgh) Wed 12/2
■ Live Test from 8 PM to midnight ET

○ Choose any one (or both) databases

○ Can only use m1.large or cheaper t1, t2, m1, m3 instances

○ Fix Q1, Q2, Q3, Q4 if your Phase 2 did not go well

○ New queries Q5 and Q6.

○ Phase 3 counts for 60% of the 15619Project grade



15619Project Phase 3 Live Test

● 30 minutes warm-up (Q1 only)
● 3 hours Q1 - Q6
● 30 minutes mix-Q1+Q2+Q3+Q4+Q5
● Preparing for the live test

○ Choose a database based on your observations 
from previous phases and all six queries

○ Caching known requests will not work(unless you 
are smart)

○ Need to have all Qs running at the same time
○ Avoid bottlenecks in mixed queries


