15-319 / 15-619
Cloud Computing

Recitation 13
November 241" 2015

Overview

e Last week’s reflection

— Project4.1

— Quiz 11
Budget issues

— Tagging, 15619Project
This week’s schedule

— Unit 5 - Modules 20 & 21
— Project 4.2

— 15619Project Phase 3
Demo
Twitter Analytics: The 15619Project

Reminders

Monitor AWS expenses regularly and tag all resources
o Check your bill (Cost Explorer > filter by tags).

Piazza Guidelines
o Please tag your questions appropriately
o Search for an existing answer first

Provide clean, modular and well documented code
o Large penalties for not doing so.

o Double check that your code is submitted!! (verify by
downloading it from TPZ from the submissions page)

Utilize Office Hours
o We are here to help (but not to give solutions)

Use the team AWS account and tag the 15619Project
resources carefully

Project 4.1 FAQ

e End-to-End Application using MapReduce,
H-Base and web frontend
e Text Corpus -> NGrams -> Language Model
e Web app querying HBase
e Extending ideas for Character-grams
e FAQs
e Unable to load data into HBase from Reducer,

MapReduce program hangs randomly.

e Ans: Use the correct jars, build on the instance
with the right dependencies, try on small
datasets first

e Secret to MapReduce: Start small

Module to Read

 UNIT 5: Distributed Programming and Analytics
Engines for the Cloud

Cloud: Spark

— Module 21: Distributed Analytics Engines for the
Cloud: GraphLab

— Module 20: Distributed Analytics Engines for the '

Project 4

* Project 4.2
— Iterative Programming Using Apache Spark ‘

Typical MapReduce Job

e Simplistic view of a MapReduce job

Input

[HDFS }——* Mapper

* You simply write code for the

— Mapper
— Reducer

Reducer

Output

(o)

e |nputs are read from disk and outputs are written to disk

— Intermediate data is spilled to local disk

Iterative MapReduce Jobs

 Some applications require iterative processing

* Eg: Machine Learning, etc.

->[HDFS]—' Mapper

e MapReduce: Data is always spilled to disk

Reducer

Prepare data for the next iteration

— Added overhead for each iteration

Output

-

— Can we keep data in memory? Across lterations?

— How do you manage this?

Resilient Distributed Datasets (RDDs)

e RDDs are
— can be in-memory or on disk
— read-only objects
— partitioned across the cluster
epartitioned across machines based on a range
or the hash of a key in each record

Operations on RDDs

e Loading

>>>input_RDD = sc.textFile("text.file")

e Transformation

— Apply an operation and derive a new RDD
>>>transform RDD = input RDD.filter(lambda x: "abcd" in x)

e Action

— Computations on an RDD that return a single object
>>>print "Number of “abcd”:" + transform RDD.count()

RDDs and Fault Tolerance

e Actions create new RDDs
e |nstead of replication, recreate RDDs on failure
e Use RDD lineage
— RDDs store the transformations required to bring
them to current state
— Provides a form of resilience even though they

can be in-memn~rv -
log_lines_RDD

filter filter

owasp_attacks RDD

The Spark Framework

RDD Objects

=

rddl.join (rdd2)

.groupBy (...)
.filter (..}

Spark Client
(Application Master)

Scheduler and
RDD Graph

-

3

-
-/ :

Trackers

Task Scheduler

Cluster Manager
—
B S

Worker

Threads

Block Manager

Blockinfo

MemoryStore

DiskStore

ShuffleBlockManager

Spark Ecosystem Soaik

Spark SQL
— Allows running of SQL-like queries against RDDs

Spark Streaming
— Run spark jobs against streaming data

MLlib
— Machine learning library

GraphX
— Graph-parallel framework

https://spark.apache.org/sql/
https://spark.apache.org/sql/
https://spark.apache.org/streaming/
https://spark.apache.org/streaming/
https://spark.apache.org/mllib/
https://spark.apache.org/mllib/
https://spark.apache.org/graphx/
https://spark.apache.org/graphx/

Project 4.2

Use Spark to analyze the

Twitter social graph

e Number of nodes and
edges

e Number of followers for
each user

e Run PageRank to compute
the influence of users

L‘asnu:n@nﬂdker

\ bangladeshmeda™} Manik_Farhan
\ // 7\ !

Rnngi\/hslm

ferdousalamta
/
museuphony
- e e
o e atthewislam
L]
~
)
i
Koly7001d (
salmin01010 azim721

./

i Bangladesh

asifshaikat

shey bilash

uttam_221

sharminmoutusi

People tweeting with #Shahbag

Project 4.2 - Overview

e Use the Twitter social graph dataset
e Analyze the social graph with Spark

e Find the influence of users and rank them with
PageRank

Twitter Graph

SpQrkﬁ 2. # followers 3. PageRank

Back End Front End Client

Project 4.2 - Three Parts

. Enumerate the Twitter Social Graph

— Find the number of nodes and edges

— Edges in the graph are directed. (u, v) and
(v, u) should be counted as two edges

. Find the number of followers for each user
. Rank each user by influence

— Run PageRank with 10 iterations
— Need to deal with dangling nodes

PageRank

e Give pages ranks (scores) based on links to them
e A page that has:

— Links from many pages = high rank

— Link from a high-ranking page = high rank

==]

.

PageRank

"PageRank-hi-res". Licensed under CC BY-SA 2.5 via Wikimedia Commons -
http://commons.wikimedia.org/wiki/File:PageRank-hi-res.png#/media/File:PageRank-hi-res.png

PageRank

For each Page i in dataset, Rank of i can be computed:

- Rank[Vi])

Rank[V,] = (1—-d) + d(A

i=1
where V.. is Vertex x, d is a damping factor,

and V; is one of the n neighboring vertices of I/,
and C|V;] is the count of the neighbors of Vertex V;

lterate for 10 iterations
Formula to be implemented for 4.2 is slightly more
complex. Read carefully!!!

PageRank in Spark (Scala)

(Note: This is a simpler version of PageRank, than P4.2)

val links = spark.textFile(...) .map(...) .persist()
var ranks = // RDD of (URL, rank) pairs
for (1 <- 1 to ITERATIONS)

{

// Build an RDD of (targetURL, float) pairs
// with the contributions sent by each page
val contribs = links.join(ranks) .flatMap
{

(url, (links, rank)) =>

links.map (dest => (dest, rank/links.size))
}

// Sum contributions by URL and get new ranks
ranks = contribs.reduceByKey ((x,y) => x+y)
.mapValues (sum => a/N + (1l-a)*sum)

Launching a Spark Cluster

Use the Spark-EC2 scripts

Command line options to specify instance
types and spot pricing

Spark is an in-memory system

— test with a single instance first

Develop and test your scripts on a portion of
the dataset before launching a cluster

Spark Shell

Like the python shell

Run commands interactively

Demo in second half of recitation
On the master, execute (from /root)

— ./spark/bin/spark-shell
— ./spark/bin/pyspark

Grading

Submit your work in the submitter instance
Don’t forget to submit your code
For Task 1

o Put your answers in the answer file
o Run submitter to upload your answer

For Task 2

o Load your result into the follower table in database
o Run webserver and use submitter to submit

For Task 3

o Load your result into the pagerank table in database
o Run webserver and use submitter to submit

Upcoming Deadlines

® Quiz12:Unit5-Modules 20 & 21 -
O Open: 12/04/2015 12:01 AM Pittsburgh
O Due: 12/04/2015 11:59 PM Pittsburgh

® Project 4.2 : Iterative Programming with Spark «
O Due: 12/06/2015 11:59 PM Pittsburgh

e 15619Project : Phase 3 «
O Live-test due: 12/02/2015 4:59 PM Pittsburgh

O Code and report due: 12/03/2015 11:59 PM Pittsburgh

A Busy Week Coming Up! A

Wednesday

Thursday

Friday

Sunday

Wednesday 12/2/2015
20:00:01 EST
® Phase 3 Live Test

Thursday 12/3/2015
23:59:59 EST
® Phase3
Code & Report Due

Friday 12/4/2015
23:59:59 EST
e Quizl2

Sunday 12/6/2015
23:59:59 EST
e P42 Due

-

To mitigate this busy week, please consider the

following:

® Quiz 12: Read Unit 5 - Modules 20 & 21 this week

® Project 4.2: Start this week

Project 4.2

e Demo

Questions?

TWITTER DATA ANALYTICS:
15619 PROJECT

15619Project Agenda

Query 5 Discussion
Query 6 Discussion
Upcoming Deadlines
Phase 3 Live Test

Query 5: Tweet Counter

Description: The query asks for the total number of
tweets sent by all users given a range of userids.

Request: We send you two user ids

GET /g5?userid min=u_id&userid max=u_id

Response: Your web service needs to return the
number of tweets sent within the range of user ids
where user ids are inclusive

Warning: Ignore duplicate tweet IDs (Count once)

User ID

10

Query 5: Tweet Counter

GET /g5?userid min=2&userid max=10

Tweet ID
101
102
103
104
105
105
106
107

108

Response Format:
TEAMID, TEAM _AWS_ACCOUNT _IDs\n

Count\n

Guess the Response:
TEAMID, TEAM _AWS_ACCOUNT _IDs\n

6\n

Query 5: Suggestions & Clarifications

e No filtering based on time (as in Q2)

e Remove duplicate tweets

e Q5 input user id’s are inclusive

e Ignore malformed user id

e EXxplore techniques to flatten data (Reduce

query latency)

Query 6: Tweet Tagger

Finally, we're dealing with writes!!!

e Append a random string to the end of an existing tweet
e Each tweet can have only a single appended tag
at a time (last writer wins)
e ETL similar to /g2 (with no date limits)
e \When we read in Q6, we expect to see the censored
tweet text, with an uncensored appended tag (if any)

e Correctness test strictest for reads

Query 6: Tweet Tagger

e Problem: Request Reordering

Load Generator

. Twitter Web

Service

Query 6: Tweet Tagger

Read kK1 |- >

Write KTV1 | >

Twitter Web
Service

Load Generator

Read kK2 |- >

WriteK2V2 -

Network delay causes a read to happen before a write, which
was not expected by the grader

Query 6: Tweet Tagger

Twitter Web

Load Generator

The old LG scheme cannot
guarantee that you will
receive and apply operations
in the order that we expect

Service

Order of Execution e

Read K2

Read K1

Write K2 V2

Write K1 V1

We have a problem with the request reordering

Load Generator

Query 6: Tweet Tagger

Solution: Sequence Numbers

R Twitter Web

Service

Query 6: Tweet Tagger

Solution: Sequence Numbers

Write K1 V1 Seq#1 | -

Load Generator .| Twitter Web
Service

Current Expected Seq No #1

Order of Execution ——jp-| Write K1 V1 Seq #1

All reads and appends have a Next operation - - 3»'Read K1 ~ Seq #2
sequence number (seq = 1 to 5)

Write K2 V2 Seq #3

All traffic is divided into transactions of Read K2 Seq #4

length =5

Blocking Queue

Query 6: Tweet Tagger

Transaction

Transaction T1 Transaction T2

= Sequential
Processing

1

Parallel Processing

Query 6: Tweet Tagger

e Designing a replicated backend

O

|deally, ensure that a write updates all replicas
before reading from any replica

Faster: Only read from the most “recently updated
replica”

Or: Update all replicas asynchronously (for ideas,
see chain replication, other schemes in Ceph)
Tradeoffs: Accuracy v/s Performance

Query 6: Tweet Tagger

e Designing a sharded backend
o Split data between nodes based on keys
o Benefit: More space/memory efficient

e ELB
o If you are using ELB:
m Your front-end may need to be node-aware
m Extra hop?

o If not using ELB:
m Consider nginx or HAProxy or other LBs

Query 6: Tweet Tagger

Consider Tweet ID: 448988310417850370

@Maria_LeonPL chulada de mujeres....sensacional paisana...
estaremos atento de su intervencion... besos tu caballero de 1la

nochej j

Query 6: Tweet Tagger

e Step 1: Start transaction (Opt=S)

/q620pt=S &tid=3000001

TEAMID, TEAM_AWS_ACCOUNT ID\n
O\n

e Hint:
o All transactions operate on an independent set of
tweet IDs

Query 6: Tweet Tagger

e Step 2 : Exactly 5 Appends (opt=a) or Reads (opt=r)

/Qg6°?
tid=30000018&seq=1&opt=a&tweetid=4489883104178503
70&tag=ILOVE15619!12

TEAMID, TEAM AWS ACCOUNT_ID\n

ILOVE15619!12\n

e Hint:
o When opt=a, return the tag to the user
o Scope for optimization? Yes, but be careful!!!

Query 6: Tweet Tagger

e Step 2 : Exactly 5 Appends (opt=a) or Reads (opt=r)

/Qg6°?
t1id=30000018&seq=2&opt=r&tweetid=4489883104178503
70

TEAMID, TEAM AWS ACCOUNT_ID\n

@Maria_ LeonPL chulada de mujeres....sensacional
paisana...estaremos atento de su intervencion...

besos tu caballero de la nochejjILOVE15619!12\n

Query 6: Tweet Tagger
e Step 2 : Exactly 5 Appends (opt=a) or Reads (opt=r)

/Qg6°?
t1id=30000018&seq=48&0pt=a&tweetid=4489883104178503
71&tag=ILOVE15619!13

TEAMID, TEAM_AWS_ACCOUNT_ID\n
ILOVE15619!13\n

e Note:
o If you receive an operation out of order, you need to
ensure that the previous operation is performed first
o Multiple tweet IDs may be operated on in a single
transaction

Query 6: Tweet Tagger
e Step 2 : Exactly 5 Appends (opt=a) or Reads (opt=r)

/Qg6°?
t1d=3000001&seq=3&opt=a&tweetid=4489883104178503
71&tag=ILOVE15619!14

TEAMID, TEAM_AWS_ACCOUNT_ID\n
ILOVE15619!14\n

e Note:
o If you receive an operation out of order, you need to
ensure that the previous operation is performed first
o Multiple tweet IDs may be operated on in a single
transaction

Query 6: Tweet Tagger

e Step 2 : Exactly 5 Appends (opt=a) or Reads (opt=r)

/Qg6°?
tid=30000018&seq=5&opt=r&tweetid=4489883104178503
70

TEAMID, TEAM AWS ACCOUNT_ID\n

@Maria_ LeonPL chulada de mujeres....sensacional
paisana...estaremos atento de su intervencion...

besos tu caballero de la nochejjILOVE15619!12\n

Query 6: Tweet Tagger

e Step 3 : End Transaction (opt=e) or Reads (opt=r)

/q6°?tid=3000001&opt=e

TEAMID, TEAM AWS ACCOUNT ID\n
O\n

e Note:
o Multiple simultaneous, overlapping transactions

o Ensure that all 5 sequence numbers are handled

Query 6: Suggestions & Clarifications

e Censorship of tweet text before append
e No time filtering
e Tag is not required to be censored
e The appended tag is short (max 14 character)
e Transaction sequence is restricted between 1 to 5
e You can only submit 1 DNS for the live test
e Multiple appends on same tweet
o Always return latest tag
o If tag already appended in previous test, replace it with new
tag

e Q06 is not in mixed queries

15619 Project Phase 3 Deadlines

15619 Project

Phase 3
Live Test
WE ARE HERE \/
O= ® O . -0
Thursday Thursday Wednesday Wednesday
10/15/2015 11/12/2015 12/02/2015 12/02/2015 12/03/2015
00:00:01 ET 23:59:59 ET 19:59:59 ET 23:59:59 ET 23:59:59ET

|
T

15619 Project
Phase 3
Q5 & Q6

Development

-
/\

15619 Project
Phase 3
Code & Report
Due

Thursday

What’'s due next?

® Phase 3 Deadline

O

O O O O

O

Submission of one URL by 18:59 ET

(Pittsburgh) Wed 12/2

m Live Test from 8 PM to midnight ET

Choose any one (or both) databases

Can only use m1l.large or cheaper t1, t2, m1, m3 instances
Fix Q1, Q2, Q3, Q4 if your Phase 2 did not go well

New queries Q5 and Q6.

Phase 3 counts for 60% of the 15619Project grade

Phase 3 Report [VERY IMPORTANT]

e Startearly
) Document your steps

e |dentify and isolate the performance impact of
each change you make

e Document your ideas and experiments

MAKE A QUANTITATIVE, DATA-DRIVEN REPORT

15619Project Phase 3 Live Test

30 minutes warm-up (Q1 only)

3 hours Q1 - Q6

30 minutes mix-Q1+Q2+Q3+Q4+Q5
Preparing for the live test

o Choose a database based on your observations
from previous phases and all six queries

o Caching known requests will not work(unless you
are smart)

o Need to have all Qs running at the same time

o Avoid bottlenecks in mixed queries

