
15-319 / 15-619
Cloud Computing

Recitation 14

December 1st 2015

Overview

• Recent Tasks reflection
– Project 4.1
– Quiz 11

• Budget issues
– Tagging, 15619Project

• This week’s schedule
– Unit 5 - Modules 20 & 21
– Project 4.2
– 15619Project Phase 3

• Demo
• Twitter Analytics: The 15619Project

Reminders

● Monitor AWS expenses regularly and tag all resources
○ Check your bill (Cost Explorer > filter by tags).

● Piazza Guidelines
○ Please tag your questions appropriately
○ Search for an existing answer first

● Provide clean, modular and well documented code
○ Large penalties for not doing so.

○ Double check that your code is submitted!! (verify by
downloading it from TPZ from the submissions page)

● Utilize Office Hours
○ We are here to help (but not to give solutions)

● Use the team AWS account and tag the 15619Project

resources carefully

Project 4.1 FAQ
• End-to-End Application using MapReduce,

H-Base and web frontend
• Text Corpus -> NGrams -> Language Model
• Web app querying HBase
• Extending ideas for Character-grams

• FAQs
• Unable to load data into HBase from Reducer,

MapReduce program hangs randomly.

• Ans: Use the correct jars, build on the instance
with the right dependencies, try on small
datasets first

• Secret to MapReduce: Start small

Module to Read
• UNIT 5: Distributed Programming and Analytics

Engines for the Cloud
– Module 18: Introduction to Distributed Programming

for the Cloud
– Module 19: Distributed Analytics Engines for the

Cloud: MapReduce
– Module 20: Distributed Analytics Engines for the

Cloud: Spark
– Module 21: Distributed Analytics Engines for the

Cloud: GraphLab

Project 4

• Project 4.1
– MapReduce Programming Using YARN

• Project 4.2

– Iterative Programming Using Apache Spark

• Project 4.3

– Stream Processing using Kafka/Samza

Typical MapReduce Job

• Simplistic view of a MapReduce job

• You simply write code for the
– Mapper

– Reducer

• Inputs are read from disk and outputs are written to disk

– Intermediate data is spilled to local disk

Input

HDFSMapper ReducerHDFS

Output

Iterative MapReduce Jobs

• Some applications require iterative processing
• Eg: Machine Learning, etc.

• MapReduce: Data is always spilled to disk

– Added overhead for each iteration

– Can we keep data in memory? Across Iterations?

– How do you manage this?

Input

HDFSMapper ReducerHDFS

Output

Prepare data for the next iteration

Resilient Distributed Datasets (RDDs)

• RDDs are
– can be in-memory or on disk
– read-only objects
– partitioned across the cluster

•partitioned across machines based on a range
or the hash of a key in each record

Operations on RDDs

• Loading
>>>input_RDD = sc.textFile("text.file")

• Transformation
– Apply an operation and derive a new RDD
>>>transform_RDD = input_RDD.filter(lambda x: "abcd" in x)

• Action
– Computations on an RDD that return a single object
>>>print "Number of “abcd”:" + transform_RDD.count()

RDDs and Fault Tolerance

• Actions create new RDDs
• Instead of replication, recreate RDDs on failure
• Use RDD lineage

– RDDs store the transformations required to bring
them to current state

– Provides a form of resilience even though they
can be in-memory

The Spark Framework

Spark Ecosystem

• Spark SQL
– Allows running of SQL-like queries against RDDs

• Spark Streaming
– Run spark jobs against streaming data

• MLlib
– Machine learning library

• GraphX
– Graph-parallel framework

https://spark.apache.org/sql/
https://spark.apache.org/sql/
https://spark.apache.org/streaming/
https://spark.apache.org/streaming/
https://spark.apache.org/mllib/
https://spark.apache.org/mllib/
https://spark.apache.org/graphx/
https://spark.apache.org/graphx/

Project 4.2

• Use Spark to analyze the
Twitter social graph
• Number of nodes and

edges
• Number of followers for

each user
• Run PageRank to compute

the influence of users

Project 4.2 - Overview

ClientFront EndBack End

Twitter Graph

3. PageRank

• Use the Twitter social graph dataset
• Analyze the social graph with Spark
• Find the influence of users and rank them with

PageRank

2. # followers

Project 4.2 - Three Parts

1. Enumerate the Twitter Social Graph
– Find the number of nodes and edges
– Edges in the graph are directed. (u, v) and

(v, u) should be counted as two edges

2. Find the number of followers for each user

3. Rank each user by influence
– Run PageRank with 10 iterations
– Need to deal with dangling nodes

PageRank

• Give pages ranks (scores) based on links to them
• A page that has:

– Links from many pages ⇒ high rank
– Link from a high-ranking page ⇒ high rank

"PageRank-hi-res". Licensed under CC BY-SA 2.5 via Wikimedia Commons -
http://commons.wikimedia.org/wiki/File:PageRank-hi-res.png#/media/File:PageRank-hi-res.png

PageRank

● For each Page i in dataset, Rank of i can be computed:

● Iterate for 10 iterations
● Formula to be implemented for 4.2 is slightly more

complex. Read carefully!!!

PageRank in Spark (Scala)
(Note: This is a simpler version of PageRank, than P4.2)

val links = spark.textFile(...).map(...).persist()
var ranks = // RDD of (URL, rank) pairs
for (i <- 1 to ITERATIONS)
{

// Build an RDD of (targetURL, float) pairs
// with the contributions sent by each page
val contribs = links.join(ranks).flatMap
{

(url, (links, rank)) =>
links.map(dest => (dest, rank/links.size))

}

// Sum contributions by URL and get new ranks
ranks = contribs.reduceByKey((x,y) => x+y)

.mapValues(sum => a/N + (1-a)*sum)
}

Launching a Spark Cluster

• Use the Spark-EC2 scripts
• Command line options to specify instance

types and spot pricing
• Spark is an in-memory system

– test with a single instance first
• Develop and test your scripts on a portion of

the dataset before launching a cluster

Spark Shell

• Like the python shell

• Run commands interactively

• Demo in second half of recitation

• On the master, execute (from /root)
– ./spark/bin/spark-shell
– ./spark/bin/pyspark

Grading

● Submit your work in the submitter instance
● Don’t forget to submit your code
● For Task 1

○ Put your answers in the answer file
○ Run submitter to upload your answer

● For Task 2
○ Load your result into the follower table in database
○ Run webserver and use submitter to submit

● For Task 3
○ Load your result into the pagerank table in database
○ Run webserver and use submitter to submit

Upcoming Deadlines

● Quiz 12 : Unit 5 - Modules 20 & 21

○ Open: 12/04/2015 12:01 AM Pittsburgh

○ Due: 12/04/2015 11:59 PM Pittsburgh

● Project 4.2 : Iterative Programming with Spark

○ Due: 12/06/2015 11:59 PM Pittsburgh

● 15619Project : Phase 3

○ Live-test due: 12/02/2015 4:59 PM Pittsburgh

○ Code and report due: 12/03/2015 11:59 PM Pittsburgh

Busy Week Coming Up!

Wednesday Thursday Friday Sunday

Wednesday 12/2/2015
18:00:01 EST
● Phase 3 Live Test

Thursday 12/3/2015
23:59:59 EST
● Phase 3

Code & Report Due

Friday 12/4/2015
23:59:59 EST
● Quiz 12

Sunday 12/6/2015
23:59:59 EST
● P4.2 Due

Don’t forget the deadlines!

Project 4.2

• Demo

Questions?

tWITTER DATA ANALYTICS:
15619 PROJECT

15619Project Agenda

● Query 5 Discussion

● Query 6 Discussion

● Upcoming Deadlines

● Phase 3 Live Test

Query 5: Tweet Counter
● Description: The query asks for the total number of

tweets sent by all users given a range of userids.

● Request: We send you two user ids
GET /q5?userid_min=u_id&userid_max=u_id

● Response: Your web service needs to return the
number of tweets sent within the range of user ids
where user ids are inclusive

● Warning: Ignore duplicate tweet IDs (Count once)

Query 5: Tweet Counter
GET /q5?userid_min=2&userid_max=10

User ID Tweet ID

1 101

1 102

2 103

2 104

3 105

3 105

4 106

7 107

10 108

Response Format:
TEAMID,TEAM_AWS_ACCOUNT_IDs\n

Count\n

Guess the Response:
TEAMID,TEAM_AWS_ACCOUNT_IDs\n

6\n

Query 5: Suggestions & Clarifications

● No filtering based on time (as in Q2)

● Remove duplicate tweets

● Q5 input user id’s are inclusive

● Ignore malformed user id

● Explore techniques to flatten data (Reduce

query latency)

Query 6: Tweet Tagger

Finally, we’re dealing with writes!!!

● Append a random string to the end of an existing tweet

● Each tweet can have only a single appended tag
at a time (last writer wins)

● ETL similar to /q2 (with no date limits)

● When we read in Q6, we expect to see the censored

tweet text, with an uncensored appended tag (if any)

● Correctness test strictest for reads

Query 6: Tweet Tagger

Load Generator Twitter Web
Service

Read K1

Write K1 V1

Read K2

Write K2 V2

● Problem: Request Reordering

Query 6: Tweet Tagger

Load Generator Twitter Web
Service

Read K1

Write K1 V1

Read K2

Write K2 V2

Network delay causes a read to happen before a write, which
was not expected by the grader

Query 6: Tweet Tagger

Load Generator Twitter Web
Service

Read K1

Write K1 V1

Read K2

Write K2 V2

We have a problem with the request reordering

Order of Execution

● The old LG scheme cannot
guarantee that you will
receive and apply operations
in the order that we expect

Query 6: Tweet Tagger

Load Generator Twitter Web
Service

Solution: Sequence Numbers

Read K1 Seq #2

Write K1 V1 Seq #1

Read K2 Seq #4

Write K2 V2 Seq #3

Read K1 Seq #2

Write K1 V1 Seq #1

Read K2 Seq #4

Write K2 V2 Seq #3

Query 6: Tweet Tagger

Load Generator Twitter Web
Service

Solution: Sequence Numbers

Write K1 V1 Seq #1

Read K1 Seq #2

Write K1 V1 Seq #1

Read K2 Seq #4

Write K2 V2 Seq #3

Current Expected Seq No #1

Order of Execution

Blocking Queue

Next operation● All reads and appends have a
sequence number (seq = 1 to 5)

● All traffic is divided into transactions of
length = 5

Transaction T1

Query 6: Tweet Tagger

Read K1 Seq #2 (opt=r)

Write K1 V1 Seq #1 (opt=a)

Read K2 Seq #4 (opt=r)

Write K2 V2 Seq #3 (opt=a)

Transaction

Start (opt = s)

Read K3 Seq #5 (opt=r)

End (opt = e)

Transaction T2

Read K4 Seq #2 (opt=r)

Write K4 V4 Seq #1 (opt=a)

Read K5 Seq #4 (opt=r)

Write K5 V5 Seq #3 (opt=a)

Start (opt = s)

Read K6 Seq #5 (opt=r)

End (opt = e)

Parallel Processing

Sequential
Processing

Query 6: Tweet Tagger

● Designing a replicated backend
○ Ideally, ensure that a write updates all replicas

before reading from any replica
○ Faster: Only read from the most “recently updated

replica”
○ Or: Update all replicas asynchronously (for ideas,

see chain replication, other schemes in Ceph)
○ Tradeoffs: Accuracy v/s Performance

Query 6: Tweet Tagger

● Designing a sharded backend
○ Split data between nodes based on keys
○ Benefit: More space/memory efficient

● ELB
○ If you are using ELB:

■ Your front-end may need to be node-aware
■ Extra hop?

○ If not using ELB:
■ Consider nginx or HAProxy or other LBs

Query 6: Tweet Tagger

Consider Tweet ID: 448988310417850370

@Maria_LeonPL chulada de mujeres....sensacional paisana...

estaremos atento de su intervención... besos tu caballero de la

noche¡¡

Query 6: Tweet Tagger
● Step 1 : Start transaction (opt=s)

/q6?opt=s&tid=3000001

TEAMID,TEAM_AWS_ACCOUNT_ID\n

0\n

● Hint:
○ All transactions operate on an independent set of

tweet IDs

Query 6: Tweet Tagger
● Step 2 : Exactly 5 Appends (opt=a) or Reads (opt=r)

/q6?

tid=3000001&seq=1&opt=a&tweetid=4489883104178503

70&tag=ILOVE15619!12

TEAMID,TEAM_AWS_ACCOUNT_ID\n

ILOVE15619!12\n

● Hint:
○ When opt=a, return the tag to the user
○ Scope for optimization? Yes, but be careful!!!

Query 6: Tweet Tagger
● Step 2 : Exactly 5 Appends (opt=a) or Reads (opt=r)

/q6?

tid=3000001&seq=2&opt=r&tweetid=4489883104178503

70

TEAMID,TEAM_AWS_ACCOUNT_ID\n

@Maria_LeonPL chulada de mujeres....sensacional

paisana...estaremos atento de su intervención...

besos tu caballero de la noche¡¡ILOVE15619!12\n

Query 6: Tweet Tagger

● Step 2 : Exactly 5 Appends (opt=a) or Reads (opt=r)

/q6?
tid=3000001&seq=4&opt=a&tweetid=4489883104178503
71&tag=ILOVE15619!13

TEAMID,TEAM_AWS_ACCOUNT_ID\n

ILOVE15619!13\n

● Note:
○ If you receive an operation out of order, you need to

ensure that the previous operation is performed first
○ Multiple tweet IDs may be operated on in a single

transaction

Query 6: Tweet Tagger

● Step 2 : Exactly 5 Appends (opt=a) or Reads (opt=r)

/q6?
tid=3000001&seq=3&opt=a&tweetid=4489883104178503
71&tag=ILOVE15619!14

TEAMID,TEAM_AWS_ACCOUNT_ID\n

ILOVE15619!14\n

● Note:
○ If you receive an operation out of order, you need to

ensure that the previous operation is performed first
○ Multiple tweet IDs may be operated on in a single

transaction

Query 6: Tweet Tagger
● Step 2 : Exactly 5 Appends (opt=a) or Reads (opt=r)

/q6?

tid=3000001&seq=5&opt=r&tweetid=4489883104178503

70

TEAMID,TEAM_AWS_ACCOUNT_ID\n

@Maria_LeonPL chulada de mujeres....sensacional

paisana...estaremos atento de su intervención...

besos tu caballero de la noche¡¡ILOVE15619!12\n

Query 6: Tweet Tagger
● Step 3 : End Transaction (opt=e) or Reads (opt=r)

/q6?tid=3000001&opt=e

TEAMID,TEAM_AWS_ACCOUNT_ID\n

0\n

● Note:

○ Multiple simultaneous, overlapping transactions

○ Ensure that all 5 sequence numbers are handled

Query 6: Suggestions & Clarifications
● Censorship of tweet text before append

● No time filtering

● Tag is not required to be censored

● The appended tag is short (max 14 character)

● Transaction sequence is restricted between 1 to 5

● You can only submit 1 DNS for the live test

● Multiple appends on same tweet

○ Always return latest tag

○ If tag already appended in previous test, replace it with new

tag

● Q6 is not in mixed queries

15619 Project Phase 3 Deadlines

Thursday
10/15/2015
00:00:01 ET

Thursday
11/12/2015
23:59:59 ET

15619 Project
Phase 1 & 2 (Live
Test 1 and Code +

Report
Submissions)

Wednesday
12/02/2015
21:59:59 ET

Thursday
12/03/2015
23:59:59 ET

15619 Project
Phase 3
Q5 & Q6

Development

15619 Project
Phase 3

Code & Report
Due

15619 Project
Phase 3

Live Test

Wednesday
12/02/2015
17:59:59 ET

WE ARE HERE

What’s due next?

● Phase 3 Deadline

○ Submission of one URL by 16:59 ET

(Pittsburgh) Wed 12/2
■ Live Test from 6 PM to midnight ET

○ Choose any one (or both) databases

○ Can only use m1.large or cheaper t1, t2, m1, m3 instances

○ Fix Q1, Q2, Q3, Q4 if your Phase 2 did not go well

○ New queries Q5 and Q6.

○ Phase 3 counts for 60% of the 15619Project grade

Phase 3 Report [VERY IMPORTANT]

● Start early

● Document your steps

● Identify and isolate the performance impact of
each change you make

● Document your ideas and experiments

MAKE A QUANTITATIVE, DATA-DRIVEN REPORT

15619Project Phase 3 Live Test

● 30 minutes warm-up (Q1 only)
● 3 hours Q1 - Q6
● 30 minutes mix-Q1+Q2+Q3+Q4+Q5
● Preparing for the live test

○ Choose a database based on your observations
from previous phases and all six queries

○ Caching known requests will not work(unless you
are smart)

○ Need to have all Qs running at the same time
○ Avoid bottlenecks in mixed queries

