
15-319 / 15-619
Cloud Computing

Recitation 2

September 3 & 5, 2019

Accessing the Course

● Open Learning Initiative (OLI) Course
○ Access via canvas.cmu.edu

● http://theproject.zone (access through canvas)

○ choose CMU as the identity provider
○ AWS Account Setup (AWS, Azure, GCP)
○ Update your TPZ profile with AWS, Azure & GCP info
○ Complete the Primers on AWS, Azure and GCP

● Piazza

http://canvas.cmu.edu
http://theproject.zone/
https://theproject.zone/profile
https://piazza.com/class/jzlpem1a2lb747

Amazon Web Services (AWS) Account

● === ONLY IF YOU HAVEN'T DONE SO ALREADY ===
● Log on to https://theproject.zone through Canvas and make

sure you follow the instructions in the Account Setup Primer
● Use an AWS standard account instead of an AWS Educate

starter account
● Wait to receive Consolidated Billing Request email from

Amazon
○ Manual process, waiting time varies

● When you receive the linking email, click the link to verify
the linked billing
○ Many students have not clicked on the link yet!

■ Check your SPAM folder
○ You won’t be able to complete the projects.

https://theproject.zone/

Azure Account

● === ONLY IF YOU HAVEN'T DONE SO ALREADY ===
● Do not use your @andrew.cmu.edu or other CMU

issued email address.
● Update your TPZ Profile

Google Cloud Platform (GCP) Account

● === ONLY IF YOU HAVEN'T DONE SO ALREADY ===
● Please contact us if you have trouble creating your

GCP account.
● Follow the instructions in the primer.
● Receive a $50 coupon on https://theproject.zone
● Redeem the coupon as per instructions on

https://theproject.zone
● If you cannot view your GCP coupon in your TPZ

profile (https://theproject.zone/profile) post on
Piazza privately and share your Andrew ID so we
can make that available for you.

https://theproject.zone/
https://theproject.zone/
https://theproject.zone/profile

Piazza
● Suggestions for using Piazza

○ Discussion forum, contribute questions and answers
○ Read the Piazza Post Guidelines (@6) before asking

● When you have a (project-specific) problem, follow the order
below!
○ Try to solve the problem by yourself (Search, Stack Overflow)
○ Read Piazza questions & answers carefully to avoid duplicates

■ Visit TA OHs: TA office hours are posted on Piazza and
Google calendar

■ Create a piazza post
● Please note:

○ Show the effort you have done first
○ Practice how to communicate effectively in a technical setting
○ The key to effective communication is to provide the fullest

context. (AndrewId, AWS ID, error message in text, etc.)
○ Don’t ask a public question about a quiz question
○ Try to ask a public question if possible

https://piazza.com/class/jzlpem1a2lb747?cid=6
http://goo.gl/DwR9re

Reflecting on Last Week

● AWS, Azure and GCP accounts
● Cloud resources

○ AWS EC2, S3, CloudWatch
○ Azure Compute, Azure Storage
○ GCP Compute, GCP Storage

● Interface
○ Web console, CLI, SDK

● In P0, run a web server, test to access the server over a browser
○ Launch, connect to and terminate VMs
○ Install & run software on a VM
○ Vertical scaling

● Basic SSH skills
● Jupyter Notebook primer
● Infrastructure as Code (Terraform) primer

○ Read it if you have not done so
○ Required by many projects including P1.1

Skill Building in This Course

● Important skill to develop
○ willingness and courage to

■ recognize, explore, experiment and solve
problems
on your own with suitable tools

■ ask technical question properly instead of
simply asking for solutions

■ learn the basics of new tools quickly and make
use of them in a limited time (e.g. 1 week)

Make Sure to Complete the Primers!

● Complete the Primers
○ Understanding AWS/Azure/GCP

■ provisioning resources, connecting to VMs, playing
around, …

○ Linux warmup
○ Git
○ Maven and Checkstyle
○ Jupyter Notebook

■ Command Line
■ Data analysis in Bash
■ Data analysis in Python (pandas)

○ Infrastructure as Code (Terraform)

Programming Experience Expected

● Strong proficiency in at least one of the following, with some

fair comprehension of the others:

○ Java 8

○ Python 3

○ Bash

● Java and Python are required to complete parts of Projects.

● Use the time now to brush up

● Please read Maven primer!

● Do not fear bash/python scripting, it will make your life

easier!

Completing Projects in this Course

● Provision AWS, Azure or GCP Resources
○ Use the Cloud VM Images we provide for the project

○ Tag all instances!

● Monitor your cost
○ Calculate costs before you provision!

● Complete tasks for each project module
○ Each project module has several sections unlocked by AssessMe

● Submit your work
○ Pledge of integrity

○ Results in scoreboard

● Terminate all resources when you have verified your score

and kept a copy of your work (e.g., git private repo)

Tagging
● Tag *all* tag-able resources on AWS

○ Before you make a resource request, read the
docs/specifications to find out if tagging is supported

○ We will specify which resources are required to be tagged
in each project

○ Apply the tags during resource provisioning
○ We need tags to track usage, a grade penalty will be applied

automatically if you do not tag!
○ Spot instances

■ Tags of spot request do not propagate to the VMs!
■ AWS EC2 Fleet is the remedy

● Tagging Format
○ Key: Project
○ Value: 0, 1.1, 1.2….etc.

Budgets and Penalties

● No proper tags ➔ 10% grade penalty
● Provision resources in regions other than us-east-1 ➔

10% grade penalty
● Budget

○ For P1.1, each student’s budget is $1
○ Exceeding Budget ➔ 10% project penalty
○ Exceeding Budget x 2 ➔ 100% project penalty (no score)
○ You can see Cost and Penalties in TPZ.

● No exceptions.

● We will enforce these penalties
automatically starting from Project 1.1

How to Work on a Budget

● P1.1 Budget → $1

● You are only allowed to use t3.micro
○ $0.0104 per hour (on demand)

● Other costs to consider:
○ EBS is $0.1 per GB/month

○ Instances using our AMI gets 30 GB EBS by default.

○ Data transfer costs (minimal)

Total time:

$1 / ($0.0104 + 30 * $0.1 / 30 / 24) = 68.65 hours

● Note: Free Tier does not apply to linked accounts!

Academic Integrity Violation

● Cheating ➔ the lowest penalty is a 200% penalty &

potential dismissal
○ Other students, previous students, Internet (e.g.

Stackoverflow)

○ Do not work on code together

○ This is about you struggling with something and learning

○ Penalty for cheating is SEVERE – don’t do it!

○ Ask us if you are unsure

Compromised Accounts

● If you put any of your credentials in files on
○ Github, Dropbox, Google Drive, Box, etc.

○ You are vulnerable to getting your account

compromised.

○ Going over 2x the project budget ⇒ 100% penalty!

● People are scanning publicly available files for

cloud credentials.
○ They compromise your account and launch resources

in other regions.

DO NOT SAVE YOUR CLOUD CREDENTIALS IN FILES!

Deadlines!

● Hard Deadlines
○ No late days, no extensions

○ Start early!

○ Plan your activities, interviews and other

commitments around the deadlines.

○ No exceptions!

● Project modules are due on Sundays at 23:59 ET

● Quizzes are typically due on Fridays
○ There is one exception this semester the Thursday

before Spring Break

Deadlines!

● Project deadlines
○ On TheProject.Zone

● Quiz deadlines
○ On OLI

Quiz 1 Preparation
● Tests your understanding in Modules 1 and 2

○ Cloud computing fundamentals, service models,
economics, SLAs, security

○ Use the activities in each page for practice.
○ You will be tested on you ability to perform the

stated learning objectives on OLI:

Quiz 1 Logistics

● Quiz 1 will be open for 24 hours, Friday, Sep 6
○ Quiz 1 becomes available on Sep 6, 00:01 AM ET.

○ Deadline for submission is Sep 6, 11:59 PM ET.

○ Once open, you have 120 min to complete the quiz.

○ You may not start the quiz after the deadline has passed.

○ Every 15 minutes you will be prompted to save.

○ Maintain your own timer from when you start the quiz.

○ Click submit before deadline passes. No Exceptions!

✗ ✓ ✓ ✓ ✓ ✗

24 Hours (Quiz Window)

Quiz Duration (2 Hours)

Quiz Open Quiz Deadline

Submit Before Deadline

● When you start the Quiz, you cannot stop the clock.
○ You have 120 minutes to click on submit.

○ You have to keep track of the time yourself.

○ If you don’t click on submit you will not receive a grade.

YOU MUST SUBMIT
WITHIN 120 MINUTES

AND
BEFORE THE DEADLINE

Do not collaborate on quizzes

● In previous semesters, there is always a significant

minority who decided to collaborate on quizzes,

especially at the semester start and when the team

project began.

● We have to emphasize again that unauthorized

collaboration on quizzes is also AIV.

Project 1 Motivation: Big Data

● What is Big Data?
○ It is high volume, high velocity, and/or high variety

information assets.
○ There is a lot of value in the analysis of big data for

organizations

Use Cases: Big Data Analysis

● Online retailers are analyzing consumer spending
habits to learn trends and offer personalized
recommendations and offers to individual
customers.

● Companies such as Time Warner, Comcast etc. are
using big data to track media consumption habits of
their subscribers and trends to provide value-added
information to advertisers and customers.

Trending Topics are Everywhere!

Why Trending Topics?

● Identify trends and viral content
● Maximize advertisement placement opportunities
● Search Engine Optimization (SEO)
● And more....

Project 1

● Identify Trending Topics on Wikipedia

○ Use the hourly pageviews dataset.

● Project 1.1: (This Week)

○ Find trends from a single hour of data.

● Project 1.2: (Next Week)

○ Find trends with the 30-day dataset using

MapReduce.

■ Data from March 8 to April 6 in 2018

The Dataset

● Data set
○ Wikimedia page views dataset
○ One File Per Hour

● Format:
<domain code> <page title> <number of accesses> <total data returned>

<Language>.<ProjectName>
en = English Wikipedia (Desktop)
en.b = English Wikibooks
fr.v = French Wikiversity

https://dumps.wikimedia.org/other/pageviews/

Project 1.1 Tasks
● Task 1: Sequential data pre-processing

○ Implement sequential data filter in Java

○ Practice test-driven development (TDD) with JUnit

○ Achieve 100% code coverage for the DataFilter class

● Task 2: Data analysis

○ Search a file with grep

○ Filter or process data with awk

○ Data Analysis with Jupyter Notebook and Pandas

library

○ Identify the limitations of the sequential programming

Data Pre-processing is Important
● Impossible: Raw Dataset →Data analysis
● Raw Dataset →Data pre-processing →Data analysis

raw data: after data pre-processing

reference: Nishant Neeraj

https://www.quora.com/profile/Nishant-Neeraj-1

Task 1: Data Pre-processing

● We are only interested in English Wikipedia desktop/mobile

pages (<domain code>: en, en.m)

● This dataset is raw, real-world

○ Never assume that the dataset is perfectly clean and

well formed

● Use the filtering rules specified in the writeup

● If there are records from both desktop and mobile sites for

the same page title, sum the accesses into one record

● Sort the pages by number of pageviews, break ties by

ascending lexicographical order

● Output: <page title> <number of accesses>

Bad Coding Practices!
public static void main(final String[] args) {

read the records from the input

for record in records:

if it violates the rule A: (20 lines)

continue

if it violates the rule B: (20 lines)

continue

… 5 other rules (100 lines)

put record into a map <title, pageview>

 sort the map

 print output

 }

Good Coding Practice:
Test-Driven Development (TDD)

What is TDD?

● divide the problem into a series of small steps
● start by writing test cases
● then refactor the code to pass the test
● and repeat

○ Test case ⇒ code ⇒ pass ⇒ another test case ⇒ ...

TDD emphasizes writing unit tests ahead of writing the code.

TDD lets you treat failures as a norm instead of an exception.

Test-Driven Development (TDD)

Why TDD?

● Helps to structure your code in a way that easily
facilitates testing

● Separates the concerns and makes your code clean,
easy-to-read and robust

● Ensures that your changes won’t break existing
functionality

● Achieves safer refactoring, increasing returns and
effective collaborations

● TDD is an industry best practice!!!

TDD w/ JUnit 5: Start by signature

public class Filter {

 public static boolean containsCloud(final String record) {

 // it is okay to start with an incorrect solution

 // the method signature is what matters

 return false;

 }

}

TDD w/ JUnit 5: Create test cases
import org.junit.jupiter.api.Test;

import static org.junit.jupiter.api.Assertions.*;

class FilterTest {

 @Test

 void testContainsCloud() {

 // positive

 assertTrue(Filter.containsCloud("cloud computing"));

 // negative

 assertFalse(Filter.containsCloud("mapreduce"));

 }

}

TDD w/ JUnit 5: Run the test
[INFO] Running FilterTest

[ERROR] Tests run: 1, Failures: 1, Errors: 0, Skipped: 0, Time elapsed: 0.021 s <<<

FAILURE! - in FilterTest

[ERROR] testContainsCloud Time elapsed: 0.017 s <<< FAILURE!

org.opentest4j.AssertionFailedError: expected: <true> but was: <false>

 at FilterTest.testContainsCloud(FilterTest.java:9)

[INFO] Results:

[ERROR] Failures:

[ERROR] FilterTest.testContainsCloud:9 expected: <true> but was: <false>

[ERROR] Tests run: 1, Failures: 1, Errors: 0, Skipped: 0

[INFO]

[INFO] --

[INFO] BUILD FAILURE

[INFO] --

TDD w/ JUnit 5: Implement

public class Filter {

 public static boolean containsCloud(final String record) {

 return record.contains("cloud");

 }

}

TDD w/ JUnit 5: Rerun the test

[INFO] T E S T S

[INFO] ---

[INFO] Running FilterTest

[INFO] Tests run: 1, Failures: 0, Errors: 0, Skipped: 0, Time elapsed: 0.012

s - in FilterTest

[INFO]

[INFO] Results:

[INFO]

[INFO] Tests run: 1, Failures: 0, Errors: 0, Skipped: 0

[INFO]

[INFO]

--

[INFO] BUILD SUCCESS

[INFO]

--

Java Code Coverage Tool (JaCoCo)

Jacoco analyzes Java byte code and maps the collected
information back to source code to visualize the code
coverage at line-level granularity.

● Instructions (C0 Coverage)
● Branches (C1 Coverage)

Your JaCoCo Task

Your task is to create the test cases to achieve 100%
instructions and branches coverage.

P1.1 Task 1: Data Pre-processing
Code Template

● In this task, we provide a code template:
○ Merges both desktop and mobile sites for the same page title if any
○ Sorts the output in descending numerical order of the number of

accesses and break ties by ascending lexicographical order
○ Outputs the results into a file named as exactly “output”

● It also defines a set of filter methods that you need to implement
● We provide a set of test cases for the first several filter methods
● Your task is to:

○ add the test cases for the rest of the required methods
■ achieve 100% code coverage

○ implement the methods and pass the test
○ make the program encoding aware

Develop Robust Code that Can Execute
Correctly on Multiple Environments

● “It works on my laptop, why does not it work when it is
deployed to production?”

● “My submitted code does not produce the same results as the
one on my EC2 instance...”

● If your code behaves well in your development environment, it
does not guarantee that your code will work perfectly in other
environments.

● If you run into this, read the writeup carefully, check and adopt
best practices before you create posts on Piazza.

● Be cautious about implicit reliance on your environment
○ Locale
○ Encoding-aware I/O
○ Newline(EOL)
○ Versions & Compatibility
○ Absolute/Relative Paths

!
Error

Develop Robust Code that Can Execute
Correctly on Multiple Environments(cont.)

● Example of how locale will change default behavior

LC_ALL=en_US.UTF-8 LC_ALL=C

sort aAbB ABab

encoding ьмопяёя ??????????????

...

Develop Robust Code that Can Execute
Correctly on Multiple Environments(cont.)

● newlines, Windows versus Linux
○ \n
○ \r\n

● Versions & compatibility
○ python2 python3 over python
○ pip2 pip3 over pip

● Absolute versus relative paths
○ use relative ones!

Do I have a remedy to this endless checklist? Is there a solution to
guarantee that the software will always run in the same way,
regardless of its environment? The answer is yes.

Progressively Solve Data Science Problems
with Jupyter Notebook

Why Jupyter Notebook?

● Interactive Computing
○ "save" your progress at the latest checkpoint

● Persisted Output and Reproducible Analysis
○ write data analysis reports and share with others

Your Data Science Task
with Jupyter Notebook

• Finish the Jupyter Notebook primer
• Visit the Azure Notebooks library 15-319/15-619:

Cloud Computing Course

https://notebooks.azure.com/CloudComputingCourse/libraries/cloud-computing-course
https://notebooks.azure.com/CloudComputingCourse/libraries/cloud-computing-course

Project 1.1 Workflow
● Launch EC2 instance with a special AMI

○ Experiment using Terraform with prepared worked examples

● Download the required dataset
● Implement the Data Filter program

○ Achieve 100% code coverage
● Complete Data Analysis Task

○ Answer the awk/grep questions inside runner.sh
○ Answer the Python questions inside data_analysis.ipynb
○ Answer q10 which will be manual graded

● Submit your code for grading
○ Complete the references file in JSON format
○ Execute submitter to submit your code

● Finish Project Reflection (graded) before the deadline
● Finish Project Reflection Feedback for 3 students

○ Within 7 days after the project deadline

Grading of Your Projects

● Code submissions are auto-graded
● Scores will be made available on http://theproject.zone

○ it may take several minutes for your score to show
○ the submissions table is updated with every submission

● We will grade all the code (both auto and manually graded)
● Hard to read code of poor quality will lead to a loss of points

during manual grading.
● Lack of comments, especially in complicated code, will lead to a

loss of points during manual grading.
● Poor indentation will lead to a loss of points during manual

grading
○ Preface each function with a header that describes what it does

■ Use descriptive variable and function names
■ Use Checkstyle, PEP8, or other tools to check your coding style

● The idea is also NOT to comment every line of code

http://theproject.zone/

Reminder: Deadlines

● This Friday at 23:59 ET
○ Quiz 1

● This Sunday at 23:59 ET
○ Project 1.1 (including Project Reflection)

● Next Sunday at 23:59 ET
○ Project 1.1 Reflection Feedback

● ASAP, at the latest 9/9/2019 at 23:59 ET
○ Academic Integrity Course Quiz

