

Important Notice

● DON’T EXPOSE YOUR AWS CREDENTIALS!
○ Github
○ Bitbucket
○ Anywhere public…

● DON’T EXPOSE YOUR GCP CREDENTIALS!
● DON’T EXPOSE YOUR Azure CREDENTIALS!

○ ApplicationId, ApplicationKey
○ StorageAccountKey, EndpointUrl

2

Reflection

● Conceptual content on OLI
○ Modules 1, 2, Quiz 1

● Project theme - Sequential Analysis
○ Wiki Data Processing Task

■ Sequential Analysis of 100s MB of wikipedia data, adopt Test
Driven Development (TDD)

○ Data Analytics Task
■ Write analytics code on Jupyter Notebook using the pandas

library
○ Identify the limitations of sequential programs

3

This Week

● Quiz 2 (OLI Modules 3 & 4)

○ Due on Friday, Sep 13, 2019, 11:59PM ET

● Project 1.2

○ Due on Sunday, Sep 15, 2019, 11:59PM ET

● Project 1.1 Reflection Feedback

○ Due on Sunday, Sep 15 2019, 11:59PM ET

4

Guideline for Project Reflection

●
○

■

○
■
■

● Definition & Origins
○ Infrastructure dedicated to housing computer and

networking equipment, including power, cooling, and
networking.

● Growth
○ Size (No. of racks and cabinets)
○ Density

● Efficiency
○ Servers
○ Server Components
○ Power
○ Cooling

●
○

■
■

○
■
■
■

○
■

●
○
○
○
○

●
○

●
○

●
○

■

● Your data-preprocessing program might work well with an hourly
dataset, but will fall short to process a large dataset
○ Might take too long
○ Might run out of resources

● Methods to process a large dataset
○ Sequential program might not scale ⇒ a parallel solution
○ A single EC2 machine might not have adequate memory

and computational capabilities either ⇒ a large distributed
cluster

● Challenges to overcome for your program to work in a
distributed system
○ How would you partition and distribute the tasks and data?
○ How would the nodes communicate and collaborate?
○ What if a node fails?

● The MapReduce programming model simplifies parallel
processing by abstracting away the complexities
involved in working with distributed systems
○ Data partition and distribution
○ Management of communication across nodes
○ Deal with unreliable hardware and software

● Handling failure gracefully
○ Failure of a single machine will not cause the failure of

the whole job
○ A task failure on one node can be resolved by

rerunning the task on other nodes
● Reduce the communication cost

○ Data is stored in a distributed manner with replication
○ Exploiting data locality

● Easy to program
○ The minimal code you need to implement is only the

map and reduce functions

● map(k1,v1) --> list(k2,v2)

○ k1,v1

○

list(k2,v2)

●
○ map(k1,v1) --> list(k2,v2)

●
●

k2,v2

●
●

● ⇒ ⇒

●
○
○
○
○

●
○
○
○
○

k1,v1 pairs:

(pos, “cat cow”)
(pos, “duck”)
(pos, “dog cat”)

k2,v2 pairs:

(cat, 1)
(cow, 1)
(duck, 1)
(dog, 1)
(cat, 1)

k1,v1 pairs:

(pos, “cat”)

k2,v2 pairs:

(cat, 1)

Reducer2

Reducer1k2,v2 pairs:

(cat, 1)
(cow, 1)
(duck, 1)
(dog, 1)
(cat, 1)

(cat, 1)

(cat, 1)
(cow, 1)
(cat, 1)
(cat, 1)

ShufflePartition

(cat, list(1,1,1))

(cow, list(1))

(dog, list(1))
(duck, list(1))

(duck, 1)
(dog, 1)

Sort

reduce()

reduce()

reduce()
reduce()

● Reduce:
○ reduce(k2, list(v2)) --> list(v3)

● The reduce function is called once for each unique
key emitted from the Mapper.

● The Reducer has an iterator for all values for each
key.

● Produce the output to the directory defined by the
MapReduce job.

Reducer2

Reducer1
(cat, list(1,1,1))

(cow, list(1))

(dog, list(1))
(duck, list(1))

reduce()

reduce()

reduce()
reduce()

(cat, 3)

(cow, 1)

(dog, 1)
(duck,1)

●
○
○

21

●

●

○

●

●

●

●

●
○
○
○

●
○
○
○
○
○

// the test code is under the test source folder, similar to JUnit 5 test code

// run “mvn test” to run the test

public class WordCountMapTest extends TestCase {

 @Test
 public void testWordCountMapper() throws IOException {
 driver.withInput(new Text(""), new Text("cat cat dog"))
 .withOutput(new Text("cat"), new VIntWritable(1))
 .withOutput(new Text("cat"), new VIntWritable(1))
 .withOutput(new Text("dog"), new VIntWritable(1))
 .runTest(false);
 }
}

●
○

●
○

■
■
■

○

●

○
○

●

●

yarn logs -applicationId <applicationId>

●

●

Output:

cat (file1.txt,file2.txt)
cow (file1.txt)
dog (file1.txt,file2.txt)
duck (file1.txt)

●

●
○

○

●
●

●
○
○

●
> yarn jar project1.jar
edu.cmu.scs.cc.project1.WordCount input-path
output-path

●
●

○

○
○

○
○

●
●

○
○

●
○ /home/clouduser/Project1/runner.sh
○

●
○ references
○ submitter

●

●
●
●
●

○
○
○
○

● Quiz 2 (OLI Modules 3 & 4)

○ Due on Friday, Feb 1, 2019, 11:59PM ET

● Project 1.2

○ Due on Sunday, Feb 3, 2019, 11:59PM ET

● Project 1.1 Reflection Feedback

○ Due on Sunday, Feb 3, 2019, 11:59PM ET

35

