

● Make use of office hours
○ Make sure that you are able to clearly describe the problem and what

you have tried so far to provide the fullest context
○ Piazza Course Staff
○ Google calendar in ET
○ Google calendar in PT

● Suggestions for using Piazza
○ Read the Piazza Post Guidelines (@6) before asking questions
○ Read Piazza questions & answers carefully to avoid duplicates
○ Name the subject properly so that others can find your post
○ Try to ask a public question if possible so others can also benefit
○ Don’t ask a public question about a quiz question

Administrative - OH & Piazza

https://piazza.com/cmu/fall2019/1531915619/staff
https://calendar.google.com/calendar/embed?src=es85648jqofmrnnlnrup3nbuus%40group.calendar.google.com&ctz=America/New_York
https://calendar.google.com/calendar/embed?src=es85648jqofmrnnlnrup3nbuus%40group.calendar.google.com&ctz=America%2FLos_Angeles
https://piazza.com/class/jzlpem1a2lb747?cid=6

Administrative - Cloud spending
● Suggestion on cloud service usage

○ Monitor AWS expenses regularly
○ Always do the cost calculation before launching services
○ Keep in mind that there is a 6-hour delay for AWS to

update their logs on spending
○ Terminate your instances when not in use
○ Stopped instances have EBS costs ($0.1/GB-Month)
○ Make sure spot instances are tagged right after launch

Important Notice
● DON’T EVER EXPOSE YOUR AWS CREDENTIALS!

○ Github
○ Bitbucket
○ Anywhere public…

● DON’T EVER EXPOSE YOUR GCP CREDENTIALS!
● DON’T EVER EXPOSE YOUR Azure CREDENTIALS!

○ ApplicationId, ApplicationKey
○ StorageAccountKey, EndpointUrl

Reflection
● Conceptual content on OLI

○ Modules 3, 4, Quiz 2
● Project theme - Big data analytics

○ Inverted Index: Implemented an inverted index with MapReduce
using TDD

○ Wiki Data Parallel Processing Analysis: Use MapReduce to
process 36GB compressed / 128GB uncompressed wiki data
■ MapReduce application to filter records and calculate

aggregate daily pageviews
○ Data Analytics: Use Jupyter Notebooks and the pandas library to

analyze the data and answer questions

This Week
● Quiz 3 (OLI Modules 5 & 6)

○ Due on Friday, Sep 20th, 2019, 11:59PM ET
● Project 2.1 and Reflection

○ Due on Sunday, Sep 22nd, 2019, 11:59PM ET
● Project 1.2 Discussion

○ Due on Sunday, Sep 22nd, 2019, 11:59PM ET
● P1.2 Code Review

○ Due on Wednesday, Sep 25th, 2019, 11:59PM ET
● Primers released this week

○ P2.2 - Intro to Containers and Docker
○ P2.2 - Kubernetes and Container Orchestration
○ Code Review

Code Review

● Code review is the systematic examination of source code. The goal of code
review is to make sure that the code achieves its objective using a sound
approach and to improve it if possible.

● We want you to develop good coding habits and skills that will be useful for
your careers.

● Please read the “Code Review” primer on TheProject.Zone.

● For Project 1.2, completing code review is worth 5 points, and it will
contribute toward the total grade of Project 1.2.

●
●
●
●
●

●
●
●
●
●
●
●

Project 2
Overview

● 2.1 Scaling Virtual Machines
- Horizontal scaling in / out using AWS APIs
- Load balancing, failure detection, and cost

management on AWS
- Infrastructure as Code (Terraform)

● 2.2 Scaling with Containers
- Building your own container-based

microservices
- Docker containers
- Manage multiple Kubernetes Cluster
- Multi Cloud deployments

● 2.3 Functions as a Service
- Develop event driven cloud functions
- Deploy multiple functions to build a video

processing pipeline

Scaling and Elasticity with
● VMs
● Containers
● Functions

Project 2.1 Learning Objectives
● Design solutions and invoke cloud APIs to programmatically provision and

deprovision cloud resources based on the current load.
● Explore the usability and performance of APIs used in AWS.
● Configure and deploy an Elastic Load Balancer along with an Auto Scaling

Group on AWS.
● Develop elasticity policies to maintain the QoS of a web service that also deals

with resource failure.
● Account for cost as a constraint when provisioning cloud resources and analyze

the performance tradeoffs due to budget restrictions.
● Experience using cloud orchestration and automation tools such as Terraform.

Overview of Quality of Service (QoS),
Latency and Cloud Elasticity
● Quality of Service (QoS)
● Load patterns for web services
● Vertical scaling (Scale up/down)
● Horizontal scaling (Scale out/in)
● Load balancers
● Autoscaling groups
● Resource monitoring (CloudWatch)

Quality of Service (QoS)
Quantitatively Measure QoS

● Performance: Throughput, Latency
(Very helpful in Project 2 & Team Project)

● Availability: the probability that a system is operational at a given
time (Project 2)

● Reliability: the probability that a system will produce a correct
output up to a given time (Project 2)

QoS Matters:

• Amazon found every 100ms of latency
cost them 1% in sales (~$1B).

15

● Daily
● Weekly
● Monthly
● Yearly
● ...

The Ferenstein Wire

sapient.com

16

● Daily
● Weekly
● Monthly
● Yearly
● ...

Cloud Comes to the Rescue!
Scaling!

P0: Vertical Scaling

Load
Generator

WS

WS

WS

Small Data Center Instance
Serves 100 requests per second

Medium Data Center Instance
Serves 1000 requests per second

Large Data Center Instance
Serves 10000 requests per second

P0: Vertical Scaling Limitation

Load
Generator

WS

WS

WS

● However, one
instance will
always have
limited resources.

● Reboot/Downtime.

Horizontal Scaling

WS

WS

WS

Load
Generator

How do we distribute load?

CPU utilization, memory utilization…

Available capacity

Instance Failure?

CPU utilization, memory utilization…

Available capacity

What You Need
•
•
•

Managed group of servers

Load Balancer

Load balancer

● “Evenly” distribute the load
● A simple distribution strategy

○ Round Robin
● Health Check

● What if the Load Balancer becomes the bottleneck?
○ Elastic Load Balancer (ELB)

■ Could scale up based on load
○ Elastic, but it still takes time

■ Through the warm-up process

Load Balancer

Scaling
Manual Scaling:
● Expensive on manpower
● Over provisioning and low utilization
● Lose customers

Autoscaling:
● Automatically adjust the size based

on demand
● Flexible capacity and scaling sets
● Save cost

AWS Autoscaling
Auto Scaling on AWS

Using the AWS APIs:

● ELB
● Auto Scaling Group
● EC2
● CloudWatch
● Auto Scaling Policy

You can build a load balanced
auto-scaled web service.

Auto Scaling Group

•

•

…

Project 2.1 Scaling on AWS

● Task 1
○ AWS Horizontal Scaling

● Task 2
○ AWS Auto Scaling

● Task 3
○ AWS Auto Scaling with Terraform

fig. horizontal scaling

Load
Generator

WS

WS

WS

Project 2.1 Scaling on AWS
Task 1 - AWS Horizontal Scaling:
● Implement Horizontal Scaling in AWS.

● Write a program that launches the web
service instances and ensures that the
target total RPS is reached.

● Your program should be fully
automated: launch LG → submit
password → Launch WS → start test
→ check log → add more WS... fig. horizontal scaling

Load
Generator

WS

WS

WS

Project 2.1 Scaling on AWS

● Task 1
○ AWS Horizontal Scaling

● Task 2
○ AWS Auto Scaling

● Task 3
○ AWS Auto Scaling with Terraform

Autoscaling Group

Load
Generator

WS

WS

DWS
C

LB

•

•
•
•

Hints for Project 2.1 AWS Autoscaling
Task 2 - AWS Auto Scaling

● Do a dry run via the console to make sure you understand the workflow
completely and mimic that workflow programmatically.

● Autoscaling Test could be very expensive!
○ On-demand, charged by per second, do not blindly launch tests

● Determine if there is a less expensive means to test your solution
● Creating and deleting security groups can be tricky
● CloudWatch and monitoring in ELB is helpful for policy tuning
● Explore ways to check if your instance is ready
● Understanding the API documents could take time

Project 2.1 Scaling on AWS

● Task 1
○ AWS Horizontal Scaling

● Task 2
○ AWS Auto Scaling

● Task 3
○ AWS Auto Scaling with Terraform

Autoscaling Group

Load
Generator

WS

WS

WS

LB

Project 2.1 Scaling on AWS
Task 3 - AWS Auto Scaling with Terraform:
● Read the Infrastructure as Code primer to learn about infrastructure

automation

● Update your code to create and attach an IAM role to your Load
Generator.

● Makes sure that terraform plan generates the expected resource

fig. horizontal scaling

● At the end of each task, you need to submit your code for that task to the
load generator. We will grade your code of each task separately.

● You need to package your code into a .tar.gz file and name it after your
testId. For the Terraform task, you can you use a testID Auto Scaling task.

○ mkdir testId; tar -zcf <testId>.tar.gz <testId>

● Remove all hidden files from your submission(.git / .idea / .DS_store)
○ export COPYFILE_DISABLE=true; (Mac Users)

tar --exclude='.*' -zcf <testId>.tar.gz <testId>

Project 2.1 Code Submission

Penalties for Project 2.1
Violation Penalty of the

project grade

Spending more than $20 for this project phase on AWS -10%

Spending more than $35 for this project phase on AWS -100%

Failing to tag all your resources in either parts (EC2 instances, ELB, ASG) for this project
with the tag: key=Project, value=2.1 -10%

Submitting your AWS/Andrew credentials in your code for grading -100%

Using instances other than t3.micro (testing only) or m5.large for Horizontal scaling on
AWS -100%

Using instances other than t3.micro (testing only), m5.large for Autoscaling on AWS -100%

Submitting executables (.jar, .pyc, etc.) instead of human-readable code (.py,.java, .sh,
etc.) -100%

Penalties for Project 2.1 cont.

Violation Penalty of the
project grade

Attempting to hack/tamper the autograder in any way -200%

Cheating, plagiarism or unauthorized assistance (please refer to the university policy on
academic integrity and our syllabus) -200%

● AWS CLI (link)

● AWS Java SDK (link)

● AWS Python SDK (link)

https://aws.amazon.com/cli/
https://aws.amazon.com/sdk-for-java/
https://aws.amazon.com/sdk-for-python/

This Week
● Quiz 3 (OLI Modules 5 & 6)

○ Due on Friday, Sep 20th, 2019, 11:59PM ET
● Project 2.1 and Reflection

○ Due on Sunday, Sep 22nd, 2019, 11:59PM ET
● Project 1.2 Discussion

○ Due on Sunday, Sep 22nd, 2019, 11:59PM ET
● P1.2 Code Review

○ Due on Wednesday, Sep 25th, 2019, 11:59PM ET
● Primers released this week

○ P2.2 - Intro to Containers and Docker
○ P2.2 - Kubernetes and Container Orchestration
○ Code Review

Questions?

