
15-319 / 15-619
Cloud Computing

Recitation 5

September 24th, 2019

● Make use of office hours
○ Make sure that you are able to describe the problem

and what you have tried so far
○ Piazza Course Staff
○ Google calendar in ET

● Suggestions for using Piazza
○ Contribute questions and answers
○ Read the Piazza Post Guidelines (@guide) before

asking questions
○ Read Piazza questions & answers carefully to avoid

duplicates
○ Try to ask a public question if possible

Administrative - OH & Piazza

2

https://piazza.com/cmu/fall2019/1531915619/staff
https://calendar.google.com/calendar/embed?src=es85648jqofmrnnlnrup3nbuus%40group.calendar.google.com&ctz=America/New_York
https://piazza.com/class/jzlpem1a2lb747?cid=6

This Week

● Code Review - Project 1.2
○ Due on Wednesday, Sept 25th, 2019, 11:59PM ET

● Quiz 4 (OLI Modules 7, 8 & 9)
○ Due on Friday, Sept 27th, 2019, 11:59PM ET

● Project 2.2
○ Due on Sunday, Sept 29th, 2019, 11:59PM ET

● Project 2.1 Feedback
○ Due on Sunday, Sept 29th, 2019, 11:59PM ET

● Primers released this week
○ 6 primers!

3

This Week

● Primers released this week
○ Profiling a Cloud Service
○ Introduction to Cloud Functions
○ Python Version Management and VSCode for Azure

Functions
○ Storage I/O benchmarking
○ NoSQL Primer
○ HBase Basics

4

This Week: Conceptual Content

● OLI, UNIT 3: Cloud Infrastructure

○ Module 7: Introduction and Motivation
○ Module 8: Virtualization
○ Module 9: Resource Virtualization - CPU
○ Module 10: Resource Virtualization - Memory
○ Module 11: Resource Virtualization – I/O
○ Module 12: Case Study
○ Module 13: Storage and Network Virtualization

5

OLI Module 7 - Virtualization
Introduction and Motivation

● Why virtualization?

○ Elasticity

○ Resource sandboxing

○ Mixed OS environment

○ Resource sharing

○ Improved system utilization and reduced costs

6

OLI Module 8 - Virtualization

● What is Virtualization?
○ Involves the construction of an isomorphism that

maps a virtual guest system to a real (or physical)
host system

○ Sequence of operations e modify guest state
○ Mapping function V(Si)

● Virtual Machine Types
○ Process Virtual Machines
○ System Virtual Machines

7

OLI Module 9
Resource Virtualization - CPU

● Steps for CPU Virtualization

○ Multiplexing a physical CPU among virtual CPUs

○ Virtualizing the ISA (Instruction Set Architecture) of a

CPU

● Code Patch, Full Virtualization and Paravirtualization

● Emulation (Interpretation & Binary Translation)

● Virtual CPU

8

This Week’s Project

● P2.1: Horizontal Scaling and Autoscaling
○ Horizontal scaling in / out using AWS APIs
○ Load balancing, failure detection, and cost management on AWS
○ Infrastructure as Code (Terraform)

● P2.2: Docker Containers and Kubernetes
○ Building your own container-based microservices
○ Docker containers
○ Manage multiple Kubernetes Cluster
○ Multi Cloud deployments

● P2.3: Functions as a Service
○ Develop event driven cloud functions
○ Deploy multiple functions to build a video processing pipeline

9

Containers

● Provides OS-level virtualization.
● Provides private namespace, network

interface and IP address, etc.
● A big difference with VMs is that containers

share the host system’s kernel with other
containers.

10

Why Containers?

● Faster deployment
● Portable
● Modularity
● Consistent Environment

Build once, run anywhere

11

Docker

● Docker is an open platform for developing,
shipping, and running applications.

● Dockerfile
● Docker Image
● Docker Container

12

Dockerfile

● Dockerfile tells Docker how to build an image:
○ Base Image
○ Commands
○ Files
○ Ports
○ Startup Command

● In short, a Dockerfile is a recipe for Docker images

Let’s go through a sample Dockerfile!

13

Example Dockerfile
Debian as the base image

FROM debian:latest

Install additional packages

RUN apk add --update emacs

RUN apk add --update apache

index.html must be in the current directory

ADD index.html /home/demo/

Define the command which runs when the container starts

CMD ["cat /home/demo/index.html"]

Use bash as the container's entry point. CMD is the argument to this entry
point

ENTRYPOINT ["/bin/bash", "-c"]

14

Example Dockerfile
Debian Linux as the base image

FROM debian:latest

Install additional packages

RUN apk add --update emacs

RUN apk add --update apache

index.html must be in the current directory

ADD index.html /home/demo/

Define the command which runs when the container starts

CMD ["cat /home/demo/index.html"]

Use bash as the container's entry point. CMD is the argument to this entry
point

ENTRYPOINT ["/bin/bash", "-c"]

15

Example Dockerfile
Alpine Linux as the base image

FROM debian:latest

Install additional packages

RUN apk add --update emacs

RUN apk add --update apache

index.html must be in the current directory

ADD index.html /home/demo/

Define the command which runs when the container starts

CMD ["cat /home/demo/index.html"]

Use bash as the container's entry point. CMD is the argument to this entry
point

ENTRYPOINT ["/bin/bash", "-c"]

16

Example Dockerfile
Alpine Linux as the base image

FROM debian:latest

Install additional packages

RUN apk add --update emacs

RUN apk add --update apache

index.html must be in the current directory

ADD index.html /home/demo/

Define the command which runs when the container starts

CMD ["cat /home/demo/index.html"]

Use bash as the container's entry point. CMD is the argument to this entry
point

ENTRYPOINT ["/bin/bash", "-c"]

17

Example Dockerfile
Alpine Linux as the base image

FROM debian:latest

Install additional packages

RUN apk add --update emacs

RUN apk add --update apache

index.html must be in the current directory

ADD index.html /home/demo/

Define the command which runs when the container starts

CMD ["cat /home/demo/index.html"]

Use bash as the container's entry point. CMD is the argument to this entry
point

ENTRYPOINT ["/bin/bash", "-c"]

18

Images & Containers

● docker build
○ Builds an image

● docker run
○ Runs a container based on an image

● Images are immutable (Like a Class)
○ View these with docker images

● Containers are a ‘running instance of an Image’
(Like an Object)
○ View these with docker ps

19

Docker Engine

● A client-server application
○ Docker Daemon
○ Docker CLI
○ REST API

20 20

Docker Daemon

● Listens for Docker API requests
● Manages Docker objects
● The Daemon does not have to be on the

same machine as the Client

21

Docker CLI

● Communicates with Daemon using an API
docker build nginx

Tells the Docker client to forward the build
nginx instruction to the Daemon

22 22

Docker Registries

• Store Docker images
• Examples

• Docker Hub and Docker Cloud
• GCP Container Registry

• docker pull
• docker push

23

Containers are Useful, but What
About Resource Management?

● Containers can do many good things for us

● However, what do you still have to do manually?
○ Load Balancing
○ Fault Tolerance

● How should we do this?

24

Kubernetes

● Kubernetes is an open-source platform for automating

deployment, scaling, and operations of application

containers.

○ Horizontally Scalable

○ Self-Healing

○ Service Discovery

○ Automated Rollbacks

○ Utilization

25

https://kubernetes.io/docs/whatisk8s/

Kubernetes Overview

● API Objects
○ Pods - Collection of Containers
○ Deployment - Manages Pods
○ Service - Network Endpoint

● Desired State Management
○ YAML (YAML Ain’t a Markdown Language)

● Kubectl - CLI for Kubernetes
○ kubectl create config.yaml

26

https://kubernetes.io/docs/user-guide/kubectl-overview/

Kubernetes Cluster - Master

● Master Node
○ API Server
○ Controller Manager
○ Scheduler

27

Kubernetes Cluster - Worker

● Worker Nodes
○ Kubelet Daemon
○ Kube-Proxy

28

apiVersion: apps/v1beta1
kind: Pod
metadata:
 name: Sample-Pod
 labels:
 app: web
spec:
 containers:
 – name: front-end
 image:
gcr.io/samples/hello-frontend:1.0
 ports:
 – containerPort: 80
 – name: hello-app
 image:
gcr.io/samples/hello-app:1.0
 ports:
 – containerPort: 8080

Sample Kubernetes Config YAML

29

● A tool for managing Kubernetes applications
● Helm Charts help you define, install, and upgrade

complex Kubernetes application
● Chart structure:

○ Chart.yaml
■ A YAML file that contains chart information (name, version, description, etc.)

○ Values.yaml
■ The default configuration of this chart. The values listed in this file will be

substituted in the files under the templates/ directory.
○ templates/

■ A directory of template files that will be combined with the values defined in
Values.yaml. The files under this directory will be used to define all of the
Kubernetes objects required to deploy the application.

Helm

30

Helm - Architecture

31

● Helm has two primary components:
○ Helm client

■ A command line tool that enables users to develop charts,
manage repositories

■ Communicates with Tiller to install, describe or upgrade a
release

○ Tiller server
■ Communicates with the Kubernetes API to manage the

state of your application (e.g., installing, upgrading, or
removing applications)

Docker, Kubernetes Workflow

32

Project 2.2 - Containers & Kubernetes

33

Project 2.2 - Containers & Kubernetes

● Build a chat room application using the microservice
pattern

● Project overview:
○ Task 1: Containerize the profile service and run it locally
○ Task 2: Deploy the profile service to GKE
○ Task 3: Migrate the profile service’s database from H2 to

MySQL. Use Helm to manage the Kubernetes applications.
○ Task 4: Install the chat service and login service using Helm

charts. Connect the microservies to build a web service.
○ Task 5: Replicate the profile and login services to AKS.

Implement autoscaling rules to horizontally scale pods.

34

Task 1 - Containerize Profile Service

● Introduction to Dockerfiles
● Become familiar with the Docker CLI

○ docker build
○ docker images
○ docker run
○ docker ps

● Containerizing Java applications (a REST
service)

● Consider interactions between the host
machine and the container

35

Task 1 - Containerize Profile Service

● Run a Docker container to host the profile service
○ The Profile service exposes port 8080 on the container

○ Port 8000 of VM is mapped to the container port

● How do we achieve this port mapping?

<GCP_IP:8000> <profile-service:8080>

36

Task 2 - Using GCR and GKE to
Deploy the Profile Service

● Push your image to a private registry
○ Push the profile service Docker image to Google

Container Registry (GCR)

● Define a Kubernetes YAML configuration to
○ Create a deployment based on the image pushed to

GCR
○ Expose the profile service via a (GCP) load balancer

37

Task 2 - Using GCR and GKE to
Deploy the Profile Service

● Profile service
architecture

● The backend
application accepts
GET requests at
/profile

● The load balancer will
map port 80 to port
8080

38

Task 3 - Introduction to Helm Charts

● Deploy a MySQL database using Helm
● Update the profile service to use MySQL

instead of the embedded H2 database
○ Remember to push your updated image to GCR!

● Develop a Helm chart for the profile service
○ Release the profile service via helm

39

Task 3 - Use Helm Charts and
Migrating to MySQL

40

● Profile service
architecture
(MySQL)

● The backend
application
accepts GET
requests at
/profile

● The load
balancer should
map 80 to 8080

Task 4 - Cloud Chat Microservices

● Builds on Task 3
○ Additional login and group chat services

● Login service
○ Requires a separate MySQL database to store user

login information

● Group chat service
○ Redis Pub/Sub messaging channel for scalability

and real time communication
○ Separate MySQL to persist messages

41

Task 4 - Cloud Chat Microservices

42

Task 5 - Autoscaling, Multiple Cloud
Deployment and Fault Tolerance

● Horizontal Pod Autoscaler (HPA)
● Builds upon Task 4

○ Consider how to handle downstream service failures
● Achieving high availability

○ Multi cloud deployments!
○ Autoscaling Kubernetes deployments to

accommodated increased traffic
○ Can we use the HorizontalPodAutoscaler

Kubernetes object?

43

Task 5 - Auto-scaling, Multiple Cloud
Deployment and Fault-tolerance

44

Tips, Trips, and Tricks

● Debug, debug, debug
○ This project has many moving pieces!
○ Where is the issue occurring?
○ What is the expected behavior of the system?

● Pods and Logs
○ Did my pod start?

■ (kubectl get pods , kubectl describe pods)
○ Is my pod generating any logs?

■ (kubectl logs …)

45

Project 2.2 Penalties

46

Violation Penalty of the project

grade

Incomplete submission of required files -10%

Submitting your credentials, other secrets, or Andrew Id in your code for grading -100%

Submitting only executables (.jar, .pyc, etc.) without human-readable code (.py,.java, .sh, etc.) -100%

Attempting to hack/tamper the grader -100%

Cheating, plagiarism or unauthorized assistance (please refer to the university policy on academic integrity and our

syllabus)

-200% or R in the course

Project 2.2 Azure

47

● You will receive an Azure Classroom Subscription for this project.
Please accept the Azure Lab invitation to set up the subscription.

● Note
● that this subscription is exclusively for this project and its primers,

which means: * You cannot use other subscriptions to complete this
project. * You cannot use this project subscription for other purposes
including other projects.

● Be sure to use the correct subscription when you are using the Azure
portal or Azure CLI. If you have multiple subscriptions, you can use
the command below to change the default subscription.

● az account set --subscription <name or id>

Project 2.2 Azure Budget

48

● In this project, the recommended Azure budget is $20 and the
hard limit of the subscription budget is $40. Your subscription
will be disabled if you spend over the hard limit. You will NOT be
able to continue working on Azure in this project and we will not
increase the budget or reactivate your subscription.

● We suggest that you plan the budget carefully. Note that Azure
Classroom subscription has its own cost monitoring portal which is
different from the Cost Management + Billing blade used by most
subscription types. To check the remaining budget of Azure
Classroom subscriptions, please visit Azure Education Hub.

https://portal.azure.com/#blade/Microsoft_Azure_Billing/ModernBillingMenuBlade/BillingAccounts
https://portal.azure.com/#blade/Microsoft_Azure_Education/EducationMenuBlade/overview

Upcoming Deadlines

● Code Review - Project 1.2
○ Due on Wednesday, Sept 25th, 2019, 11:59PM ET

● Quiz 4 (OLI Modules 7, 8 & 9)
○ Due on Friday, Sept 27th, 2019, 11:59PM ET

● Project 2.2
○ Due on Sunday, Sept 29th, 2019, 11:59PM ET

● Project 2.1 Feedback
○ Due on Sunday, Sept 29th, 2019, 11:59PM ET

● Online Programming Exercise Scheduling
○ You will be asked to specify your availability for the

week of 10/7

49

Questions?

50

