
1

●
○
○

●
○
○
○
○

■

2

●
○
○
○

●
●

○
○
○

■
3

●
○
○
○

●
●

○
■

○
■

○
■ 4

●
○
○
○
○

●
●

5

Team Project - Time to Team Up
15-619 Students:
● Start to form your teams

○ Choose carefully as you cannot change teams
○ Look for a mix of skills in the team

■ Web tier: web framework performance
■ Storage tier: deploy and optimize MySQL and HBase
■ Extract, Transform and Load (ETL)

● Create a new AWS account only for the team project

15-319 Students:
● You are allowed to participate in the team project
● Once committed to a team, you cannot quit
● Earn a significant bonus for participating in the team project
● If you are a 15-319 student and want to participate in the team

project, please email the professor.

6

Team Formation - Deadlines
Follow the instructions in @913 carefully
● By Friday 10/04 at 11:59 PM ET

○ Identify your team members
○ One team member should form a team on TPZ and all other team

members should accept the invitation
■ Completing this step will freeze your team

● By Saturday 10/05 at 11:59 PM ET
○ Create a new AWS account ⇒ only used for the team project
○ Update the team profile in TPZ with the

■ New AWS ID aws-id

● By Sunday 10/06 at 11:59 PM ET
○ Finish reading the Profiling a Cloud Service primer to get yourself

prepared for the team project

7

https://piazza.com/class/jzlpem1a2lb747?cid=913

●

○
○
○
○
○
○
○

●

●

●

●

9

●

●
○
○

●
●
●
●

●
○
○

●

●
○

●
○

8

 13

P2.1

EC2
VMs

P2.2
Containers

This week!

P2.3
Functions

●

●
●

●

○
●

 14

●
●

○

●
○

●
○

 15

●
○
○
○

●
●

●

 16

●
●

●

○

○

○

 17

●
●

● …
○
○

●
○

 18

●

●
○

●
●

 19

●
○
○
○

●
○

●
○

 20

●
●

○
●

○
●

○
•
•

 21

●

●
○

○

 22

●

●

●

 23

 24

●

●

●
○

●

 25

●

●
○
○
○

 26

●

●

 27

●

●
●
●

●
●

●

●

●

○
 28

 29

30

●
○
○

●

○
●

○
○

31

Storage & IO Benchmarking:
● Running sysbench and preparing data

○ Use the prepare option to generate the data.
● Experiments

○ Run sysbench with different storage
systems and instance types.

○ Doing this multiple times to reveal different
behaviors and results.

● Compare the requests per second.

32

Scenario Instance

Type

Storage Type RPS Range RPS Increase Across 3 Iterations

1 t3.micro EBS Magnetic

Storage

171.12, 172.33,

189.34

Trivial (< 5%)

2 t3.micro EBS General

Purpose SSD

1649.65, 1709.24,

1729.24

Trivial (< 5%)

3 m4.large EBS Magnetic

Storage

527.70, 973.63,

1246.67

Significant (can reach ~140%

increase with an absolute value of

450-700)

4 m4.large EBS General

Purpose SSD

2046.66, 2612.00,

2649.66

Noticeable (can reach ~30%

increase with an absolute value of

500-600)

What can you conclude from these results?
33

● SSD has better performance than magnetic disk
● m4.large instance offers higher performance than a

t3.micro instance
● The RPS increase across 3 iterations for m4.large

is more significant than that for t2.micro:
○ The reason is an instance with more memory

can cache more of the previous requests for
repeated tests.

○ Caching is a vital performance tuning
mechanism when building high performance
applications.

34

P3.1: Files, SQL, and NoSQL:
● Task 1: analyze data in flat files

○ Linux tools (e.g. grep, awk)
○ Data libraries (e.g. pandas)

● Task 2: Explore a SQL database (MySQL)
○ load data, run queries, indexing, auditing
○ plain-SQL v/s ORM

● Task 3: Implement a Key-Value Store
○ prototype of Redis using TDD

● Task 4: Explore a NoSQL DB (HBase)
○ load data, run basic queries

The NoSQL and HBase primers are vital for P3.1
35

● Flat files, plain text or binary
○ comma-separated values (CSV) format:

Carnegie,Cloud Computing,A,2018

○ tab-separated values (TSV) format:
Carnegie\tCloud Computing\tA\t2018

○ a custom and verbose format: Name:
Carnegie, Course: Cloud Computing,

Section: A, Year: 2018

36

● Lightweight, flexible, in favor of small tasks
○ Run it once and throw it away

● Performing complicated analysis on data in files
can be inconvenient

● Usually flat files should be fixed or append-only
● Writes to files without breaking data integrity is

difficult
● Managing the relations among multiple files is

also challenging
37

● A collection of organized data
● Database management system (DBMS)

○ Interface between user and data
○ Store/manage/analyze data

● Relational databases
○ Based on the relational model (schema)
○ MySQL, PostgreSQL

● NoSQL Databases
○ Unstructured/semi-structured
○ Redis, HBase, MongoDB, Neo4J

 38

● Advantages
○ Logical and physical data independence
○ Concurrency control and transaction support
○ Query the data easily (e.g., SQL)
○ ...

● Disadvantages
○ Cost (computational resources, fixed schema)
○ Maintenance and management
○ Complex and time-consuming to design schema
○ ...

39

● Compare flat files to databases

● Think about:
○ What are the advantages and disadvantages of

using flat files or databases?
○ In what situations would you use a flat file or a

database?
○ How to design your own database? How to

load, index and query data in a database?

40

● Analyze Yelp’s Academic Dataset
○ https://www.yelp.com/dataset_challenge

○ business
○ checkin
○ review
○ tip
○ user

41

https://www.yelp.com/dataset_challenge

42

● Answer questions in runner.sh
○ Use tools such as awk and pandas
○ Similar to what you did in Project 1

● Merge TSV files by joining on a common field
● Identify the disadvantages of flat files
● You may use Jupyter Notebook to help you

solve the questions in Python.

43

● Prepare tables
○ A script to create the table and load the data is

already provided
○ Note: loading the data takes serious time

● Use MySQL queries to answer questions
○ Learn JDBC
○ Complete MySQLTasks.java
○ Aggregate functions, joins
○ Statement and PreparedStatement
○ SQL injection

● Learn how to use proper indexes to improve
performance

44

● Schema
○ The structure of the tables and the relations between

tables
○ Based on the structure of the data and the application

requirement
● Index:

○ An index is simply a pointer to data in a table. It’s a data
structure (lookup table) that helps speed up the retrieval
of data from tables (e.g., B-Tree, Hash indexes, etc.)

○ Based on the data as well as queries
● You can build effective indexes only if you are aware of the

queries you need
● We have an insightful section about the practice of indexing,

read it carefully! Very helpful for the team project
45

● How do we evaluate the performance of a
query?
○ Run it.

● What if we want/need to predict the
performance without execution?
○ Use EXPLAIN statements.

● An EXPLAIN statement on a query will predict:
○ The number of rows to scan
○ Whether it makes use of indexes or not
○ etc.

46

ORM is a technique to abstract away the work for you to:
1. Map the domain class with the database table
2. Map each field of the domain class with a column of the table
3. Map instances of the classes (objects) with rows in the

corresponding tables

47

● Separation of concerns
○ ORM decouples the CRUD operations and the business logic

code.
● Productivity

○ You don’t need to keep switching between your OOP
language such as Java/Python, etc. and SQL.

● Flexibility to meet evolving business requirements
○ ORM cannot eliminate the schema update problem, but it

may ease the difficulty, especially when used together with
data migration tools.

● Persistence transparency
○ Any changes to a persistent object will be automatically

propagated to the database without explicit SQL queries.
● Vendor independence

○ ORM can abstract the application away from the underlying
SQL database and SQL dialect.

48

● The current business application exposes an API
that returns the most popular Pittsburgh
businesses.

● It is based on a SQLite3 database with an
outdated schema.

● Your task:
○ Plug the business application to the MySQL

database and update the definition of the
domain class to match the new schema.

● The API will be backward compatible without
modifying any business logic code.

49

● Non-SQL or NotOnly-SQL
○ Non-relational

● Why NoSQL if we already have SQL solutions?
○ Flexible data model (schemaless, can change)
○ Designed to be distributed (scale horizontally)
○ Certain applications require improved performance at

the cost of reduced data consistency (data staleness)
● Basic Types of NoSQL Databases

○ Schema-less Key-Value Stores (Redis)
○ Wide Column Stores (Column Family Stores) (HBase)
○ Document Stores (MongoDB)
○ Graph DBMS (Neo4j)

50

CAP

● The CAP theorem: it is impossible for a
distributed data store to provide all the following
three guarantees at the same time
○ Consistency: no stale data
○ Availability: no downtime
○ Partition Tolerance: network failure tolerance

in a distributed system

51

Single Node to Distributed Databases

Three issues emerge:
● Since DB is replicated, how to maintain consistency?
● Since the data is replicated, if one replica is down, is the

entire service down?
● How will the service behave during a network failure?

A database, replicated on two
nodes, Node 1 and Node 2

52

C, A, P in Distributed Databases

53

Only two out of the three are feasible:
● CA: non-distributed (MySQL, PostgreSQL)

○ Traditional databases like MySQL and PostgresQL
have only one server. They meet the requirement of
CA and don’t provide partition tolerance

● CP: downtime (HBase, MongoDB)
○ Stop responding if there is partition. There will be

downtime
● AP: stale data (Amazon DynamoDB)

○ Always available. Data may be inconsistent among
nodes if there is a partition

CAP Theorem

54

55

Only two out of three in CAP are feasible

● Key-value store is a type of NoSQL database
e.g., Redis and Memcached

● Widely used as an in-memory cache

Your task:

● Implement a simplified version of Redis
● We provide starter code Redis.java, you will

implement two of the commonly used data
structures supported by Redis:
○ hashes and lists

● TDD with 100% code coverage
56

HBase is an open source, column-oriented,
distributed database developed as part of the
Apache Hadoop project

Steps to complete:
1. Launch an HDInsight cluster with HBase installed.
2. Follow the write-up to download and load the

data into HBase.
3. Try different querying commands in the HBase shell.
4. Complete HBaseTasks.java using HBase Java APIs.

57

● Tag your resources with:
○ Key: Project, Value: 3.1

● An HDInsight cluster is very expensive.
● Your subscription will be disabled if you run out of

your subscription budget. Please exercise
caution to plan the budget.

● Remember to delete the Azure resource group to
clean up all the resources in the end.

58

59

● Quiz 5 (OLI Modules 10, 11 & 12)
○ Due on Friday, Oct 4th, 2019, 11:59PM ET

● Team Project - Team Formation
○ Due on Friday, Oct 4th, 2019, 11:59PM ET

● OPE - Schedule
○ Due on Saturday, Oct 5th, 2019, 11:59PM ET

● Project 2.3
○ Due on Sunday, Oct 6th, 2019, 11:59PM ET

● Project 3.1
○ Due on Sunday, Oct 13th, 2019, 11:59PM ET

Team Formation - Deadlines

Follow the instructions on Piazza carefully
● By Friday 10/04 at 11:59 PM ET

○ Identify your team members
○ One team member should form a team on TPZ and all other team

members should accept the invitation
■ Completing this step will freeze your team

● By Saturday 10/05 at 11:59 PM ET
○ Create a new AWS account ⇒ only used for the team project
○ Update the team profile in TPZ with the new AWS ID aws-id

● By Sunday 10/06 at 11:59 PM ET
○ Finish reading the Profiling a Cloud Service primer to get yourself

prepared for the team project

60

61

