

–
–

2

–

3

–

•
–

4

•

•
–
–

5

•
•

Prepare data for the next iteration

6

7

●
○
○

●
○
○
○

●
○
○

●
○
○

8

https://spark.apache.org/sql/
https://spark.apache.org/streaming/
https://spark.apache.org/mllib/
https://spark.apache.org/graphx/

●

Resilient
Distributed

Dataset (RDD)
DataFrame Dataset

● Distributed
collection of
JVM objects

● Functional
operators
(map, filter, etc.)

● Distributed
collection of
Row objects

● Expression-
based
operations

● Fast, efficient
internal
representations

● Internally rows,
externally JVM
objects

● Type safe and
fast

● Slower than
dataframes

9

●
●
●

RDD1 RDD1’

RDD2 RDD2’

RDD3 RDD3’

Machine B

Machine A

Machine C

RDD Operation
(e.g. map, filter)

10

>>> input_RDD = sc.textFile("text.file")

>>> transform_RDD = input_RDD.filter(lambda x: "abcd" in x)

>>> print "Number of “abcd”:" + transform_RDD.count()

>>> output.saveAsTextFile(“hdfs:///output”) 11

●
●

○
○
○

12

●
○
○

●
○
○

13

people.json
{"name":"Michael"} {"name":"Andy", "age":30} {"name":"Justin", "age":19}

val df = spark.read.json("people.json")

val sqlDF = df.filter($"age" > 20).show()
+---+----+

|age|name|

+---+----+

| 30|Andy|

+---+----+

df.filter($"age" > 20).select(“name”).write.format(“parquet”).save(“output”)

Note: Parquet is a column-based storage format for Hadoop. You will need
special dependencies to read this file

14

Task Points Description Language

15

16

●

●

●

●

●
●
●

○
● →

17

●

■
■

■
■

18

●

●

●
○ ⇒
○ ⇒

●

19

● How do we measure influence?
○ Intuitively, it should be the node with the most followers

20

● Influence scores are initialized to 1.0 / # of vertices

0.333 0.333

0.333
21

● Influence scores are initialized to 1.0 / # of vertices
● In each iteration of the algorithm, scores of each user are

redistributed between the users they are following

0.333 0.333

0.333
22

● Influence scores are initialized to 1.0 / # of vertices
● In each iteration of the algorithm, scores of each user are

redistributed between the users they are following

0.333/2
= 0.167

0.333 + 0.333/2
= 0.500

0.333
From Node 2

From Node 1

From Node 1From Node 0

23

● Influence scores are initialized to 1.0 / # of vertices
● In each iteration of the algorithm, scores of each user are

redistributed between the users they are following
● Convergence is achieved when the scores of nodes do not

change between iterations
● PageRank is guaranteed to converge

0.333/2
= 0.167

0.333 + 0.333/2
= 0.500

0.333

From Node 2

From Node 1

From Node 1From Node 0

24

● Influence scores are initialized to 1.0 / # of vertices
● In each iteration of the algorithm, scores of each user are

redistributed between the users they are following
● Convergence is achieved when the scores of nodes do not

change between iterations
● PageRank is guaranteed to converge

0.208 0.396

0.396
25

val links = spark.textFile(...).map(...).persist()
var ranks = // RDD of (URL, rank) pairs
for (i <- 1 to ITERATIONS)
{

// Build an RDD of (targetURL, float) pairs
// with the contributions sent by each page
val contribs = links.join(ranks).flatMap
{

(url, (links, rank)) =>
links.map(dest => (dest, rank/links.size))

}

// Sum contributions by URL and get new ranks
ranks = contribs.reduceByKey((x,y) => x+y)

.mapValues(sum => a/N + (1-a)*sum)
}

Reference: https://github.com/apache/spark/blob/master/examples/src/main/scala/org/apache/spark/examples/SparkPageRank.scala 26

https://github.com/apache/spark/blob/master/examples/src/main/scala/org/apache/spark/examples/SparkPageRank.scala

● Dangling or sink vertex
○ No outgoing edges
○ Redistribute contribution equally among all vertices

● Isolated vertex
○ No incoming and outgoing edges
○ No isolated nodes in Project 4.1 dataset

● Damping factor d
○ Represents the probability that a user clicking on links

will continue clicking on them, traveling down an edge
○ Use d = 0.85

Dangling vertex
Isolated vertex

27

● Adjacency matrix:

● Transition matrix: (rows sum to 1)

28

Formula for calculating rank

d = 0.85

29

Formula for calculating rank

d = 0.85

Note: contributions from isolated and
dangling vertices are constant in an
iteration

Let

30

Formula for calculating rank

d = 0.85

Note: contributions from isolated and
dangling vertices are constant in an
iteration

Let

This simplifies the formula to

31

Formula for calculating rank

d = 0.85

32

Formula for calculating rank

d = 0.85

33

●

●
○
○

●
○
○

34

●
○
○

●

●
○
○
○
○
○
○

●
○
○

●
○

● 35

https://spark.apache.org/docs/latest/sql-programming-guide.html
https://spark.apache.org/docs/latest/rdd-programming-guide.html

● Ensuring correctness
○ Make sure total scores sum to 1.0 in every iteration
○ Understand closures in Spark

■ Do not do something like this
val data = Array(1,2,3,4,5)

var counter = 0

var rdd = sc.parallelize(data)

rdd.foreach(x => counter += x)

println("Counter value: " + counter)

○ Graph representation
■ Adjacency lists use less memory than matrices

○ More detailed walkthroughs and sample calculations
can be found here

36

https://s3.amazonaws.com/15619public/webcontent/pagerank_examples.pdf

Status of RDD
actions being
computed

Info about cached
RDDs and
memory usage

In-depth job info

37

● Understand RDD manipulations
○ Actions vs Transformations
○ Lazy transformations

● Use the Yarn UI
○ Are you utilizing your cluster completely? How can you change

that? Refer optimization hints in the writeup.
● Use the Spark UI

○ Are your RDDs cached as expected? (Thrashing)
○ Memory errors - check container logs
○ Parameter tuning applied successfully?
○ Exponential increase in partitions? - Read about HashPartitioner

in Spark
● How do you represent the node IDs? Int/String/Long?
● Many more optimization hints in the writeup!

38

● Databricks is an Apache Spark-based unified analytics
platform.

● Azure Databricks is optimized for Azure
○ Software-as-a-Service

● One-click setup, an interactive workspace, and an
optimized Databricks runtime

● Optimized connectors to Azure storage platforms for
fast data access

● Run the same PageRank application (in Task 2) on
Azure Databricks to compare the differences with Azure
HDInsight

39

● You can only get bonus (10 points) when:
○ 100% correctness
○ Runtime under 30 minutes on Databricks

● Copy your code to a Databricks notebook:
○ Do not create or destroy SparkSession objects
○ Change the output to DBFS instead of WASB

● Create a cluster and job using databricks-setup.sh
● Submitter takes in a job ID
● Don’t forget to destroy resources after you are done!

40

object PageRank {
 def calculatePageRank(inputGraphPath: String, outputPath: String, iterations: Int, isLocal: Boolean): Unit = {
 val spark = SparkUtils.getSparkSession(isLocal, appName = "PageRank")
 val sc = spark.sparkContext

 … Your implementation goes here …
 graphRDD = sc.textFile(inputGraphPath)
 graphRDD.map(...)

 spark.close()
 }

 def main(args: Array[String]): Unit = {
 val inputGraph = "wasb://spark@cmuccpublicdatasets.blob.core.windows.net/Graph"
 val outputPath = "wasb:///pagerank-output"
 val iterations = 10

 calculatePageRank(inputGraph, outputPath, iterations, isLocal=false)
 }
}

41

object PageRank {
 def calculatePageRank(inputGraphPath: String, outputPath: String, iterations: Int, isLocal: Boolean): Unit = {
 val spark = SparkUtils.getSparkSession(isLocal, appName = "PageRank")
 val sc = spark.sparkContext

 val inputGraph = "wasb://spark@cmuccpublicdatasets.blob.core.windows.net/Graph"
 val outputPath = "wasb:///pagerank-output"
 val iterations = 10
 … Your implementation goes here …
 graphRDD = sc.textFile(inputGraphPath)
 graphRDD.map(...)

 spark.close()
 }

 def main(args: Array[String]): Unit = {

 calculatePageRank(inputGraph, outputPath, iterations, isLocal=false)
 }
}

42

43

TEAM PROJECT
Twitter Data Analytics

Team Project

Web-tier Storage-tier

44

Twitter Analytics System Architecture

● Web server architectures
● Dealing with large scale real world tweet data
● HBase and MySQL optimization 45

GCP Dataproc, Azure
HDInsight, or Amazon EMR

Web-tier Storage-tier

Team Project
● Phase 1:

○ Q1
○ Q2 (MySQL AND HBase)

● Phase 2
○ Q1
○ Q2 & Q3 (MySQL AND HBase)

● Phase 3
○ Q1
○ Q2 & Q3 (MySQL OR HBase)

46

Team Project Deadlines

48

● Phase 2 milestones:

○ Phase 2, Live test: on Sunday, Nov 10

■ HBase:

● Q1/Q2/Q3/mixed

■ MySQL:

● Q1/Q2/Q3/mixed

○ Phase 2, code, scripts and report:

■ due on Tuesday, Nov 12

49

Phase (and query due) Start Deadlines Code and Report Due

●

●

●

●

●

Live Test Schedule - setup

50

Live Test Schedule - HBase

51

Live Test Schedule - MySQL

52

●
● ≤

●
●

●
●

●
●
●
●
●

Budget Reminder

53

https://aws.amazon.com/ec2/pricing/on-demand/

●
○

●
○

○

●
○
○

●

●

●

●

●
○

●

●

Hints
● Completely understand every AssessMe question

● Completely understand the definition of a word. This is

different for text censoring and calculating scores.

● A query contains two ranges. Log some requests to get an

idea on the range of user_id and timestamps.

● Optimization is time-consuming. Before ETL, please

○ Think about your schema design

○ Think about your database configuration

57

Hints
● For HBase, you’re not restricted to just 1 master node. The

two sample setups below are both permitted.

○ 1 x (1 master + 5 slaves)

○ 2 x (1 master + 2 slaves)

● Understand and keep an eye on

○ EC2 CPU Credits and burstable performance

○ EBS volume I/O Credits and Burst Performance

58

EC2 CPU Burst Credits

59

● One CPU credit is equal to one vCPU running at 100%
utilization for one minute.

● Other combinations of number of vCPUs, utilization, and
time can also equate to one CPU credit.

● For example, one CPU credit is equal to:
○ one vCPU running at 50% utilization for two minutes,

or
○ two vCPUs running at 25% utilization for two

minutes.

●

●

●
●

●

●

Hints for the live test

60

Warning

● NEVER open all ports to the public (0.0.0.0) when

using instances on a public cloud.

● For your purposes, you likely only need to open

port 80 to the public. Port 22 should be open only

to your public IPs.

● Port 3306 (for MySQL) and HBase ports should be

open only to cluster members if necessary.

61

Questions?

62

